Avocado and Its By-Products as Natural Sources of Valuable Anti-Inflammatory and Antioxidant Bioactives for Functional Foods and Cosmetics with Health-Promoting Properties
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods
3. Avocado’s Composition in Nutrients and Bioactives
3.1. General Composition/Chemical Composition
3.1.1. Avocado Fruit Composition
3.1.2. Avocado Oil Composition
3.2. Avocado Bioactive Compounds
3.2.1. Phenolic Content
3.2.2. Tannins
3.2.3. Carotenoids
3.2.4. Fatty Acids
4. Health-Promoting Effects of Avocado and Its Bioactives
4.1. Antioxidant Activity
4.2. Anti-Inflammatory Activity
4.3. Cardiovascular Diseases
4.4. Benefits against Neurodegenerative Disorders
5. Applications
5.1. Functional Foods
5.2. Cosmetics
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Non Communicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 30 October 2023).
- EPIC—European Prospective Investigation into Cancer and Nutrition. Available online: https://epic.iarc.fr/ (accessed on 6 November 2023).
- Kouvari, M.; Panagiotakos, D.B.; Yannakoulia, M.; Georgousopoulou, E.; Critselis, E.; Chrysohoou, C.; Tousoulis, D.; Pitsavos, C. Transition from Metabolically Benign to Metabolically Unhealthy Obesity and 10-Year Cardiovascular Disease Incidence: The ATTICA Cohort Study. Metab. Clin. Exp. 2019, 93, 18–24. [Google Scholar] [CrossRef]
- Bergman, P.; Brighenti, S. Targeted Nutrition in Chronic Disease. Nutrients 2020, 12, 1682. [Google Scholar] [CrossRef] [PubMed]
- Tsoupras, A. The Anti-Inflammatory and Antithrombotic Properties of Bioactives from Orange, Sanguine and Clementine Juices and from Their Remaining By-Products. Beverages 2022, 8, 39. [Google Scholar] [CrossRef]
- Unni, E. Medicine Use in Chronic Diseases. Pharmacy 2023, 11, 100. [Google Scholar] [CrossRef]
- Corsello, A.; Pugliese, D.; Gasbarrini, A.; Armuzzi, A. Diet and Nutrients in Gastrointestinal Chronic Diseases. Nutrients 2020, 12, 2693. [Google Scholar] [CrossRef] [PubMed]
- Galali, Y.; Omar, Z.A.; Sajadi, S.M. Biologically Active Components in By-Products of Food Processing. Food Sci. Nutr. 2020, 8, 3004–3022. [Google Scholar] [CrossRef]
- Eliopoulos, C.; Markou, G.; Langousi, I.; Arapoglou, D. Reintegration of Food Industry By-Products: Potential Applications. Foods 2022, 11, 3743. [Google Scholar] [CrossRef] [PubMed]
- Hadj Saadoun, J.; Bertani, G.; Levante, A.; Vezzosi, F.; Ricci, A.; Bernini, V.; Lazzi, C. Fermentation of Agri-Food Waste: A Promising Route for the Production of Aroma Compounds. Foods 2021, 10, 707. [Google Scholar] [CrossRef]
- Bhuyan, D.J.; Alsherbiny, M.A.; Perera, S.; Low, M.; Basu, A.; Devi, O.A.; Barooah, M.S.; Li, C.G.; Papoutsis, K. The Odyssey of Bioactive Compounds in Avocado (Persea americana) and Their Health Benefits. Antioxidants 2019, 8, 426. [Google Scholar] [CrossRef]
- Wang, M.; Yu, P.; Chittiboyina, A.G.; Chen, D.; Zhao, J.; Avula, B.; Wang, Y.-H.; Khan, I.A. Characterization, Quantification and Quality Assessment of Avocado (Persea americana Mill.) Oils. Molecules 2020, 25, 1453. [Google Scholar] [CrossRef]
- Weremfo, A.; Adulley, F.; Adarkwah-Yiadom, M. Simultaneous Optimization of Microwave-Assisted Extraction of Phenolic Compounds and Antioxidant Activity of Avocado (Persea americana Mill.) Seeds Using Response Surface Methodology. J. Anal. Methods Chem. 2020, 2020, 7541927. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.W.; Ford, N.A.; Wood, A.C.; Tracy, R. Avocado Consumption and Markers of Inflammation: Results from the Multi-Ethnic Study of Atherosclerosis (MESA). Eur. J. Nutr. 2023, 62, 2105–2113. [Google Scholar] [CrossRef] [PubMed]
- Moura, M.d.S.; da Silva, C.A.M.; Braga, M.B. Flaxseed and Avocado Oil Blends: Physical and Physicochemical Characterization, Nutritional Quality and Oxidative Stability. Appl. Food Res. 2023, 3, 100370. [Google Scholar] [CrossRef]
