Glycaemic Index of Bakery Products and Possibilities of Its Optimization
Abstract
:1. Introduction
2. Cereals as an Important Source of Starch—Importance in Human Nutrition with Respect to Glycaemic Index
2.1. Rapidly Digestive, Slowly Digestive and Resistant Starch
2.2. Cereal Fibre, Its Components and Its Effect on Postprandial Glycaemia and GI
3. Overview of Technological Routes to Modify the Glycaemic Index of Bakery Products and Their Evaluation
3.1. Increasing the Fibre Content
3.2. Hydrothermal Treatment of Raw Materials
3.3. Fermentation
3.4. Heat Treatment and Finishing of Bread and Other Cereal Products
4. Future Research Trends
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Delcour, J.A.; Hoseney, R.C. Principles of Cereal Science and Technology, 3rd ed.; AACC Inc.: St. Paul, MN, USA, 2010; pp. 1–22, 23–52. [Google Scholar]
- Lindsay, D. The nutritional enhancement of plant foods. In The Nutrition Handbook for Food Processors; Woodhead Publishing Limited: Cambridge, UK, 2002; pp. 195–208. [Google Scholar]
- Englyst, K.N.; Vinoy, S.; Englyst, H.N.; Lang, V. Glycaemic index of cereal products explained by their content of rapidly and slowly available glucose. Br. J. Nutr. 2003, 89, 329. [Google Scholar] [CrossRef] [PubMed]
- Sobotka, L. Basics in Clinical Nutrition, 5th ed.; Galén: Prague, Czech Republic, 2011; pp. 445–448. [Google Scholar]
- Ludwig, D.S. Dietary glycemic index and obesity. J. Nutr. 2000, 130, 280. [Google Scholar] [CrossRef] [PubMed]
- Augustin, L.S.; Kendall, C.W.; Jenkins, D.J.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Björck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. 2015, 25, 795–815. [Google Scholar] [CrossRef]
- Insel, P.; Ross, D.; McMahon, K.; Bernstein, M. Nutrition, 4th ed.; Jones & Bartlett Learning: Burlington, MA, USA, 2010; pp. 122–126. [Google Scholar]
- ISO 26642:2010; Food Products—Determination of the Glycaemic Index (GI) and Recommendation for Food Classification. International Standards Organisation: Geneva, Switzerland, 2010.
- Ijarotimi, O.S.; Fakayejo, D.A.; Oluwajuyitan, T.D. Nutritional characteristics, glycaemic index and blood glucose lowering property of gluten-free composite flour from wheat (Triticum aestivum), soybean (Glycine max), oat-bran (Avena sativa) and rice-bran (Oryza sativa). Appl. Food Res. 2021, 1, 100022. [Google Scholar] [CrossRef]
- Bajka, B.H.; Pinto, A.M.; Ahn-Jarvis, J.; Ryden, P.; Perez-Moral, N.; Van Der Schoot, A.; Stocchi, C.; Bland, C.; Berry, S.E. The impact of replacing wheat flour with cellular legume powder on starch bioaccessibility, glycaemic response and bread roll quality: A double-blind randomised controlled trial in healthy participants. Food Hydrocoll. 2021, 114, 106565. [Google Scholar] [CrossRef] [PubMed]
- Englyst, H.N.; Veenstra, J.; Hudson, G.J. Measurement of rapidly available glucose (RAG) in plant foods: A potential in vitro predictor of the glycemic response. Brit. J. Nutr. 1996, 67, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Englyst, K.N.; Englyst, H.N.; Hudson, G.J.; Cole, T.J.; Cummings, J.H. Rapidly available glucose in foods: An in vitro measurement that reflects the glycemic response. Am. J. Clin. Nutr. 1999, 69, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Englyst, H.N.; Cummings, J.H. Digestion of the polysaccharides of some cereal foods in the human small intestine. Am. J. Clin. Nutr. 1985, 42, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Sulung, N.K.; Aziss, N.A.S.M.; Kutbi, N.F.; Ahadaali, A.A.; Zairi, N.A.; Mahmod, I.I.; Sajak, A.A.B.; Sultana, S.; Azlan, A. Validation of in vitro glycaemic index (eGI) and glycaemic load (eGL) based on selected baked products, beverages, and canned foods. Food Chem. Adv. 2023, 3, 100502. [Google Scholar] [CrossRef]
- Institute of Health Information and Statistics of the Czech Republic. Statistical Outcomes 2024. Diabetology, Diabetes Care. Available online: https://www.uzis.cz/index.php?pg=vystupy--statistika-vybranych-oboru-lekarske-pece--diabetologie (accessed on 23 April 2024).
- Cereal Consumption in the Czech Republic—Increase in Consumption of Marginal Cereals and Buckwheat. Available online: https://www.fao.org/faostat/en/#data (accessed on 23 April 2024).
- Velíšek, J. The Chemistry of Food; John Wiley & Sons: New York, NY, USA, 2013; p. 51. [Google Scholar]
- Strassner, C. Chapter 7—Food, nutrition and health in Germany. In Nutritional and Health Aspects of Food in Western Europe; Academic Press: Cambridge, Massachusetts, USA, 2020; p. 147. [Google Scholar]
- The glycaemic index of different types of food. Data from National Institute of Health of the Czech Republic. Available online: https://szu.cz/wp-content/uploads/2023/12/Glykemicky-index-2003.pdf (accessed on 23 April 2024). (only in Czech language).
