Study on Fire Smoke Movement Characteristics and Their Impact on Personal Evacuation in Curved Highway Tunnels
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Fire Dynamics Simulator
2.2. Fire Scenario Analysis
2.3. Critical Velocity
2.4. Grid Size
2.5. Verification of Numerical Simulation Reliability
2.6. Determination of the Location of the Most Hazardous Fire Source
3. Results
3.1. Safety Standard
3.2. Comparison of the Smoke Distribution in Different Sides of the Tunnel
3.2.1. Temperature
3.2.2. Visibility
3.2.3. CO Concentration
3.3. Comprehensive Analysis of the Altitude Effect and Longitudinal Ventilation
3.4. Impact on Personal Evacuation
3.4.1. Impact on Available Safe Egress Time
3.4.2. Position of an Adit for People Passing
3.4.3. Position of the Adit for People Passing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, T.; Li, P.; Wang, Y.; Xue, X. Longitudinal decay of smoke temperature and front velocity in tunnel fires. China Saf. Sci. J. 2023, 33, 140–145. [Google Scholar] [CrossRef]
- Jiang, X.-P.; Chen, X.-G.; Guo, K. Study on critical velocity of lateral point smoke extraction tunnel fire. China Saf. Sci. J. 2021, 31, 105–111. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, J.-M.; Xie, X.; Liu, W. Numerical Study on Smoke Diffusion and Smoke Control in Urban Underground Curved Tunnel. J. Phys. Conf. Ser. 2023, 2445, 012003. [Google Scholar] [CrossRef]
- Kashef, A.; Saber, H.H.; Gao, L. Optimization of Emergency Ventilation Strategies in a Roadway Tunnel. Fire Technol. 2016, 47, 1019–1046. [Google Scholar] [CrossRef]
- Wang, F. Research on Key Parameters of Operation Ventilation of Curved Highway Tunnel. Ph.D. Thesis, Southwest Jiaotong University, Chengdu, China, 2010. [Google Scholar] [CrossRef]
- Wang, F.; Dong, G.-H.; Wang, M. Study on the Critical Air Velocity for Fire Smoke Control in a Curved Tunnel. Mod. Tunn. Technol. 2015, 52, 84–89. [Google Scholar] [CrossRef]
- Wang, F.; Wang, M.; Carvel, R.; Wang, Y. Numerical study on fire smoke movement and control in curved road tunnels. Tunn. Undergr. Space Technol. 2017, 67, 1–7. [Google Scholar] [CrossRef]
- Caliendo, C.; Ciambelli, P.; De Guglielmo, M.L.; Meo, M.G.; Russo, P. Numerical simulation of different HGV fire scenarios in curved bi-directional road tunnels and safety evaluation. Tunn. Undergr. Space Technol. 2012, 3133, 50. [Google Scholar] [CrossRef]
- Wu, C.; He, J.; Ni, T. Research on the smoke movement in small radius curvilinear tunnel fires. Fire Sci. Technol. 2014, 33, 37–40. [Google Scholar] [CrossRef]
- Wang, F.; Wang, M.-N. A computational study on effects of fire location on smoke movement in a road tunnel. Tunn. Undergr. Space Technol. 2016, 51, 405–413. [Google Scholar] [CrossRef]
- Zhong, M.-H.; Shi, C.-L.; He, L.; Shi, J.; Liu, C.; Tian, X. Smoke development in full-scale sloped long and large curved tunnel fires under natural ventilation. Appl. Therm. Eng. 2016, 108, 857–865. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, H.; Yao, Y.; Zhu, K.; Zhou, Y.; Shi, L.; Cheng, X. Numerical Investigation of Back-Layering Length and Critical Velocity in Curved Subway Tunnels with Different Turning Radius. Fire Technol. 2017, 53, 1765–1793. [Google Scholar] [CrossRef]
- Pan, R.-L.; Zhu, G.-Q.; Liang, Z.-H.; Zhang, G.; Liu, H.; Zhou, X. Experimental study on the fire shape and maximum temperature beneath ceiling centerline in utility tunnel under the effect of curved sidewall. Tunn. Undergr. Space Technol. 2020, 99, 103304. [Google Scholar] [CrossRef]
- Lu, K.-X.; Xia, K.-H.; Shi, C.; Yang, M.; Wang, J.; Ding, Y. Investigation on the Tunnel Curvature Effect upon the Ceiling Temperature of Tunnel Fires: A Numerical Simulation. Fire Technol. 2021, 57, 2839–2858. [Google Scholar] [CrossRef]