- Dreher, M.L.; Cheng, F.W.; Ford, N.A. A Comprehensive Review of Hass Avocado Clinical Trials, Observational Studies, and Biological Mechanisms. Nutrients 2021, 13, 4376. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tao, L.; Hao, L.; Stanley, T.H.; Huang, K.-H.; Lambert, J.D.; Kris-Etherton, P.M. A Moderate-Fat Diet with One Avocado per Day Increases Plasma Antioxidants and Decreases the Oxidation of Small, Dense LDL in Adults with Overweight and Obesity: A Randomized Controlled Trial. J. Nutr. 2020, 150, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Ehikioya, C.O.; Osagie, A.M.; Omage, S.O.; Omage, K.; Azeke, M.A. Carbohydrate Digestive Enzyme Inhibition, Hepatoprotective, Antioxidant and Antidiabetic Benefits of Persea americana. Sci. Rep. 2023, 13, 284. [Google Scholar] [CrossRef] [PubMed]
- Segovia, F.J.; Hidalgo, G.I.; Villasante, J.; Ramis, X.; Almajano, M.P. Avocado Seed: A Comparative Study of Antioxidant Content and Capacity in Protecting Oil Models from Oxidation. Molecules 2018, 23, 2421. [Google Scholar] [CrossRef] [PubMed]
- Mora-Sandí, A.; Ramírez-González, A.; Castillo-Henríquez, L.; Lopretti-Correa, M.; Vega-Baudrit, J.R. Persea americana Agro-Industrial Waste Biorefinery for Sustainable High-Value-Added Products. Polymers 2021, 13, 1727. [Google Scholar] [CrossRef] [PubMed]
- Páramos, P.R.S.; Granjo, J.F.O.; Corazza, M.L.; Matos, H.A. Extraction of High Value Products from Avocado Waste Biomass. J. Supercrit. Fluids 2020, 165, 104988. [Google Scholar] [CrossRef]
- Redondo-Gómez, C.; Rodríguez Quesada, M.; Vallejo Astúa, S.; Murillo Zamora, J.P.; Lopretti, M.; Vega-Baudrit, J.R. Biorefinery of Biomass of Agro-Industrial Banana Waste to Obtain High-Value Biopolymers. Molecules 2020, 25, 3829. [Google Scholar] [CrossRef]
- Ford, N.A.; Spagnuolo, P.; Kraft, J.; Bauer, E. Nutritional Composition of Hass Avocado Pulp. Foods 2023, 12, 2516. [Google Scholar] [CrossRef]
- Seymour, G.B.; Tucker, G.A. Avocado. In Biochemistry of Fruit Ripening; Seymour, G.B., Taylor, J.E., Tucker, G.A., Eds.; Springer: Dordrecht, The Netherlands, 1993; pp. 53–81. ISBN 978-94-011-1584-1. [Google Scholar]
- Elosaily, A.H.; Mahrous, E.A.; Salama, A.A.; Salama, A.M.; Elzalabani, S.M. Composition, Anti-Inflammatory, and Antioxidant Activities of Avocado Oil Obtained from Duke and Fuerte Cultivars. JAOCS J. Am. Oil Chem. Soc. 2022, 99, 181–186. [Google Scholar] [CrossRef]
- Gonçalves, D.; Gouveia, C.S.S.; Ferreira, M.J.; Ganança, J.F.T.; Pinto, D.C.G.; Pinheiro de Carvalho, M.A.A. Comparative Analysis of Antioxidant and Fatty Acid Composition in Avocado (Persea americana Mill.) Fruits: Exploring Regional and Commercial Varieties. Food Chem. 2024, 442, 138403. [Google Scholar] [CrossRef]
- Viera, W.; Gaona, P.; Samaniego, I.; Sotomayor, A.; Viteri, P.; Noboa, M.; Merino, J.; Mejía, P.; Park, C.H. Mineral Content and Phytochemical Composition of Avocado Var. Hass Grown Using Sustainable Agriculture Practices in Ecuador. Plants 2023, 12, 1791. [Google Scholar] [CrossRef]
- Méndez Hernández, C.; Grycz, A.; Rios Mesa, D.; Rodríguez Galdón, B.; Rodríguez-Rodríguez, E.M. The Quality Evaluation of Avocado Fruits (Persea americana Mill.) of Hass Produced in Different Localities on the Island of Tenerife, Spain. Foods 2024, 13, 1058. [Google Scholar] [CrossRef]
- Home—New Zealand Food Composition Database. Available online: https://www.foodcomposition.co.nz/ (accessed on 1 May 2023).
- Nasri, C.; Halabi, Y.; Hajib, A.; Choukri, H.; Harhar, H.; Lee, L.-H.; Mani, V.; Ming, L.C.; Goh, K.W.; Bouyahya, A.; et al. Proximate Composition, Lipid and Elemental Profiling of Eight Varieties of Avocado (Persea americana). Sci. Rep. 2023, 13, 22767. [Google Scholar] [CrossRef]
- Siol, M.; Sadowska, A. Chemical Composition, Physicochemical and Bioactive Properties of Avocado (Persea americana) Seed and Its Potential Use in Functional Food Design. Agriculture 2023, 13, 316. [Google Scholar] [CrossRef]
- Velázquez-González, F.G.; Urquiza-Martínez, M.V.; Manhães-de-Castro, R.; Romero-Juárez, P.A.; Bedolla-Valdez, Z.I.; Ponce-Pérez, J.M.; Farías-Gaytán, E.; Vázquez-Garcidueñas, M.S.; Vázquez-Marrufo, G.; Toscano, A.E.; et al. Chronic Consumption of Avocado Seed (Persea americana) Promotes a Negative Energy Balance and Body Weight Reduction in High-Fat Diet Exposed Mice: Implications for Functional Foods. J. Funct. Foods 2023, 108, 105751. [Google Scholar] [CrossRef]
- Krumreich, F.D.; Mendonça, C.R.B.; Borges, C.D.; Crizel-Cardozo, M.M.; dos Santos, M.A.Z.; Otero, D.M.; Zambiazi, R.C. Margarida Avocado Oil: Effect of Processing on Quality, Bioactive Compounds and Fatty Acid Profile. Food Chem. Adv. 2024, 4, 100617. [Google Scholar] [CrossRef]