- Potkule, J.; Punia, S.; Kumar, M. Buckwheat: Nutritional Composition, Health Benefits, and Applications. In Handbook of Cereals, Pulses, Roots, and Tubers: Functionality, Health Benefits, and Applications; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2022; p. 263. [Google Scholar]
- Taylor, J.R.N.; Awika, J. Amaranth: Its Unique Nutritional and Health-promoting Attributes. In Gluten-Free Ancient GrainsCereals, Pseudocereals, and Legumes: Sustainable, Nutritious, and Health-Promoting Foods for the 21st Century; Woodhead Publishing Limited: Cambridge, UK, 2017; p. 133. [Google Scholar]
- Villemejane, C.; Denis, S.; Marsset-Baglieri, A.; Alric, M.; Aymard, P.; Michon, C. In vitro digestion of short-dough biscuits enriched in proteins and/or fibres using a multi-compartmental and dynamic system (2): Protein and starch hydrolyses. Food Chem. 2016, 190, 164–172. [Google Scholar] [CrossRef]
- Sluimer, P. Principles of Breadmaking, 2nd ed.; AACC Inc.: St. Paul, MN, USA, 2007; pp. 4–6, 113–138, 139–164, 183–202. [Google Scholar]
- Ekström, L.M.N.K.; Björck, I.M.E.; Östman, E.M. On the possibility to affect the course of glycaemia, insulinaemia, and perceived hunger/satiety to bread meals in healthy volunteers. Food Funct. 2013, 4, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Ekström, L.M.N.K.; Björck, I.M.E.; Östman, E.M. An improved course of glycaemia after a bread based breakfast is associated with beneficial effects on acute and semi-acute markers of appetite. Food Funct. 2016, 7, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.M. CODEX-aligned dietary fiber definitions help to bridge the ‘fiber gap’. Nutr. J. 2014, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.H.; Mann, J.I.; Nishida, C.; Vorster, H.H. Dietary fibre: An agreed definition. Lancet 2009, 373, 365–366. [Google Scholar] [CrossRef] [PubMed]
- EC. Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32006R1924 (accessed on 15 March 2024).
- EFSA. Scientific Opinion on the substantiation of a health claim related to oat beta glucan and lowering blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J. 2010, 8, 1885–1899. [Google Scholar]
- Sibakov, J.; Lehtinen, P.; Poutanen, K. Cereal brans as dietary fibre ingredients. In Fibre-Rich and Wholegrain Foods: Improving Quality; Woodhead Publishing Limited: Cambridge, UK, 2013; pp. 170–192. [Google Scholar]
- Goff, H.D.; Repin, N.; Fabek, H.; El Khoury, D.; Gidley, M.J. Dietary fibre for glycaemia control: Towards a mechanistic understanding. Bioact. Carbohydr. Diet. Fibre 2018, 14, 39–53. [Google Scholar] [CrossRef]
- Kahraman, K.; Aktas-Akyildiz, E.; Ozturk, S.; Köksel, H. Effect of different resistant starch sources and wheat bran on dietary fibre content and in vitro glycaemic index values of cookies. J. Cereal Sci. 2019, 90, 102851. [Google Scholar] [CrossRef]
- Shin, S.I.; Choi, H.J.; Chung, K.M.; Hamaker, B.; Park, K.H.; Moon, T.W. Slowly digestible starch from debranched waxy sorghum starch: Preparation and properties. Cereal Chem. 2004, 81, 404. [Google Scholar] [CrossRef]
- Jane, J.-L.; Wong, K.-S.; McPherson, A.E. Branch-structure difference in starches of A-and B-type X-ray patterns revealed by their Naegeli dextrins. Carbohydr. Res. 1997, 300, 219. [Google Scholar] [CrossRef]
- Patterson, M.A.; Maiya, M.; Stewart, L. Resistant Starch Content in Foods Commonly Consumed in the United States: A narrative Review. J. Acad. Nutr. Diet. 2020, 120, 230–244. [Google Scholar] [CrossRef]
- Elmståhl, H.L. Resistant starch content in a selection of starchy foods on the Swedish market. Eur. J. Clin. Nutr. 2002, 56, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.; Jones, G.P.; Rutishauser, I.H.E.; Birkett, A.; Gibbons, C. Resistant starch in Australian diet. Nutr. Diet. 2004, 61, 98–104. [Google Scholar]
- Liu, X.; Qiao, L.; Kong, Y.; Wang, H.; Yang, B. Characterization of the starch molecular structure of wheat varying in the content of resistant starch. Food Chem. 2024, 21, 101103. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Gutierrez, A.; Tan, L.; Kong, L. Considerations and strategies for optimizing health benefits of resistant starch. Curr. Opin. Food Sci. 2023, 51, 101008. [Google Scholar] [CrossRef]
- Hoover, R.; Zhou, Y. In vitro and in vivo hydrolysis of legume starches by α-amylase and resistant starch formation in legumes—A review. Carbohydr. Polym. 2003, 54, 401–417. [Google Scholar] [CrossRef]
- Figueroa-González, I.; Quijano, G.; Ramírez, G.; Cruz-Guerrero, A. Probiotics and prebiotics—Perspectives and challenges. J. Sci. Food Agric. 2011, 91, 1341. [Google Scholar] [CrossRef] [PubMed]
- Yonekura, L.; Suzuki, H. Effects of dietary zinc levels, phytic acid and resistant starch on zinc bioavailability in rats. Eur. J. Nutr. 2005, 44, 384. [Google Scholar] [CrossRef] [PubMed]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50. [Google Scholar] [PubMed]
- Harris, K. An introductory review of resistant starch type 2 from high-amylose cereal grains and its effect on glucose and insulin homeostasis. Nutr. Rev. 2019, 77, 748–764. [Google Scholar] [CrossRef]
- Yi, M.; Tang, X.; Liang, S.; He, R.; Huang, T.; Lin, Q.; Zhang, R. Effect of microwave alone and microwave-assisted modification on the physicochemical properties of starch and its application in food. Food Chem. 2024, 446, 138841. [Google Scholar] [CrossRef]