- Xu, Z.-S.; Zhou, D.-M.; Tao, H.; Zhang, X.; Hu, W. Investigation of critical velocity in curved tunnel under the effects of different fire locations and turning radiuses. Tunn. Undergr. Space Technol. 2022, 126, 104553. [Google Scholar] [CrossRef]
- Muhasilovic, M.; Deville, M.O. Tunnel-Curvature’s Influence on the Propagation of the Consequences of Large-Scale Accidental Fire—A CFD-Investigation. Turk. J. Eng. Environ. Sci. 2013, 31, 391–402. [Google Scholar] [CrossRef]
- Lu, F. Simulation Research on Fire Smoke Control in Curved Highway Tunnel. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2017. [Google Scholar] [CrossRef]
- Zhao, W.-F.; Lv, S.-J.; Xu, H. Smoke movement characteristics of fire in small curvature radius tunnel. Fire Sci. Technol. 2019, 38, 77–81. [Google Scholar] [CrossRef]
- Lin, L.; Jian, G.; Xiong, X.-P. Numerical Analysis of Smoke Flow in Tunnel Fire with Single Curvature. J. Nanchang Hangkong Univ. (Nat. Sci. Ed.) 2019, 33, 66–67, 88. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, C.; Liu, M.; Wang, S.; Liu, Y. Numerical Simulations on the Extinguishing Effect of Water Mist System with Different Parameters of Longitudinal Ventilation in Curve Tunnel Fire. Adv. Civ. Eng. 2021, 5, 1–13. [Google Scholar] [CrossRef]
- JTG/T D70/2-02-2014; Guidelines for Design of Ventilation of Highway Tunnel. People’s Communications Press: Beijing, China, 2014.
- NFPA 502; Standard for Highway Tunnels, Bridges, and Other Limited Access Highways. National Fire Protection Association: Quincy, MA, USA, 2020.
- McGrattan, K.; McDermott, R.; Floyd, J.; Hostikka, S.; Forney, G.; Baum, H. Computational fluid dynamics modelling of fire. Int. J. Comput. Fluid Dyn. 2012, 26, 349–361. [Google Scholar] [CrossRef]
- McGrattan, K.; Hostikka, S.; McDermott, R.; Floyd, J.; Weinschenk, C.; Overholt, K. Fire Dynamics Simulator Users Guide, 6th ed.; Special Publication (NIST SP)–1019; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2013. [Google Scholar] [CrossRef]
- Fan, C.; Chen, J.; Zhou, Y.; Liu, X. Effects of fire location on the capacity of smoke exhaust from natural ventilation shafts in urban tunnels. Fire Mater. 2018, 42, 974–984. [Google Scholar] [CrossRef]
- McGrattan, K.B.; McDermott, R.J.; Weinschenk, C.G.; Forney, G.P. Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical Model; NIST Special Publication; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2013. [Google Scholar] [CrossRef]
- Ji, J.; Gao, Z.H.; Fan, C.G.; Sun, J.H. Large Eddy Simulation of stack effect on natural smoke exhausting effect in urban road tunnel fires. Int. J. Heat Mass Tran. 2013, 66, 531–542. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Lin, Y.-J.; Shi, C.; Zhang, J. Numerical simulation on the maximum temperature and smoke back-layering length in a tilted tunnel under natural ventilation. Tunn. Undergr. Space Technol. 2021, 107, 103661. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, X.-F.; Yan, X.; Zeng, Y. Study on Controlling Velocity under Fire in Two-direction Road Tunnel with High Altitude. Chin. J. Undergr. Space Eng. 2019, 15, 269–276. [Google Scholar]
- World Road Association (PIARC). The Highway Tunnels Manual; World Road Association: Pairs, France, 2016. [Google Scholar]
- Zheng, B.; Fang, L.; Guo, R. Analysis of Longitudinal Temperature Distribution Law and Influencing Factors of High-altitude Tunnel under Unidirectional Ventilation. Mod. Tunn. Technol. 2021, 58, 349–358. [Google Scholar] [CrossRef]
- Liu, B.; Mao, J.; Xi, Y.; Hu, J. Effects of altitude on smoke movement velocity and longitudinal temperature distribution in tunnel fires. Tunn. Undergr. Space Technol. 2021, 112, 103850. [Google Scholar] [CrossRef]
- JTG D70/2-2014; Specifications for Design of Highway Tunnels. Section 2 Traffic Engineering and Affiliated Facilities. China Communications Press: Beijing, China, 2014.