- D’Asaro, A.; Reig, C.; Martínez-Fuentes, A.; Mesejo, C.; Farina, V.; Agustí, M. Hormonal and Carbohydrate Control of Fruit Set in Avocado ‘Lamb Hass’. A Question of the Type of Inflorescence? Sci. Hortic. 2021, 282, 110046. [Google Scholar] [CrossRef]
- Cheng, F.W.; Rodríguez-Ramírez, S.; Shamah-Levy, T.; Pérez-Tepayo, S.; Ford, N.A. Association between Avocado Consumption and Diabetes in Mexican Adults: Results from the 2012, 2016, and 2018 Mexican National Health and Nutrition Surveys. J. Acad. Nutr. Diet. 2024. [Google Scholar] [CrossRef] [PubMed]
- Marín-Obispo, L.M.; Villarreal-Lara, R.; Rodríguez-Sánchez, D.G.; Del Follo-Martínez, A.; Espíndola Barquera, M.d.l.C.; Jaramillo-De la Garza, J.S.; Díaz de la Garza, R.I.; Hernández-Brenes, C. Insights into Drivers of Liking for Avocado Pulp (Persea americana): Integration of Descriptive Variables and Predictive Modeling. Foods 2021, 10, 99. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xia, Q.; Qian, Y.; Kuang, Y.; Liu, J.; Lin, L. Effects of Three Extraction Methods on Avocado Oil Lipid Compounds Analyzed via UPLC-TOF-MS/MS with OPLS-DA. Foods 2023, 12, 1174. [Google Scholar] [CrossRef] [PubMed]
- Kamiloglu, S.; Tomas, M.; Ozdal, T.; Yolci-Omeroglu, P.; Capanoglu, E. Chapter 2—Bioactive Component Analysis. In Innovative Food Analysis; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 41–65. ISBN 978-0-12-819493-5. [Google Scholar]
- Hamzalıoğlu, A.; Gökmen, V. Chapter 18—Interaction between Bioactive Carbonyl Compounds and Asparagine and Impact on Acrylamide. In Acrylamide in Food; Gökmen, V., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 355–376. ISBN 978-0-12-802832-2. [Google Scholar]
- Ahmad, T.; Danish, M. A Review of Avocado Waste-Derived Adsorbents: Characterizations, Adsorption Characteristics, and Surface Mechanism. Chemosphere 2022, 296, 134036. [Google Scholar] [CrossRef] [PubMed]
- FAO. Major Tropical Fruits Market Review—Preliminary Results 2022. 2023. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/852265a4-9006-4d54-a792-51f1d9c44673/content (accessed on 1 April 2024).
- King-Loeza, Y.; Ciprián-Macías, D.A.; Cardador-Martínez, A.; Martín-del-Campo, S.T.; Castañeda-Saucedo, M.C.; Ramírez-Anaya, J. del P. Functional Composition of Avocado (Persea americana Mill. Var Hass) Pulp, Extra Virgin Oil, and Residues Is Affected by Fruit Commercial Classification. J. Agric. Food Res. 2023, 12, 100573. [Google Scholar] [CrossRef]
- Alkaltham, M.S.; Uslu, N.; Özcan, M.M.; Salamatullah, A.M.; Mohamed Ahmed, I.A.; Hayat, K. Effect of Drying Process on Oil, Phenolic Composition and Antioxidant Activity of Avocado (Cv. Hass) Fruits Harvested at Two Different Maturity Stages. LWT 2021, 148, 111716. [Google Scholar] [CrossRef]
- Mpai, S.; Sivakumar, D. Influence of Growing Seasons on Metabolic Composition, and Fruit Quality of Avocado Cultivars at ‘Ready-to-Eat Stage’. Sci. Hortic. 2020, 265, 109159. [Google Scholar] [CrossRef]
- Wang, W.; Bostic, T.R.; Gu, L. Antioxidant Capacities, Procyanidins and Pigments in Avocados of Different Strains and Cultivars. Food Chem. 2010, 122, 1193–1198. [Google Scholar] [CrossRef]
- Fan, S.; Qi, Y.; Shi, L.; Giovani, M.; Zaki, N.A.A.; Guo, S.; Suleria, H.A.R. Screening of Phenolic Compounds in Rejected Avocado and Determination of Their Antioxidant Potential. Processes 2022, 10, 1747. [Google Scholar] [CrossRef]
- Lyu, X.; Agar, O.T.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Phenolic Compounds Profiling and Their Antioxidant Capacity in the Peel, Pulp, and Seed of Australian Grown Avocado. Antioxidants 2023, 12, 185. [Google Scholar] [CrossRef]
- Huaman-Alvino, C.; Chirinos, R.; Gonzales-Pariona, F.; Pedreschi, R.; Campos, D. Physicochemical and Bioactive Compounds at Edible Ripeness of Eleven Varieties of Avocado (Persea americana) Cultivated in the Andean Region of Peru. Int. J. Food Sci. Technol. 2021, 56, 5040–5049. [Google Scholar] [CrossRef]
- Wang, J.; Yang, H.; Wu, P.; Zhang, J.; Ma, W.; Li, Y.; Liu, J. Effect of Predry-Treatment on the Bioactive Constituents and Quality of Avocado (Persea americana Mill.) Oil from Three Cultivars Growing in China. Front. Nutr. 2023, 10, 1230204. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, G.D.; Gómez-Coca, R.B.; Pérez-Camino, M.C.; Moreda, W.; Barrera-Arellano, D. Chemical Characterization of Commercial and Single-Variety Avocado Oils. Grasas Aceites 2018, 69, e256. [Google Scholar] [CrossRef]