- Martins Fonseca, L.; Mello El Halal, S.L.; Guerra Dias, A.R.; da Rosa Zavareze, E. Physical modification of starch by heat-moisture treatment and annealing and their applications: A review. Carbohydr. Polym. 2021, 274, 11866. [Google Scholar]
- Ma, R.; Cai, C.; Wang, F.; Zhan, J.; Tian, Y. Improvement of resistant starch content and thermal-stability of starch-linoleic acid complex: An attempt application in extruded recombinant rice. Food Chem. 2024, 445, 138768. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, S.; Xu, Q.; Kong, Q.; Li, F.; Lu, L.; Xu, Y.; Wei, Y. Synthesis and functions of resistant starch. Adv. Nutr. 2023, 14, 1131–1144. [Google Scholar] [CrossRef] [PubMed]
- Oyeyinka, S.A.; Singh, S.; Amonsou, E.O. A review on structural, digestibility and physicochemical properties of legume starch-lipid complexes. Food Chem. 2021, 349, 129165. [Google Scholar] [CrossRef] [PubMed]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Ajala, A.; Kaur, L.; Lee, S.J.; Singh, J. Native and processed legume seed microstructure and its influence on starch digestion and glycaemic features: A review. Trends Food Sci. Technol. 2023, 133, 65–74. [Google Scholar] [CrossRef]
- Marangoni, F.; Poli, A. The glycemic index of bread and biscuits is markedly reduced by the addition of a proprietary fiber mixture to the ingredients. Nutr. Metab Cardiovasc. Dis. 2008, 18, 602–625. [Google Scholar] [CrossRef]
- Brennan, C.S.; Blake, D.E.; Ellis, P.R.; Schofield, J.D. Effects of guar galactomannan on wheat bread microstructure and on the in vitro and in vivo digestibility of starch in bread. J. Cereal Sci. 1996, 24, 151–160. [Google Scholar] [CrossRef]
- McRorie, J.W., Jr.; McKeown, N.M. Understanding the physics of functional fibers in the gastrointestinal tract: An evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber. J. Acad. Nutr. Diet. 2017, 117, 251–264. [Google Scholar] [CrossRef]
- Kendall, C.W.; Esfahani, A.; Jenkins, D.J. The link between dietary fibre and human health. Food Hydrocoll. 2010, 24, 42–48. [Google Scholar] [CrossRef]
- Ma, M.; Gu, Z.; Cheng, L.; Li, Z.; Li, C.; Hong, Y. Effect of hydrocolloids on starch digestion: A review. Food Chem. 2024, 444, 138636. [Google Scholar] [CrossRef] [PubMed]
- Plaami, S.P. Content of dietary fiber in foods and its physiological effects. Food Rev. Int. 1997, 13, 29–76. [Google Scholar] [CrossRef]
- Ekström, L.M.N.K.; Henningsson Bok, E.A.E.; Sjöö, M.E.; Östman, E.M. Oat β-glucan containing bread increases the glycemic profile. J. Funct. Foods 2017, 32, 106–111. [Google Scholar] [CrossRef]
- Brennan, C.S.; Cleary, L.J. Utilisation Glucagel® in the β-glucan enrichment of breads: A Physicochemical and nutritional evaluation. Food Res. Int. 2007, 40, 291–296. [Google Scholar] [CrossRef]
- Damen, B.; Pollet, A.; Dornez, E.; Broekaert, W.F.; Van Haesendonck, I.; Trogh, I.; Arnaut, F.; Delcour, J.A.; Courtin, C.M. Xylanase-mediated in situ production of arabinoxylan oligosaccharides with prebiotic potential in whole meal breads enriched with arabinoxylan rich materials. Food Chem. 2011, 131, 111–118. [Google Scholar] [CrossRef]
- Noort, M.W.J.; van Haaster, D.; Hemery, Y.; Schols, H.A.; Hamer, R.J. The effect of particle size of wheat bran fractions on bread quality—Evidence for fibre-protein interactions. J. Cereal Sci. 2010, 52, 59–64. [Google Scholar] [CrossRef]
- Diez-Sánchez, E.; Llorca, E.; Quiles, A.; Hernando, I. Using different fibers to replace fat in sponge cakes: In vitro starch digestion and physico-structural studies. Food Sci. Technol. Int. 2018, 24, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Cruz, M.d.l.P.; Ramírez-Miranda, M.; Díaz-Ramírez, M.; Alamilla-Beltran, L.; Calderón-Domínguez, G. Microstructural characterization and glycemic index evaluation of pita bread enriched with chia mucilage. Food Hydrocoll. 2017, 69, 141–149. [Google Scholar] [CrossRef]
- Ibrügger, S.; Kristensen, M.; Mikkelsen, M.S.; Astrup, A. Flaxseed dietary fiber supplements for suppression of appetite and food intake. Appetite 2012, 58, 490–495. [Google Scholar] [CrossRef]
- Kristensen, M.; Jensen, M.G.; Riboldi, G.; Petronio, M.; Bügel, S.; Toubro, S.; Tetens, I.; Astrup, A. Wholegrain vs. refined wheat bread and pasta. Effect on postprandial glycemia, appetite, and subsequent ad libitum energy intake in young healthy adults. Appetite 2010, 54, 163–169. [Google Scholar] [CrossRef]
- Hernández-Nava, R.G.; Berrios, J.D.J.; Pan, J.; Osorio-Díaz, P.; Bello-Perez, L.A. Development and characterization of spaghetti with high resistant starch content supplemented with banana starch. Food Sci. Technol. Int. 2009, 15, 73. [Google Scholar] [CrossRef]
- van Hung, P.; Yamamori, M.; Morita, N. Formation of enzyme-resistant starch in bread as affected by high-amylose wheat flour substitutions. Cereal Chem. 2005, 82, 690. [Google Scholar] [CrossRef]
- Sozer, N.; Cicerelli, L.; Heiniö, R.-L.; Poutanen, K. Effect of wheat bran addition on in vitro starch digestibility, physico-mechanical and sensory properties of biscuits. J. Cereal Sci. 2014, 60, 105–113. [Google Scholar] [CrossRef]
- Rakha, A.; Åman, P. Fibre-enriched and wholegrain breads. In Fibre-Rich and Wholegrain Foods: Improving Quality; Woodhead Publishing Limited: Cambridge, UK, 2013; pp. 211–235. [Google Scholar]
- Sozer, N.; Poutanen, K. Fibre in extruded products. In Fibre-Rich and Wholegrain Foods: Improving Quality; Woodhead Publishing Limited, Cambridge, UK, 2013; pp. 256–272.
