Tuning Magnetic and Semiconducting Properties of Cr-Doped CaTiO3 Perovskites for Advanced Spintronic Applications
Abstract
1. Introduction
2. Theoretical Calculation Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Hu, C.; Wang, D. Ferromagnetism in (Cr, Mn)-co-doped 3C-SiC analyzed using density functional theory. AIP Adv. 2023, 13, 065330. [Google Scholar] [CrossRef]
- Souidi, A.; Bentata, S.; Benstaali, W.; Bouadjemi, B.; Abbad, A.; Lantri, T. First principle study of spintronic properties for double perovskites Ba2XMoO6 with X = V, Cr and Mn. Mater. Sci. Semicond. Process. 2016, 43, 196–208. [Google Scholar] [CrossRef]
- M’hid, A.A.; Boughrara, M.; Li, G.; Kerouad, M.; Wang, Q. First-principles investigations and Monte Carlo simulation of Ti and Cr-doped w-ZnO and (Ti,Cr) co-doped w-ZnO based magnetic semiconductors: Materials for spintronic applications. J. Magn. Magn. Mater. 2024, 589, 171540. [Google Scholar] [CrossRef]
- Dar, S.A.; Murtaza, G.; Zelai, T.; Nazir, G.; Alkhaldi, H.; Albalawi, H.; Kattan, N.A.; Irfan, M.; Mahmood, Q.; Mahmoud, Z. Study of structural, electronic, magnetic, and optical properties of A2FeMnO6 (A = Ba, La) double perovskites, experimental and DFT analysis. Colloids Surf. A Physicochem. Eng. Asp. 2023, 664, 131145. [Google Scholar] [CrossRef]
- Rehman, M.U.; Wang, Q.; Yu, Y. Electronic, Magnetic and Optical Properties of Double Perovskite Compounds: A First Principle Approach. Crystals 2022, 12, 1597. [Google Scholar] [CrossRef]
- Yang, F.; Yang, L.; Ai, C.; Xie, P.; Lin, S.; Wang, C.Z.; Lu, X. Tailoring bandgap of perovskite BaTiO3 by transition metals co-doping for visible-light photoelectrical applications: A first-principles study. Nanomaterials 2018, 8, 455. [Google Scholar] [CrossRef]
- Rizwan, M.; Usman, Z.; Shakil, M.; Gillani, S.S.A.; Azeem, S.; Jin, H.B.; Cao, C.B.; Mehmood, R.F.; Nabi, G.; Asghar, M.A. Electronic and optical behaviour of lanthanum doped CaTiO3 perovskite. Mater. Res. Express 2020, 7, 015920. [Google Scholar] [CrossRef]
- Al-Qhtani, M.; Mustafa, G.M.; Mazhar, N.; Bouzgarrou, S.; Mahmood, Q.; Mera, A.; Zaki, Z.I.; Mostafa, N.Y.; Alotaibi, S.H.; Amin, M.A. Half Metallic Ferromagnetism and Transport Properties of Zinc Chalcogenides ZnX2Se4 (X = Ti, V, Cr) for Spintronic Applications. Materials 2022, 15, 55. [Google Scholar] [CrossRef]
- Saad H-E, M.M. Impact of 3d-transition metal [T = Sc, Ti, V, Cr, Mn, Fe, Co] on praseodymium perovskites PrTO3: Standard spin-polarized GGA and GGA+U investigations. Bull. Mater. Sci. 2022, 45, 1–18. [Google Scholar] [CrossRef]
- Ben Hassen, A.; Rhouma, F.I.H.; Dhahri, J.; Abdelmoula, N. Effect of the substitution of titanium by chrome on the structural, dielectric and optical properties in Ca0.67La0.22Ti(1-x)CrxO3 perovskites. J. Alloys Compd. 2016, 663, 436–443. [Google Scholar] [CrossRef]
- Alsobhi, B.O. First-principle calculations of the electronic, structural, optical, thermoelectric and elastic properties of CeXO3 (X = Ti, V and Cr) perovskites. J. Taibah Univ. Sci. 2021, 15, 1078–1093. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, J.; Liu, X.; Lin, L.; Tao, H. Electronic structure and high magnetic properties of (Cr, co)-codoped 4h–sic studied by first-principle calculations. Crystals 2020, 10, 634. [Google Scholar] [CrossRef]