- Ojha, P.K.; Poudel, D.K.; Rokaya, A.; Maharjan, S.; Timsina, S.; Poudel, A.; Satyal, R.; Satyal, P.; Setzer, W.N. Chemical Compositions and Essential Fatty Acid Analysis of Selected Vegetable Oils and Fats. Compounds 2024, 4, 37–70. [Google Scholar] [CrossRef]
- Ozdemir, F.; Topuz, A. Changes in Dry Matter, Oil Content and Fatty Acids Composition of Avocado during Harvesting Time and Post-Harvesting Ripening Period. Food Chem. 2004, 86, 79–83. [Google Scholar] [CrossRef]
- Vilca, R.; Espinoza-Silva, C.; Alfaro-Cruz, S.; Ponce-Ramírez, J.C.; Quispe-Neyra, J.; Alvarado-Zambrano, F.; Cortés-Avendaño, P.; Condezo-Hoyos, L. Hass and Fuerte Avocado (Persea americana sp.) Oils Extracted by Supercritical Carbon Dioxide: Bioactive Compounds, Fatty Acid Content, Antioxidant Capacity and Oxidative Stability. J. Supercrit. Fluids 2022, 190, 105750. [Google Scholar] [CrossRef]
- Marović, R.; Badanjak Sabolović, M.; Brnčić, M.; Ninčević Grassino, A.; Kljak, K.; Voća, S.; Karlović, S.; Rimac Brnčić, S. The Nutritional Potential of Avocado By-Products: A Focus on Fatty Acid Content and Drying Processes. Foods 2024, 13, 2003. [Google Scholar] [CrossRef]
- Ramos-Aguilar, A.L.; Ornelas-Paz, J.; Tapia-Vargas, L.M.; Gardea-Béjar, A.A.; Yahia, E.M.; Ornelas-Paz, J.d.J.; Ruiz-Cruz, S.; Rios-Velasco, C.; Escalante-Minakata, P. Effect of Cultivar on the Content of Selected Phytochemicals in Avocado Peels. Food Res. Int. 2021, 140, 110024. [Google Scholar] [CrossRef]
- Amado, D.A.V.; Detoni, A.M.; De Carvalho, S.L.C.; Torquato, A.S.; Martin, C.A.; Tiuman, T.S.; Aguiar, C.M.; Cottica, S.M. Tocopherol and Fatty Acids Content and Proximal Composition of Four Avocado Cultivars (Persea americana Mill). Acta Aliment. 2019, 48, 47–55. [Google Scholar] [CrossRef]
- Ghafoor, K.; Uslu, N.; Al-Juhaimi, F.; Babiker, E.E.; Mohammed Ahmed, I.A.; Yıldız, M.U.; Alswahmi, O.N.; Özcan, M.M. Tocopherol Contents of Pulp Oils Extracted from Ripe and Unripe Avocado Fruits Dried by Different Drying Systems. J. Oleo Sci. 2021, 70, 21–30. [Google Scholar] [CrossRef]
- Nasri, C.; Halabi, Y.; Harhar, H.; Mohammed, F.; Bellaouchou, A.; Guenbour, A.; Tabyaoui, M. Chemical Characterization of Oil from Four Avocado Varieties Cultivated in Morocco. OCL Oilseeds Fats Crops Lipids 2021, 28, 19. [Google Scholar] [CrossRef]
- Hong, H.T.; Takagi, T.; O’Hare, T.J. An Optimal Saponification and Extraction Method to Determine Carotenoids in Avocado. Food Chem. 2022, 387, 132923. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Del Pino-García, R.; Curiel, J.A.; Lozano-Sánchez, J.; Segura-Carretero, A. Functional Ingredient from Avocado Peel: Microwave-Assisted Extraction, Characterization and Potential Applications for the Food Industry. Food Chem. 2021, 352, 129300. [Google Scholar] [CrossRef] [PubMed]
- Pasquet, P.L.; Julien-David, D.; Zhao, M.; Villain-Gambier, M.; Trébouet, D. Stability and Preservation of Phenolic Compounds and Related Antioxidant Capacity from Agro-Food Matrix: Effect of pH and Atmosphere. Food Biosci. 2024, 57, 103586. [Google Scholar] [CrossRef]
- Velderrain-Rodríguez, G.R.; Quero, J.; Osada, J.; Martín-Belloso, O.; Rodríguez-Yoldi, M.J. Phenolic-Rich Extracts from Avocado Fruit Residues as Functional Food Ingredients with Antioxidant and Antiproliferative Properties. Biomolecules 2021, 11, 977. [Google Scholar] [CrossRef] [PubMed]
- Del-Castillo-Llamosas, A.; Rodríguez-Rebelo, F.; Rodríguez-Martínez, B.; Mallo-Fraga, A.; Del-Río, P.G.; Gullón, B. Valorization of Avocado Seed Wastes for Antioxidant Phenolics and Carbohydrates Recovery Using Deep Eutectic Solvents (DES). Antioxidants 2023, 12, 1156. [Google Scholar] [CrossRef] [PubMed]
- De Montijo-Prieto, S.; Razola-Díaz, M.D.C.; Barbieri, F.; Tabanelli, G.; Gardini, F.; Jiménez-Valera, M.; Ruiz-Bravo, A.; Verardo, V.; Gómez-Caravaca, A.M. Impact of Lactic Acid Bacteria Fermentation on Phenolic Compounds and Antioxidant Activity of Avocado Leaf Extracts. Antioxidants 2023, 12, 298. [Google Scholar] [CrossRef] [PubMed]