- Chen, H.; Rubenthaler, G.L.; Leung, H.K.; Baranowski, J.D. Chemical, physical, and baking properties of apple fiber compared with wheat and oat bran. Cereal Chem. 1988, 65, 244–247. [Google Scholar]
- Ulmer, K. Technology & Equipment Grain Milling; Bühler AG: Uzwill, Switzerland, 2011; pp. 323–354. [Google Scholar]
- Chang, Y.K.; Wang, S.S. Advances in Extrusion Technology; Technomic Publishing Company: Lancaster, PA, USA, 1999; p. 266. [Google Scholar]
- Rahmadani, M.; Tryas, A.A.; Susanto, I.; Nahrowi, N.; Khotijah, L.; Jayanegara, A. Enhancing resistant starch in foods through organic acid intervention: A meta-analysis on thermal properties, nutrient composition, and in vitro starch digestibility. J. Agri. Food Res. 2024, 15, 101037. [Google Scholar] [CrossRef]
- Santos Dorneles, M.; Silva de Azevedo, E.; Zapata Norena, C.P. Effect of heat treatment at low moisture on the increase of resistant starch content in Araucaria angustifolia seed starch. Food Hydrocoll. 2024, 150, 109639. [Google Scholar] [CrossRef]
- Bao, J.; Zhou, X.; Hu, Y.; Zhang, Z. Resistant starch content and physicochemical properties of non-waxy rice starches modified by pullulanase, heat-moisture treatment, and citric acid. J. Cereal Sci. 2022, 105, 103472. [Google Scholar] [CrossRef]
- Van Hung, P.; Lam Vien, N.; Lan Phi, N.T. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments. Food Chem. 2016, 191, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Jia, J.; Zhang, C.; Liu, Y.; Dou, B.; Zhang, N. Structure, properties, and resistant starch content of modified rice flour prepared using dual hydrothermal treatment. Int. J. Biol. Macromol. 2024, 262, 130050. [Google Scholar] [CrossRef]
- Crittenden, R.G.; Morris, L.F.; Harvey, M.L.; Tran, L.T.; Mitchell, H.L.; Playne, M.J. Selection of a Bifidobacterium strain to complement resistant starch in a synbiotic yoghurt. J. Appl. Microbiol. 2001, 90, 268. [Google Scholar] [CrossRef]
- Bayomy, H.M.; Alamri, E.S.; Albalawi, A.N.; Alharbi, R.; Ozaybi, N.A.; Rozan, M.A.; Shamsia, S.M. Production of extruded functional snacks based on resistant starch using waste rice and whey milk. LWT—Food Sci. Technol. 2024, 197, 115871. [Google Scholar] [CrossRef]
- Akila, S.R.V.; Mishra, S.; Hardacre, A.; Matia-Merino, L.; Goh, K.; Warren, F.; Monro, J. Kernel structure in breads reduces in vitro starch digestion rate and estimated glycaemic potency only at high grain inclusion rates. Food Structure 2019, 21, 100109. [Google Scholar]
- Tagliasco, M.; Fon, G.; Renzetti, S.; Capuano, E.; Pellegrini, N. Role of particle size in modulating starch digestibility and textural properties in a rye bread model system. Food Res. Int. 2024, 190, 114565. [Google Scholar] [CrossRef] [PubMed]
- Wolter, A.; Hager, A.S.; Zannini, E.; Arendt, E.K. In vitro starch digestibility and predicted glycaemic indexes of buckwheat, oat, quinoa, sorghum, teff and commercial gluten-free bread. J. Cereal Sci. 2013, 58, 431–436. [Google Scholar] [CrossRef]
- Li, C.; Dhital, S.; Gidley, M.J. High-amylose wheat bread with reduced in vitro digestion rate and enhanced resistant starch content. Food Hydrocoll. 2022, 123, 107181. [Google Scholar] [CrossRef]
- Di Rosa, C.; De Arcangelis, E.; Vitelli, V.; Crucillà, S.; Angelicola, M.; Trivisonno, M.C.; Sestili, F.; Blasi, E.; Cicatiello, C.; Lafiandra, D.; et al. Effect of three bakery products formulated with high-amylose wheat flour on post-prandial glycaemia in healthy volunteers. Foods 2023, 12, 319. [Google Scholar] [CrossRef] [PubMed]
- Bączek, N.; Jarmułowicz, A.; Wronkowska, M.; Haros, C.M. Assessment of the glycaemic index, content of bioactive compounds, and their in vitro bioaccessibility in oat-buckwheat breads. Food Chem. 2020, 330, 127199. [Google Scholar] [CrossRef] [PubMed]
- Moretton, M.; Alongi, M.; Melchior, S.; Anese, M. Adult and ederly in vitro digestibility patterns of proteins and carbohydrates as affected by different commercial bread types. Food Res. Int. 2023, 167, 112732. [Google Scholar] [CrossRef]
- Lužnik, I.A.; Polak, M.L.; Demšar, L.; Gašperlin, L.; Polak, T. Does type of bread ingested for breakfast contribute to lowering of glycaemic index? J. Nutr. Intermed. Metab. 2019, 16, 100097. [Google Scholar] [CrossRef]