- Chang, F.; Zhang, N.; Yang, F.; Wang, S.; Song, G. Effect of Cr substitution on the structure and electrical properties of BiFeO3 ceramics. J. Phys. D Appl. Phys. 2007, 40, 7799–7803. [Google Scholar] [CrossRef]
- Gong, S.; Chen, P.; Liu, B.G. Structural, electronic, and magnetic properties of double perovskite Pb2CrMO6 (M=Mo, W and Re) from first-principles investigation. J. Magn. Magn. Mater. 2014, 349, 74–79. [Google Scholar] [CrossRef]
- Rasul, M.N.; Mehmood, M.; Hussain, A.; Rafiq, M.A.; Iqbal, F.; Khan, M.A.; Manzoor, A. Investigation of the Physical Properties of XCRh3 (X = Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Zr, Nb, Mo, Tc, Ru, Pd, Ag) Inverse Perovskites from First Principles. J. Electron. Mater. 2022, 51, 5880–5896. [Google Scholar] [CrossRef]
- Kishore, N.; Nagarajan, V.; Chandiramouli, R. High-pressure studies on electronic and mechanical properties of FeBO3 (B = Ti, Mn, Cr) ceramics–a first-principles study. Phase Transit. 2018, 91, 382–397. [Google Scholar] [CrossRef]
- Mahmood, Q.; Ali, S.A.; Hassan, M.; Laref, A. First principles study of ferromagnetism, optical and thermoelectric behaviours of AVO3 (A = Ca, Sr, Ba) perovskites. Mater. Chem. Phys. 2018, 211, 428–437. [Google Scholar] [CrossRef]
- Saxena, P.; Mishra, A. Structural and electrical properties of YMnO3 manganites: Influence of Cr ion doping. J. Solid State Chem. 2021, 301, 122364. [Google Scholar] [CrossRef]
- Ghebouli, B.; Ghebouli, M.A.; Choutri, H.; Fatmi, M.; Chihi, T.; Louail, L.; Bouhemadou, A.; Bin-Omran, S.; Khenata, R.; Khachai, H. An ab initio study of the structural, elastic, electronic, optical properties and phonons of the double perovskite oxides Sr2AlXO6 (X = Ta, Nb, V). Mater. Sci. Semicond. Process. 2016, 42, 405–412. [Google Scholar] [CrossRef]
- Uto, O.T.; Adebambo, P.O.; Akinlami, J.O.; Kenmoe, S.; Adebayo, G.A. Electronic, Structural, Mechanical, and Thermodynamic Properties of CoYSb (Y = Cr, Mo, W) Half-Heusler Compounds as Potential Spintronic Materials. Solids 2022, 3, 22–33. [Google Scholar] [CrossRef]
- Saeed, M.; Haq, I.U.; Saleemi, A.S.; Rehman, S.U.; Haq, B.U.; Chaudhry, A.R.; Khan, I. First-principles prediction of the ground-state crystal structure of double-perovskite halides Cs2AgCrX6 (X = Cl, Br, and I). J. Phys. Chem. Solids 2022, 160, 110302. [Google Scholar] [CrossRef]
- El Amine Monir, M.; Dahou, F.Z. Structural, thermal, elastic, electronic and magnetic properties of cubic lanthanide based perovskites type oxides PrXO3 (X = V, Cr, Mn, Fe): Insights from ab initio study. SN Appl. Sci. 2020, 2, 465. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Jia, Y.; Yan, W.; Li, Q.; Zhou, J.; Wu, K. Engineering the Electronic Structure towards Visible Lights Photocatalysis of CaTiO3 Perovskites by Cation (La/Ce)-Anion (N/S) Co-Doping: A First-Principles Study. Molecules 2023, 28, 7134. [Google Scholar] [CrossRef]
- Bukhari, S.; Giorgi, J. Redox stability of Sm0.95Ce0.05Fe1−xCrxO3−δ perovskite materials. J. Electrochem. Soc. 2011, 158, H1027. [Google Scholar] [CrossRef]