- Jafari, S.; Farhanieh, B.; Afshin, H. Numerical investigation of critical velocity in curved tunnels: Parametric study and establishment of new model. Tunn. Undergr. Space Technol. 2023, 135, 105021. [Google Scholar] [CrossRef]
- Jafari, S.; Farhanieh, B.; Afshin, H. Effects of Fire Parameters on Critical Velocity in Curved Tunnels: A Numerical Study and Response Surface Analysis. Fire Technol. 2024, 60, 1769–1802. [Google Scholar] [CrossRef]
- Pan, R.-L.; Wang, Y.-N.; Yue, S.-Y.; Ran, C.-H.; Cheng, H.-H.; Zhong, M.-H. Full-scale experimental study on longitudinal smoke flow field characteristics in high-speed railway tunnels. J. Tsinghua Univ. (Sci. Technol.) 2024, 1–12. [Google Scholar] [CrossRef]
- National Railway Administration of People’s Republic of China. Code for Design on Evacuation Engineering for Disaster Prevention and Rescue of Railway Tunnel; National Railway Administration of People’s Republic of China: Beijing, China, 2017.
- Leslie, J.; Millenson, J. Principles of Behavioral Analysis; Prentice Hall: Hoboken, NJ, USA, 1967. [Google Scholar]
- PIARC Technical Committee Road. Fire and Smoke Control in Road Tunnels; PIARC Technical Committee Road: La Défense, France, 1999. [Google Scholar]
- National Fire Protection Association. NFPA 72 National Fire Alarm and Signaling Code 2019 Edition; National Fire Protection Association: Boston, MA, USA, 2019. [Google Scholar]
- Caliendo, C.; Ciambelli, P.; De Guglielmo, M.L.; Meo, M.G.; Russo, P. Simulation of People Evacuation in the Event of a Road Tunnel Fire. Procedia: Social & Behavioral. Sciences 2012, 53, 178–188. [Google Scholar] [CrossRef]
- Wang, G.-H.; Yan, Z.-G. Simulation study on evacuation time in long and steep pedestrian cross passage of highway tunnel. Mod. Tunn. Technol. 2019, s2, 132–137. [Google Scholar] [CrossRef]
- GB 1589-2016; Limits of Dimensions, Axle Load and Masses for Motor Vehicles, Trailers and Combination Vehicles. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2016.
- Wang, X.; Qu, J.-R.; Xia, Y.; Wang, L.; Zhen, Y. Study on Evacuation and Rescue of Fire Personnel in Single-Hole Two-Way Highway Tunnel. J. Undergr. Space Eng. 2020, 16, 944–954. [Google Scholar]
- Zhang, T.-R.; Li, W.; Yan, Z.-G. Research on Performance of Longitudinal Smoke Extraction Strategy and Personnel Evacuation in Road Tunnel. Mod. Tunn. Technol. 2020, 57, 651–661. [Google Scholar] [CrossRef]
- Jones, W.W. State of the art in zone modeling of fires. The Vereinigung zur Forderung desDeutschen Brandschutzes e. V. (VFDB). In Proceedings of the 9th International Fire Protection Seminar, Engineering Methods for Fire Safety, Munich, Germany, 25–26 May 2001; pp. 89–126. [Google Scholar]
No. | Radius of Curvature, m | Longitudinal Ventilation Velocity, m/s |
---|---|---|
1, 2 | ∞ | 2, 4 |
3, 4 | 250 | 2, 4 |
5, 6 | 400 | 2, 4 |
7, 8 | 600 | 2, 4 |
9, 10 | 800 | 2, 4 |
11, 12 | 1000 | 2, 4 |
13, 14 | 1200 | 2, 4 |
15, 16 | 1500 | 2, 4 |
17, 18 | 2000 | 2, 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Liu, Z. Study on Fire Smoke Movement Characteristics and Their Impact on Personal Evacuation in Curved Highway Tunnels. Appl. Sci. 2024, 14, 6339. https://doi.org/10.3390/app14146339
Cui Y, Liu Z. Study on Fire Smoke Movement Characteristics and Their Impact on Personal Evacuation in Curved Highway Tunnels. Applied Sciences. 2024; 14(14):6339. https://doi.org/10.3390/app14146339
Chicago/Turabian StyleCui, Yuang, and Zhiqiang Liu. 2024. "Study on Fire Smoke Movement Characteristics and Their Impact on Personal Evacuation in Curved Highway Tunnels" Applied Sciences 14, no. 14: 6339. https://doi.org/10.3390/app14146339
APA StyleCui, Y., & Liu, Z. (2024). Study on Fire Smoke Movement Characteristics and Their Impact on Personal Evacuation in Curved Highway Tunnels. Applied Sciences, 14(14), 6339. https://doi.org/10.3390/app14146339