- Dong, H.; Pineda, D.G.; Li, N.; Xu, Y. Investigation of the postprandial glycaemic response to white bread and wholemeal bread consumption among healthy young adults. Proceedings 2023, 91, 194. [Google Scholar]
- Koksel, H.; Cetiner, B.; Shamanin, V.P.; Tekin-Cakmak, Z.H.; Pototskaya, I.V.; Kahraman, K.; Sagdic, O.; Morgounov, A.I. Quality, nutritional properties, and glycemic index of colored whole wheat breads. Foods 2023, 12, 3376. [Google Scholar] [CrossRef] [PubMed]
- Păucean, A.; Șerban, L.R.; Chiș, M.S.; Mureșan, V.; Pușcaș, A.; Man, S.M.; Pop, C.R.; Socaci, S.A.; Igual, M.; Ranga, F.; et al. Nutritional composition, in vitro carbohydrates digestibility, textural and sensory characteristics of bread as affected by ancient wheat flour type and sourdough fermentation time. Food Chem. 2024, 22, 101298. [Google Scholar] [CrossRef] [PubMed]
- Lante, A.; Canazza, E.; Tessari, P. Beta-glucans of cereals: Functional and technological properties. Nutrients 2023, 15, 2124. [Google Scholar] [CrossRef] [PubMed]
- Bozbulut, R.; Sanlier, N. Promising effects of β-glucans on glyceamic control in diabetes. Trends Food Sci. Technol. 2019, 83, 159–166. [Google Scholar] [CrossRef]
- Hu, H.; Lin, H.; Xiao, L.; Guo, M.; Yan, X.; Su, X.; Liu, L.; Sang, S. Impact of native form oat β-glucan on the physical and starch digestive properties of whole oat bread. Foods 2022, 11, 2622. [Google Scholar] [CrossRef] [PubMed]
- Di Cairano, M.; Condelli, N.; Caruso, M.C.; Marti, A.; Cela, N.; Galgano, F. Functional properties and predicted glycemic index of gluten free cereal, pseudocereal and legume flours. LWT—Food Sci. Technol. 2020, 133, 109860. [Google Scholar] [CrossRef]
- Vinod, B.R.; Asrey, R.; Rudra, S.G.; Urhe, S.B.; Mishra, S. Chickpea as a promising ingredient substitute in gluten-free bread making: An overview of technological and nutritional benefits. Food Chem. Adv. 2023, 3, 100473. [Google Scholar] [CrossRef]
- Gallo, V.; Romano, A.; Ferranti, P.; D’Auria, G.; Masi, P. Properties and in vitro digestibility of a bread enriched with lentil flour at different leavening times. Food Structure 2022, 33, 100284. [Google Scholar] [CrossRef]
- Sowdhanya, D.; Singh, J.; Rasane, P.; Kaur, S.; Kaur, J.; Ercisli, S.; Verma, H. Nutritional significance of velvet bean (Mucuna pruriens) and opportunities for its processing into value-added products. J. Agri. Food Res. 2024, 15, 100921. [Google Scholar] [CrossRef]
- Santos, F.G.; Aguiar, E.V.; Rosell, C.M.; Capriles, V.D. Potential of chickpea and psyllium in gluten-free breadmaking: Assessing bread’s quality, sensory acceptability, and glycemic and satiety indexes. Food Hydrocoll. 2021, 113, 106487. [Google Scholar] [CrossRef]
- Gkountenoudi-Eskitzi, I.; Kotsiou, K.; Irakli, M.N.; Lazaridis, A.; Biliaderis, C.G.; Lazaridou, A. In vitro and in vivo glycemic responses and antioxidant potency of acorn and chickpea fortified gluten-free breads. Food Res. Int. 2023, 166, 112579. [Google Scholar] [CrossRef] [PubMed]
- Yaver, E.; Bilgiçli, N. Ultrasound-treated lupin (Lupinus albus L.) flour: Protein- and fiber-rich ingredient to improve physical and textural quality of bread with a reduced glycemic index. LWT—Food Sci. Technol. 2021, 148, 111767. [Google Scholar] [CrossRef]
- Moretton, M.; Alongi, M.; Renoldi, N.; Anese, M. Steering protein and carbohydrate digestibility by food design to address elderly needs: The case of pea protein enriched bread. LWT—Food Sci. Technol. 2023, 190, 115530. [Google Scholar] [CrossRef]
- Zhou, Z.; Ye, F.; Lei, L.; Zhou, S.; Zhao, G. Fabricating low glycaemic index foods: Enlightened by the impacts of soluble dietary fibre on starch digestibility. Trends Food Sci. Technol. 2022, 122, 110–122. [Google Scholar] [CrossRef]
- Torres, J.D.; Dueik, V.; Carré, D.; Contardo, I.; Bouchon, P. Non-invasive microstructural characterization and in vivo glycemic response of white bread formulated with soluble dietary fiber. Food Bioscience 2024, 61, 104505. [Google Scholar] [CrossRef]
- Pimentel, T.C.; de Assis, B.B.T.; dos Santos Rocha, C.; Marcolino, V.A.; Rosset, M.; Magnani, M. Prebiotics in non-dairy products: Technological and physiological functionality, challenges, and perspectives. Food Bioscience 2022, 46, 101585. [Google Scholar] [CrossRef]