- Permal, R.; Chang, W.L.; Seale, B.; Hamid, N.; Kam, R. Converting Industrial Organic Waste from the Cold-Pressed Avocado Oil Production Line into a Potential Food Preservative. Food Chem. 2020, 306, 125635. [Google Scholar] [CrossRef] [PubMed]
- Della Posta, S.; Gallo, V.; Ascrizzi, A.M.; Gentili, A.; De Gara, L.; Dugo, L.; Fanali, C. Development of a Green Ultrasound-Assisted Procedure for the Extraction of Phenolic Compounds from Avocado Peel with Deep Eutectic Solvents. Green Anal. Chem. 2023, 7, 100083. [Google Scholar] [CrossRef]
- Zaki, S.A.E.-H.; Ismail, F.A.E.-A.; Abdelatif, S.H.; El-Mohsen, N.R.A.; Helmy, S.A. Bioactive Compounds and Antioxidant Activities of Avocado Peels and Seeds. Pak. J. Biol. Sci. 2020, 23, 345–350. [Google Scholar] [CrossRef]
- Frollini, E.; Silva, C.G.; Ramires, E.C. 2—Phenolic Resins as a Matrix Material in Advanced Fiber-Reinforced Polymer (FRP) Composites. In Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications; Bai, J., Ed.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Sawston, UK, 2013; pp. 7–43. ISBN 978-0-85709-418-6. [Google Scholar]
- Fares, M.M.; Radaydeh, S.K.; AlAmeen, H.M. Green Tannins/Avocado Oil Composites; Suncare and Skincare Materials. Arab. J. Chem. 2023, 16, 104764. [Google Scholar] [CrossRef]
- Athaydes, B.R.; Tosta, C.; Carminati, R.Z.; Kuster, R.M.; Kitagawa, R.R.; Gonçalves, R.d.C.R. Avocado (Persea americana Mill.) Seeds Compounds Affect Helicobacter pylori Infection and Gastric Adenocarcinoma Cells Growth. J. Funct. Foods 2022, 99, 105352. [Google Scholar] [CrossRef]
- Soledad, C.-P.T.; Paola, H.-C.; Carlos Enrique, O.-V.; Israel, R.-L.I.; Guadalupe Virginia, N.-M.; Raúl, Á.-S. Avocado Seeds (Persea americana Cv. Criollo Sp.): Lipophilic Compounds Profile and Biological Activities. Saudi J. Biol. Sci. 2021, 28, 3384–3390. [Google Scholar] [CrossRef]
- Safafar, H.; van Wagenen, J.; Møller, P.; Jacobsen, C. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater. Mar. Drugs 2015, 13, 7339–7356. [Google Scholar] [CrossRef]
- de Carvalho, T.C.L.; Nunes, C.A. Smartphone-Based Method for the Determination of Chlorophyll and Carotenoid Contents in Olive and Avocado Oils: An Approach with Calibration Transfer. J. Food Compos. Anal. 2021, 104, 104164. [Google Scholar] [CrossRef]
- Vincent, C.; Mirabent, C.; Munné-Bosch, S. Lipid Peroxidation and Lipid-Soluble Antioxidants as Quality Control Markers in Cold-Stored Fruit for Establishing Commercial Acceptability in Bacon Avocados. Food Control 2023, 143, 109312. [Google Scholar] [CrossRef]
- Villa-Rodriguez, J.A.; Yahia, E.M.; González-León, A.; Ifie, I.; Robles-Zepeda, R.E.; Domínguez-Avila, J.A.; González-Aguilar, G.A. Ripening of ‘Hass’ Avocado Mesocarp Alters Its Phytochemical Profile and the In Vitro Cytotoxic Activity of Its Methanolic Extracts. S. Afr. J. Bot. 2020, 128, 1–8. [Google Scholar] [CrossRef]
- Rodilla, S.D.; Martínez-Pineda, M.; Yagüe-Ruiz, C.; Vercet, A. Evaluation of Phenolic Compounds, Antioxidant Activity and Pigment Content in Emerging and Traditional Plant-Based Oils in Mediterranean Gastronomy. Int. J. Gastron. Food Sci. 2023, 33, 100771. [Google Scholar] [CrossRef]
- Tan, L.; Zhang, Y.; Dawson, R.; Kong, L. Roles of Macular Carotenoids in Brain Function throughout the Lifespan: A Review of Recent Research. J. Agric. Food Res. 2023, 14, 100785. [Google Scholar] [CrossRef]
- Gebregziabher, B.S.; Gebremeskel, H.; Debesa, B.; Ayalneh, D.; Mitiku, T.; Wendwessen, T.; Habtemariam, E.; Nur, S.; Getachew, T. Carotenoids: Dietary Sources, Health Functions, Biofortification, Marketing Trend and Affecting Factors—A Review. J. Agric. Food Res. 2023, 14, 100834. [Google Scholar] [CrossRef]
- Pușcaș, A.; Tanislav, A.E.; Marc, R.A.; Mureșan, V.; Mureșan, A.E.; Pall, E.; Cerbu, C. Cytotoxicity Evaluation and Antioxidant Activity of a Novel Drink Based on Roasted Avocado Seed Powder. Plants 2022, 11, 1083. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, L.M.; Bicas, J.L.; Fuentes, E.; Alarcón, M.; Gonzalez, I.P.; Pastore, G.M.; Maróstica, M.R.; Cazarin, C.B.B. Non-Nutrients and Nutrients from Latin American Fruits for the Prevention of Cardiovascular Diseases. Food Res. Int. 2021, 139, 109844. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.G.; Walk, A.M.; Thompson, S.V.; Reeser, G.E.; Erdman, J.W.; Burd, N.A.; Holscher, H.D.; Khan, N.A. Effects of 12-Week Avocado Consumption on Cognitive Function among Adults with Overweight and Obesity. Int. J. Psychophysiol. 2020, 148, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Öz, M.; Ucak, İ.; Nayik, G.A. Chapter 10—PUFA and MUFA. In Nutraceuticals and Health Care; Kour, J., Nayik, G.A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 199–215. ISBN 978-0-323-89779-2. [Google Scholar]