- Sato, N.; Haruta, M.; Sasagawa, K.; Ohta, J.; Jongprateep, O. Fe and Co-doped (Ba, Ca)TiO3 perovskite as potential electrocatalysts for glutamate sensing. Eng. J. 2019, 23, 265–278. [Google Scholar] [CrossRef]
- Wen, H.; Luo, X. Tuning Bandgaps of Mixed Halide and Oxide Perovskites CsSnX3 (X=Cl, I), and SrBO3 (B=Rh, Ti). Appl. Sci. 2021, 11, 6862. [Google Scholar] [CrossRef]
- Lewis, C.; Liu, H.; Han, J.; Wang, L.; Yue, S.; Brennan, N.; Wong, S. Probing charge transfer in a novel class of luminescent perovskite-based heterostructures composed of quantum dots bound to re-activated CaTiO3 phosphors. Nanoscale 2016, 8, 2129–2142. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, S.; Okazaki, Y.; Matsuda, M.; Miyake, M. Photocatalytic H2 evolution by layered perovskite Ca3Ti2O7 codoped with Rh and Ln (Ln = La, Pr, Nd, Eu, Gd, Yb, and Y) under visible light irradiation. J. Ceram. Soc. Jpn. 2009, 117, 1175–1179. [Google Scholar] [CrossRef]
- Dunyushkina, L.; Gorbunov, V. Crystal structure and electrical conductivity correlation in CaTi1−xFexO3−δ system. Ionics 2002, 8, 256–261. [Google Scholar] [CrossRef]
- Riaz, A.; Witte, K.; Bodnar, W.; Seitz, H.; Schell, N.; Springer, A.; Burkel, E. Tunable pseudo-piezoelectric effect in doped calcium titanate for bone tissue engineering. Materials 2021, 14, 1495. [Google Scholar] [CrossRef]
- Novianti, D.; Haikal, F.; Rouf, U.; Hardian, A.; Prasetyo, A. Synthesis and characterization of Fe-doped CaTiO3 polyhedra prepared by molten NaCl salt. Sci. Technol. Indones. 2022, 7, 17–21. [Google Scholar] [CrossRef]
- Sharma, P.; Pramanik, M.; Limaye, M.; Singh, S. Magnetic field-enhanced oxygen evolution in YMn1–xCrxO3 (x = 0, 0.05, and 0.1) perovskite oxides. J. Phys. Chem. C 2023, 127, 16259–16266. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Methfessel, M.; Paxton, A.T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616–3621. [Google Scholar] [CrossRef]
- Wendari, T.P.; Akbar, M.A.; Izzati, A.F.; Haidar, H.; Rizki, A.; Zulhadjri; Arief, S.; Mufti, N.; Blake, G.R. Structure, Dielectric, and Energy Storage Properties of Perovskite CaTiO3 Ceramic Synthesized Using the Natural Calcium from Pensi Shell (Corbicula moltkiana) Waste. J. Mol. Struct. 2024, 1307, 137949. [Google Scholar] [CrossRef]
- Yan-Qing, T.; Meng, Y.; Yong-Mei, H. Structure and colossal dielectric permittivity of Ca2TiCrO6 ceramics. J. Phys. D Appl. Phys. 2013, 46, 015303. [Google Scholar] [CrossRef]
- Zhou, J.-S.; Jin, C.-Q.; Long, Y.-W.; Yang, L.-X.; Goodenough, J.B. Anomalous Electronic State in CaCrO3 and SrCrO3. Phys. Rev. Lett. 2006, 96, 046408. [Google Scholar] [CrossRef]
- Sasaki, S.; Prewitt, C.T.; Bass, J.D.; Schulze, W.A. Orthorhombic perovskite CaTiO3 and CdTiO3: Structure and space group. Acta Cryst. 1987, C43, 1668–1674. [Google Scholar] [CrossRef]
- A stand out family. Nat. Mater. 2021, 20, 1303. [CrossRef] [PubMed]
- Streltsov, S.V.; Khomskii, D.I. Jahn-Teller Effect and Spin-Orbit Coupling: Friends or Foes? Phys. Rev. X 2020, 10, 031043. [Google Scholar] [CrossRef]
- Zhang, H.; Li, N.; Li, K.; Xue, D. Structural Stability and Formability of ABO3-Type Perovskite Compounds. Acta Cryst. 2007, B63, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Enterkin, J.A.; Poeppelmeier, K.R. Bonding at Oxide Surfaces. In Bond Valences; Brown, I., Poeppelmeier, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 158, pp. 154–196. [Google Scholar] [CrossRef]