- Devi, R.; Sharma, E.; Thakur, R.; Lal, P.; Kumar, A.; Altaf, M.A.; Singh, B.; Tiwari, R.K.; Lal, M.K.; Kumar, R. Non-dairy prebiotics: Conceptual relevance with nutrigenomics and mechanistic understanding of the effects on human health. Food Res. Int. 2023, 170, 112980. [Google Scholar] [CrossRef] [PubMed]
- Mæhre, H.K.; Weisensee, S.; Ballance, S.; Rieder, A. Guar gum fortified white breads for prospective postprandial glycaemic control—Effects on bread quality and galactomannan molecular weight. LWT—Food Sci. Technol. 2021, 152, 112354. [Google Scholar] [CrossRef]
- Mallikarjunan, N.; Rajalakshmi, D.; Maurya, D.K.; Jamdar, S.N. Modifying rheological properties of psyllium by gamma irradiation enables development of low glycaemic index food with a predicted gastrointestinal tolerance. Int. J. Biol. Macromol. 2024, 257, 128625. [Google Scholar]
- Yassin, Z.; Tan, Y.L.; Srv, A.; Monro, J.; Matia-Merino, L.; Lim, K.; Hardacre, A.; Mishra, S.; Goh, K.K.T. Effects of xanthan gum, lambda-carrageenan and psyllium husk on the physical characteristics and glycaemic potency of white bread. Foods 2022, 11, 1513. [Google Scholar] [CrossRef]
- Goksen, G.; Demir, D.; Dhama, K.; Kumar, M.; Shao, P.; Xie, F.; Echegaray, N.; Lorenzo, J.M. Mucilage polysaccharide as a plant secretion: Potential trends in food and biomedical applications. Int. J. Biol. Macromol. 2023, 230, 123146. [Google Scholar] [CrossRef] [PubMed]
- Reshmi, S.K.; Sudha, M.L.; Shashirekha, M.N. Starch digestibility and predicted glycemic index in the bread fortified with pomelo (Citrus maxima) fruit segments. Food Chem. 2017, 237, 957–965. [Google Scholar] [CrossRef] [PubMed]
- García, P.; Bustamante, A.; Echeverría, F.; Encina, C.; Palma, M. A Feasible approach to developing fiber-enriched bread using pomegranate peel powder: Assessing its nutritional composition and glycemic index. Foods 2023, 12, 2798. [Google Scholar] [CrossRef]
- Amaral, O.; Guerreiro, C.; Almeida, A.; Cravo, M. Bread with a high level of resistant starch influenced the digestibility of the available starch fraction. Bioact. Carbohydr. Diet. Fibre 2022, 28, 100318. [Google Scholar] [CrossRef]
- Remya, R.; Jyothi, A.N.; Sreekumar, J. Effect of chemical modification with citric acid on the physicochemical properties and resistant starch formation in different starches. Carb. Polym. 2018, 202, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Remya, R.; Jyothi, A.N.; Sreekumar, J. Morphological, structural and digestibility properties of RS4 enriched octenyl succinylated sweet potato, banana and lentil starches. Food Hydrocoll. 2018, 24, 219–229. [Google Scholar] [CrossRef]
- Admasu, F.; Fentie, E.G.; Admassu, H.; Shin, J.-H. Functionalization of wheat bread with prebiotic dietary insoluble fiber from orange-fleshed sweet potato peel and haricot bean flours. LWT—Food Sci. Technol. 2024, 200, 116182. [Google Scholar] [CrossRef]
- Lawal, T.A.; Ononamadu, C.J.; Okonkwo, E.K.; Adedoyin, H.J.; Muhammad Liman Shettima, M.L.; Muhammad, I.U.; Alhassan, A.J. In vitro and in vivo hypoglycaemic effect of Camellia sinensis on alpha glucosidase activity and glycaemic index of white bread. Appl. Food Res. 2022, 2, 100037. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Brennan, M.; Brennan, C.; Qin, Y.; Cheng, G.; Liu, Y. Physical, chemical, sensorial properties and in vitro digestibility of wheat bread enriched with yunnan commercial and wild edible mushrooms. LWT—Food Sci. Technol. 2022, 169, 113923. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, L.; Brennan, M.; Brennan, C. How does the addition of mushrooms and their dietary fibre affect starchy foods. J. Future Foods 2022, 2, 18–24. [Google Scholar] [CrossRef]
- Zhang, G.; Chatzifragkou, A.; Charalampopoulos, D.; Rodriguez-Garcia, J. Effect of defatted melon seed residue on dough development and bread quality. LWT—Food Sci. Technol. 2023, 183, 114892. [Google Scholar] [CrossRef]
- Wang, L.; Shi, D.; Chen, J.; Dong, H.; Chen, L. Effects of Chinese chestnut powder on starch digestion, texture properties, and staling characteristics of bread. GOST 2023, 6, 82–90. [Google Scholar] [CrossRef]
- Lin, S.; Jin, X.; Gao, J.; Qiu, Z.; Ying, J.; Wang, Y.; Dong, Z.; Zhou, W. Impact of wheat bran micronization on dough properties and bread quality: Part II—Quality, antioxidant and nutritional properties of bread. Food Chem. 2022, 396, 133631. [Google Scholar] [CrossRef] [PubMed]