- Green, H.S.; Wang, S.C. Purity and Quality of Private Labelled Avocado Oil. Food Control 2023, 152, 109837. [Google Scholar] [CrossRef]
- Rozan, M.; Alamri, E.; Bayomy, H. Fermented Hass Avocado Kernel: Nutritional Properties and Use in the Manufacture of Biscuits. Saudi J. Biol. Sci. 2022, 29, 103295. [Google Scholar] [CrossRef] [PubMed]
- Hernández, C.M.; Mesa, D.R.; Rodríguez-Galdón, B.; Rodríguez-Rodríguez, E.M. Study of Environmental Factors on the Fat Profile of Hass Avocados. J. Food Compos. Anal. 2023, 123, 105544. [Google Scholar] [CrossRef]
- Acquavia, M.A.; Benítez, J.J.; Bianco, G.; Crescenzi, M.A.; Hierrezuelo, J.; Grifé-Ruiz, M.; Romero, D.; Guzmán-Puyol, S.; Heredia-Guerrero, J.A. Incorporation of Bioactive Compounds from Avocado By-Products to Ethyl Cellulose-Reinforced Paper for Food Packaging Applications. Food Chem. 2023, 429, 136906. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.V.; Bailey, M.A.; Taylor, A.M.; Kaczmarek, J.L.; Mysonhimer, A.R.; Edwards, C.G.; Reeser, G.E.; Burd, N.A.; Khan, N.A.; Holscher, H.D. Avocado Consumption Alters Gastrointestinal Bacteria Abundance and Microbial Metabolite Concentrations among Adults with Overweight or Obesity: A Randomized Controlled Trial. J. Nutr. 2021, 151, 753–762. [Google Scholar] [CrossRef]
- Buthelezi, N.M.D.; Mafeo, T.P. Effect of Perforated Low-Density Polyethylene Films on Postharvest Quality of Avocado Fruit. Heliyon 2024, 10, e27656. [Google Scholar] [CrossRef]
- Garofalo, G.; Ponte, M.; Busetta, G.; Barbera, M.; Tinebra, I.; Piazzese, D.; Franciosi, E.; Di Grigoli, A.; Farina, V.; Bonanno, A.; et al. Microbial Dynamics and Quality Characteristics of Spontaneously Fermented Salamis Produced by Replacing Pork Fat with Avocado Pulp. Food Microbiol. 2024, 122, 104536. [Google Scholar] [CrossRef]
- Schoeneck, M.; Iggman, D. The Effects of Foods on LDL Cholesterol Levels: A Systematic Review of the Accumulated Evidence from Systematic Reviews and Meta-Analyses of Randomized Controlled Trials. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1325–1338. [Google Scholar] [CrossRef] [PubMed]
- Lara-Márquez, M.; Báez-Magaña, M.; Raymundo-Ramos, C.; Spagnuolo, P.A.; Macías-Rodríguez, L.; Salgado-Garciglia, R.; Ochoa-Zarzosa, A.; López-Meza, J.E. Lipid-Rich Extract from Mexican Avocado (Persea americana Var. Drymifolia) Induces Apoptosis and Modulates the Inflammatory Response in Caco-2 Human Colon Cancer Cells. J. Funct. Foods 2020, 64, 103658. [Google Scholar] [CrossRef]
- Senn, M.K.; Goodarzi, M.O.; Ramesh, G.; Allison, M.A.; Graff, M.; Young, K.L.; Talavera, G.A.; McClain, A.C.; Garcia, T.P.; Rotter, J.I.; et al. Associations between Avocado Intake and Measures of Glucose and Insulin Homeostasis in Hispanic Individuals with and without Type 2 Diabetes: Results from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Nutr. Metab. Cardiovasc. Dis. 2023, 33, 2428–2439. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xiao, D.; Guzman, G.; Edirisinghe, I.; Burton-Freeman, B. Avocado Consumption for 12 Weeks and Cardiometabolic Risk Factors: A Randomized Controlled Trial in Adults with Overweight or Obesity and Insulin Resistance. J. Nutr. 2022, 152, 1851–1861. [Google Scholar] [CrossRef] [PubMed]
- James-Martin, G.; Brooker, P.G.; Hendrie, G.A.; Stonehouse, W. Avocado Consumption and Cardiometabolic Health: A Systematic Review and Meta-Analysis. J. Acad. Nutr. Diet. 2024, 124, 233–248.e4. [Google Scholar] [CrossRef] [PubMed]
- Pruthvi, G.; Apoorva, M.; Anuthilakesh, T.; Bhargavi, K.; Nithish, G.S.; Achar, R. Food Polyphenols. In Polyphenols; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2023; pp. 1–20. ISBN 978-1-394-18886-4. [Google Scholar]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for Antioxidant Assays for Food Components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef]