- Lufaso, M.W.; Barnes, P.W.; Woodward, P.M. Structure Prediction of Ordered and Disordered Multiple Octahedral Cation Perovskites Using SPuDS. Acta Crystallogr. Sect. B Struct. Sci. 2006, 62, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Lisco, F.; Kaminski, P.M.; Abbas, A.; Bass, K.; Bowers, J.W.; Claudio, G.; Losurdo, M.; Walls, J.M. The structural properties of CdS deposited by chemical bath deposition and pulsed direct current magnetron sputtering. Thin Solid Film. 2015, 582, 323–327. [Google Scholar] [CrossRef]
- Zdorovets, M.V.; Borgekov, D.B.; Zhumatayeva, I.Z.; Kenzhina, I.E.; Kozlovskiy, A.L. Synthesis, Properties, and Photocatalytic Activity of CaTiO3-Based Ceramics Doped with Lanthanum. Nanomaterials 2022, 12, 2241. [Google Scholar] [CrossRef]
- Roa-Rojas, J.; Toro, C.E.D.; Rebaza, A.V.G.; Moya, X.A.V.; Téllez, D.A.L. Spintronic Properties in Complex Perovskites: A Concordance between Experiments and Ab-Initio Calculations. In Research Topics in Bioactivity, Environment and Energy; Taft, C.A., de Lazaro, S.R., Eds.; Engineering Materials; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Alouani, M.; Baadji, N.; Abdelouahed, S.; Bengone, O.; Dreyssé, H. Effect of Spin-Orbit Coupling on the Magnetic Properties of Materials: Results. In Advances in the Atomic-Scale Modeling of Nanosystems and Nanostructured Materials; Massobrio, C., Bulou, H., Goyhenex, C., Eds.; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 795. [Google Scholar] [CrossRef]
Structural Parameters | 0% | 25% | 50% | 75% | 100% |
---|---|---|---|---|---|
a (Å) | 5.4067 5.3928 [39] | 5.3878 | 5.3929 5.3511 [40] | 5.3476 | 5.3221 5.2886 [41] |
b (Å) | 5.5056 5.4494 [39] | 5.4935 | 5.4596 5.3936 [40] | 5.4748 | 5.4668 5.3172 [41] |
c (Å) | 7.6949 7.6582 [39] | 7.6552 | 7.5989 7.5874 [40] | 7.5720 | 7.5341 7.4844 [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deluque-Toro, C.E.; Ariza-Echeverri, E.A.; Landínez-Téllez, D.A.; Vergara, D.; Roa-Rojas, J. Tuning Magnetic and Semiconducting Properties of Cr-Doped CaTiO3 Perovskites for Advanced Spintronic Applications. Appl. Sci. 2024, 14, 7326. https://doi.org/10.3390/app14167326
Deluque-Toro CE, Ariza-Echeverri EA, Landínez-Téllez DA, Vergara D, Roa-Rojas J. Tuning Magnetic and Semiconducting Properties of Cr-Doped CaTiO3 Perovskites for Advanced Spintronic Applications. Applied Sciences. 2024; 14(16):7326. https://doi.org/10.3390/app14167326
Chicago/Turabian StyleDeluque-Toro, C. E., E. A. Ariza-Echeverri, D. A. Landínez-Téllez, D. Vergara, and J. Roa-Rojas. 2024. "Tuning Magnetic and Semiconducting Properties of Cr-Doped CaTiO3 Perovskites for Advanced Spintronic Applications" Applied Sciences 14, no. 16: 7326. https://doi.org/10.3390/app14167326
APA StyleDeluque-Toro, C. E., Ariza-Echeverri, E. A., Landínez-Téllez, D. A., Vergara, D., & Roa-Rojas, J. (2024). Tuning Magnetic and Semiconducting Properties of Cr-Doped CaTiO3 Perovskites for Advanced Spintronic Applications. Applied Sciences, 14(16), 7326. https://doi.org/10.3390/app14167326