- Duţă, D.E.; Culeţu, A.; Mohan, G. 10—Reutilization of cereal processing by-products in bread making. In Sustainable Recovery and Reutilization of Cereal Processing By-Products; Woodhead Publishing Limited: Cambridge, UK, 2018; pp. 279–317. [Google Scholar]
- Vidhyalakshmi, R.; Prabhasankar, P.; Muthukumar, S.P.; Prathima, C.; Meera, M.S. The impact of addition of pearl millet starch-germ complex in white bread on nutritional, textural, structural, and glycaemic response: Single blinded randomized controlled trial in healthy and pre-diabetic participants. Food Res. Int. 2024, 183, 114186. [Google Scholar] [CrossRef]
- King, J.; Leong, S.Y.; Alpos, M.; Johnson, C.; McLeod, S.; Peng, M.; Sutton, K.; Oey, I. Role of food processing and incorporating legumes in food products to increase protein intake and enhance satiety. Trends Food Sci. Technol. 2024, 147, 104466. [Google Scholar] [CrossRef]
- Abhilasha, A.; Kaur, L.; Monro, J.; Hardacre, A.; Singh, J. Effects of hydrothermal treatment and low-temperature storage of whole wheat grains on in vitro starch hydrolysis and flour properties. Food Chem. 2022, 395, 133516. [Google Scholar] [CrossRef]
- Pontonio, A.; Lorusso, A.; Gobbetti, M.; Rizzello, C.G. Use of fermented milling by-products as functional ingredient to develop a low-glycaemic index bread. J. Cereal Sci. 2017, 77, 235–242. [Google Scholar] [CrossRef]
- Das, S.; Pegu, K.; Arya, S.S. Functional sourdough millet bread rich in dietary fibre—An optimization study using fuzzy logic analysis. Bioact. Carbohydr. Diet. Fibre 2021, 26, 100279. [Google Scholar] [CrossRef]
- Chatonidi, G.; Poppe, J.; Verbeke, K. Plant-based fermented foods and the satiety cascade: A systematic review of randomized controlled trials. Trends Food Sci. Technol. 2023, 133, 127–137. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L. Impact of sourdough fermentation on nutrient transformations in cereal-based foods: Mechanisms, practical applications, and health implications. GOST 2024, 7, 124–132. [Google Scholar] [CrossRef]
- Sun, X.; Wu, S.; Li, W.; Koksel, F.; Du, Y.; Sun, L.; Fang, Y.; Hu, Q.; Pei, F. The effects of cooperative fermentation by yeast and lactic acid bacteria on the dough rheology, retention and stabilization of gas cells in a whole wheat flour dough system—A review. Food Hydrocoll. 2023, 135, 108212. [Google Scholar] [CrossRef]
- Islam, M.d.A.; Islam, S. Sourdough bread quality: Facts and Factors. Foods 2024, 13, 2132. [Google Scholar] [CrossRef]
- Demirkesen-Bicak, H.; Arici, M.; Yaman, M.; Karasu, S.; Sagdic, O. Effect of different fermentation condition on estimated glycemic index, in vitro starch digestibility, and textural and sensory properties of sourdough bread. Foods 2021, 10, 514. [Google Scholar] [CrossRef] [PubMed]
- Taras, M.A.; Cherchi, S.; Campesi, I.; Margarita, V.; Carboni, G.; Rappelli, P.; Tonolo, G. Utility of flash glucose monitoring to determine glucose variation induced by different doughs in persons with type 2 diabetes. Diabetology 2024, 5, 129–140. [Google Scholar] [CrossRef]
- Yassin, Z.A.R.; Halim, F.N.B.A.; Taheri, A.; Goh, K.K.T.; Du, J. Effects of microwave, ultrasound, and high-pressure homogenization on the physicochemical properties of sugarcane fibre and its application in white bread. LWT—Food Sci. Technol. 2023, 184, 115008. [Google Scholar] [CrossRef]
- Jeevarathinam, G.; Ramniwas, S.; Singh, P.; Rustagi, S.; Asdaq, S.M.B.; Pandiselvam, R. Macromolecular, thermal, and nonthermal technologies for reduction of glycemic index in food-A review. Food Chem. 2024, 445, 138742. [Google Scholar] [CrossRef] [PubMed]
- Sluková, M.; Jurkaninová, L.; Gillarová, S.; Horáčková, Š.; Skřivan, P. Rye—Nutritional and technological evaluation in Czech cereal technology—A review: Sourdoughs and bread. Czech J. Food Sci. 2021, 39, 65–70. [Google Scholar] [CrossRef]
- Skřivan, P.; Chrpová, D.; Klitschová, B.; Švec, I.; Sluková, M. Buckwheat flour (Fagopyrum esculentum Moench)—A contemporary view on the problems of its production for human nutrition. Foods 2023, 12, 3055. [Google Scholar] [CrossRef]