- da Silva Bastos, K.V.L.; Souza, A.B.; Gomes, R.R.; de Souza, L.C.; Aquino, I.P.; de Moura Souza, F. Phytochemicals Present in Ethanol Extract of Avocado Seed and Its Potential Antioxidant Effect. Curr. Organocatal. 2024, 11, 71–77. [Google Scholar] [CrossRef]
- Anushree, S.; Saira, V.; Remya, R.; Rajat, S.; Jayanthi, A. Extraction and Purification of Bromelain Enzyme from Fruits and Its Therapeutic Application Study. Res. J. Biotechnol. 2023, 18, 17–23. [Google Scholar] [CrossRef]
- Kamaraj, M.; Dhana Rangesh Kumar, V.; Nithya, T.G.; Danya, U. Assessment of Antioxidant, Antibacterial Activity and Phytoactive Compounds of Aqueous Extracts of Avocado Fruit Peel from Ethiopia. Int. J. Pept. Res. Ther. 2020, 26, 1549–1557. [Google Scholar] [CrossRef]
- Polat Kose, L.; Bingol, Z.; Kaya, R.; Goren, A.C.; Akincioglu, H.; Durmaz, L.; Koksal, E.; Alwasel, S.H.; Gülçin, İ. Anticholinergic and Antioxidant Activities of Avocado (Folium perseae) Leaves—Phytochemical Content by LC-MS/MS Analysis. Int. J. Food Prop. 2020, 23, 878–893. [Google Scholar] [CrossRef]
- Shi, D.; Xu, W.; Balan, P.; Wong, M.; Chen, W.; Popovich, D.G. In Vitro Antioxidant Properties of New Zealand Hass Avocado Byproduct (Peel and Seed) Fractions. ACS Food Sci. Technol. 2021, 1, 579–587. [Google Scholar] [CrossRef]
- Ngungeni, Y.; Aboyewa, J.A.; Moabelo, K.L.; Sibuyi, N.R.S.; Meyer, S.; Onani, M.O.; Meyer, M.; Madiehe, A.M. Anticancer, Antioxidant, and Catalytic Activities of Green Synthesized Gold Nanoparticles Using Avocado Seed Aqueous Extract. ACS Omega 2023, 8, 26088–26101. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Quezada, V.; Gaytán-Martínez, M.; Recio, I.; Loarca-Piña, G. Avocado Seed By-Product Uses in Emulsion-Type Ingredients with Nutraceutical Value: Stability, Cytotoxicity, Nutraceutical Properties, and Assessment of In Vitro Oral-Gastric Digestion. Food Chem. 2023, 421, 136118. [Google Scholar] [CrossRef] [PubMed]
- Abd Elkader, A.M.; Labib, S.; Taha, T.F.; Althobaiti, F.; Aldhahrani, A.; Salem, H.M.; Saad, A.; Ibrahim, F.M. Phytogenic Compounds from Avocado (Persea americana L.) Extracts; Antioxidant Activity, Amylase Inhibitory Activity, Therapeutic Potential of Type 2 Diabetes. Saudi J. Biol. Sci. 2022, 29, 1428–1433. [Google Scholar] [CrossRef] [PubMed]
- Mfotie Njoya, E. Chapter 31—Medicinal Plants, Antioxidant Potential, and Cancer. In Cancer, 2nd ed.; Preedy, V.R., Patel, V.B., Eds.; Academic Press: San Diego, CA, USA, 2021; pp. 349–357. ISBN 978-0-12-819547-5. [Google Scholar]
- Mahmoud, A.H.; Samy, M.N.; Wanas, A.S.; Kamel, M.S. Gas Chromatography-Mass Spectrometry Profiling and Analgesic, Anti-Inflammatory, Antipyretic, and Antihyperglycemic Potentials of Persea americana. Iran. J. Basic Med. Sci. 2021, 24, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Hürkul, M.M.; Sarıaltın, S.Y.; Köroğlu, A.; Çoban, T. In Vitro Inhibitory Potential of Avocado Fruits, Persea americana (Lauraceae) against Oxidation, Inflammation and Key Enzymes Linked to Skin Diseases. Rev. Biol. Trop. 2021, 69, 472–481. [Google Scholar] [CrossRef]
- de Oliveira, E.C.S.; Dalmau, L.M.; de Almeida Costa, C.A.R.; de Almeida Junior, L.D.; Ballard, C.R.; Maróstica Junior, M.R.; Stahl, M.A.; Grimaldi, R.; Witaicenis, A.; Di Stasi, L.C. Dietary Intervention with Avocado (Persea americana Mill.) Ameliorates Intestinal Inflammation Induced by TNBS in Rats. Inflammopharmacology 2023, 31, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Elmaghraby, D.F.; Salem, F.A.M.; Ahmed, E.S. Persea americana Attenuates Inflammatory Response Associated with Hyperlipidemia in Ovariectomized and Irradiated Rats by Regulating MMP-3/TIMP-1 Levels. Asian Pac. J. Trop. Biomed. 2022, 12, 374. [Google Scholar] [CrossRef]
- Goudarzi, R.; Zamanian, G.; Seyyedian, Z.; Mirzaee Saffari, P.; Dehpour, A.R.; Partoazar, A. Beneficial Effects of Arthrocen on Neuroinflammation and Behavior like Depression in Stroke in a Murine Model. Food Sci. Nutr. 2023, 11, 527–534. [Google Scholar] [CrossRef]