- Skřivan, P.; Sluková, M.; Švec, I.; Čížková, H.; Horsáková, I.; Rezková, E. The use of modern fermentation techniques in the production of traditional wheat bread. Czech J. Food Sci. 2023, 41, 173–181. [Google Scholar] [CrossRef]
Cereal | Water | Proteins | Lipids | Starch | Minerals |
---|---|---|---|---|---|
Wheat | 13.2 | 11.7 | 2.2 | 59.2 | 1.5 |
Rye | 13.7 | 11.6 | 1.7 | 52.4 | 1.9 |
Barley | 11.7 | 10.6 | 2.1 | 52.2 | 2.3 |
Oat | 13.0 | 12.6 | 5.7 | 40.1 | 2.9 |
Rice | 13.1 | 7.4 | 2.4 | 70.4 | 1.2 |
Maize | 12.5 | 9.2 | 3.8 | 62.6 | 1.3 |
Crops-Whole Grains | Starch Content (% in d.m.) | Glycaemic Index |
---|---|---|
Wheat | 65–75 | 50–60 |
Rye | 65–75 | 50–60 |
Barley | 65–75 | 50–60 |
Oat | 55–65 | 40–50 |
Rice | 70–80 | 55–60 |
Maize | 60–70 | 50–60 |
Sorghum | 65–75 | 55–65 |
Millet | 70–80 | 55–65 |
Legumes | 45–55 | 30–45 |
Buckwheat | 45–55 | 35–45 |
Amaranth | 55–60 | 30–40 |
Bread and bakery products | ||
White wheat bread | 70–75 | 70 |
Wheat-rye bread (Central Europe type) | 65–70 | 65–70 |
Dark rye bread | 55–65 | 45–55 |
Whole grain bread | 55–65 | 45–55 |
Bread type pumpernickel | 55–65 | 45–55 |
Buckwheat bread | 50–60 | 40–50 |
Wheat common bakery products | 70–75 | 70 |
Croissants | 50–60 * | 60–70 * |
Donuts | 45–60 * | 70–75 * |
Muffins and other sweet pastry | 45–60 * | 60–75 * |
Type of GI Modification of Baked Goods (Addition/Replacement/Food Processing) | References |
---|---|
Rye flour with larger starch granules particles | [81,82] |
Blends of wheat and buckwheat/oat/teff flours | [83] |
High-amylose wheat flour | [84,85] |
Mixture of oat-buckwheat flours | [86] |
Wholemeal cereal flours | [87,88,89] |
Ancient, colored and non-traditional wheat varieties | [90,91] |
Cereal β-glucans | [58,92,93,94] |
Pseudocereal and legume flours | [95,96,97,98] |
Chickpea flour and psyllium | [99] |
Acorn and chickpea flour blend | [100] |
Lupine flour and resistant starch | [101] |
Addition of pea protein | [102] |
Effect of soluble dietary fibres | [103,104] |
Prebiotic components (inulin, oligofructose, polydextrose, etc.) | [105,106] |
Addition of guar gum | [107] |
Addition of psyllium | [108] |
Effects of xanthan gum, carrageenan and psyllium husk | [109] |
Mucilage polysaccharides | [63,110] |
Pomelo (Citrus maxima) fruit segments | [111] |
Pomegranate peel powder | [112] |
Resistant starch | [113] |
Potato, cassava, sweet potato, banana and lentil starches modified with citric acid | [114] |
RS4 enriched octenyl succinylated sweet potato, banana and lentil starches | [115] |
Prebiotic dietary insoluble fibre from sweet potato peel and haricot bean flours | [116] |
Aqueous extract of Camellia sinensis (green tea) | [117] |
Addition of mushroom (Pleurotus eryngii and Cantharellus cibarius) powder | [118,119] |
Addition of defatted melon seeds | [120] |
Addition of Chinese chestnut flour | [121] |
Wheat bran, oat bran, and oat β-glucan | [122,123] |
Superfine (micronized) wheat bran | [123] |
Pearl millet starch germ complex | [124] |
Hydrothermal treatment of whole wheat grains and pulses | [125,126] |
Fermented wheat bran and wheat germ | [127] |
Addition of sourdoughs | [128,129,130,131,132,133,134] |
Physically treated sugarcane fibre | [135] |
Thermal and non-thermal approaches on the physical and chemical modification of starch | [136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skřivan, P.; Sluková, M.; Sinica, A.; Bleha, R.; Švec, I.; Šárka, E.; Pourová, V. Glycaemic Index of Bakery Products and Possibilities of Its Optimization. Appl. Sci. 2024, 14, 6070. https://doi.org/10.3390/app14146070
Skřivan P, Sluková M, Sinica A, Bleha R, Švec I, Šárka E, Pourová V. Glycaemic Index of Bakery Products and Possibilities of Its Optimization. Applied Sciences. 2024; 14(14):6070. https://doi.org/10.3390/app14146070
Chicago/Turabian StyleSkřivan, Pavel, Marcela Sluková, Andrej Sinica, Roman Bleha, Ivan Švec, Evžen Šárka, and Veronika Pourová. 2024. "Glycaemic Index of Bakery Products and Possibilities of Its Optimization" Applied Sciences 14, no. 14: 6070. https://doi.org/10.3390/app14146070
APA StyleSkřivan, P., Sluková, M., Sinica, A., Bleha, R., Švec, I., Šárka, E., & Pourová, V. (2024). Glycaemic Index of Bakery Products and Possibilities of Its Optimization. Applied Sciences, 14(14), 6070. https://doi.org/10.3390/app14146070