- Al-Otaibi, T.; Hawsah, M.A.; Alojayri, G.; Mares, M.M.; Aljawdah, H.M.A.; Maodaa, S.N.; Al-Shaebi, E.M.; Dkhil, M.A.; Thagfan, F.A.; Al-Quraishy, S.; et al. In Vivo Anticoccidial, Antioxidant, and Anti-Inflammatory Activities of Avocado Fruit, Persea americana (Lauraceae), against Eimeria Papillata Infection. Parasitol. Int. 2023, 95. [Google Scholar] [CrossRef]
- Ahmed, O.M.; Fahim, H.I.; Mohamed, E.E.; Abdel-Moneim, A. Protective Effects of Persea americana Fruit and Seed Extracts against Chemically Induced Liver Cancer in Rats by Enhancing Their Antioxidant, Anti-Inflammatory, and Apoptotic Activities. Environ. Sci. Pollut. Res. 2022, 29, 43858–43873. [Google Scholar] [CrossRef] [PubMed]
- Motawi, T.M.K.; William, M.M.; Nooh, M.M.; Abd-Elgawad, H.M. Amelioration of Cyclophosphamide Toxicity via Modulation of Metabolizing Enzymes by Avocado (Persea americana) Extract. J. Pharm. Pharmacol. 2022, 74, 367–376. [Google Scholar] [CrossRef] [PubMed]
- The Design and Rationale of a Multi-Center Randomized Clinical Trial Comparing One Avocado per Day to Usual Diet: The Habitual Diet and Avocado Trial (HAT). Contemp. Clin. Trials 2021, 110, 106565. [CrossRef] [PubMed]
- Petersen, K.S.; Anderson, S.; Chen See, J.R.; Leister, J.; Kris-Etherton, P.M.; Lamendella, R. Herbs and Spices Modulate Gut Bacterial Composition in Adults at Risk for CVD: Results of a Prespecified Exploratory Analysis from a Randomized, Crossover, Controlled-Feeding Study. J. Nutr. 2022, 152, 2461–2470. [Google Scholar] [CrossRef] [PubMed]
- Shinn, L.M.; Li, Y.; Mansharamani, A.; Auvil, L.S.; Welge, M.E.; Bushell, C.; Khan, N.A.; Charron, C.S.; Novotny, J.A.; Baer, D.J.; et al. Fecal Bacteria as Biomarkers for Predicting Food Intake in Healthy Adults. J. Nutr. 2021, 151, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, J.; van Daalen, K.R.; Thayyil, A.; Cocco, M.T.d.A.R.R.; Caputo, D.; Oliver-Williams, C. A Systematic Review of the Association Between Vegan Diets and Risk of Cardiovascular Disease. J. Nutr. 2021, 151, 1539–1552. [Google Scholar] [CrossRef]
- Williams, L.; Baker-Smith, C.M.; Bolick, J.; Carter, J.; Kirkpatrick, C.; Ley, S.L.; Peterson, A.L.; Shah, A.S.; Sikand, G.; Ware, A.L.; et al. Nutrition Interventions for Youth with Dyslipidemia: A National Lipid Association Clinical Perspective. J. Clin. Lipidol. 2022, 16, 776–796. [Google Scholar] [CrossRef] [PubMed]
- Mata-Fernández, A.; Hershey, M.S.; Pastrana-Delgado, J.C.; Sotos-Prieto, M.; Ruiz-Canela, M.; Kales, S.N.; Martínez-González, M.A.; Fernandez-Montero, A. A Mediterranean Lifestyle Reduces the Risk of Cardiovascular Disease in the “Seguimiento Universidad de Navarra” (SUN) Cohort. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1728–1737. [Google Scholar] [CrossRef] [PubMed]
- Hannon, B.A.; Edwards, C.G.; Thompson, S.V.; Reeser, G.E.; Burd, N.A.; Holscher, H.D.; Teran-Garcia, M.; Khan, N.A. Single Nucleotide Polymorphisms Related to Lipoprotein Metabolism Are Associated with Blood Lipid Changes Following Regular Avocado Intake in a Randomized Control Trial among Adults with Overweight and Obesity. J. Nutr. 2020, 150, 1379–1387. [Google Scholar] [CrossRef]
- Anjum, S.; Ali, H.; Naseer, F.; Abduh, M.S.; Qadir, H.; Kakar, S.; Waheed, Y.; Ahmad, T. Antioxidant Activity of Carica Papaya & Persea americana Fruits against Cadmium Induced Neurotoxicity, Nephrotoxicity, and Hepatotoxicity in Rats with a Computational Approach. J. Trace Elem. Med. Biol. 2024, 81, 127324. [Google Scholar] [CrossRef]
- da Silva, G.G.; Pimenta, L.P.S.; Melo, J.O.F.; Mendonça, H.d.O.P.; Augusti, R.; Takahashi, J.A. Phytochemicals of Avocado Residues as Potential Acetylcholinesterase Inhibitors, Antioxidants, and Neuroprotective Agents. Molecules 2022, 27, 1892. [Google Scholar] [CrossRef] [PubMed]
- Elmoneam Ali, A.A.; El-Hallouty, S.M.; El-Desouky, M.A. Amelioration of Alzheimer’s Disease with Extracts of Punica Granatum and Persea americana in AlCl3 Induced Rats. Egypt. J. Chem. 2023, 66, 21–32. [Google Scholar] [CrossRef]
- Grisales-Mejía, J.F.; Álvarez-Rivera, G.; Torres-Castañeda, H.G.; Andrade-Mahecha, M.M.; Martínez-Correa, H.A.; Mendiola, J.A.; Cifuentes, A.; Ibañez, E. Hass Avocado (Persea americana Mill.) Residues as a New Potential Source of Neuroprotective Compounds Using Pressurized Liquid Extraction. J. Supercrit. Fluids 2024, 204, 106117. [Google Scholar] [CrossRef]
- Motta, J.R.; Jung, I.E.D.C.; Azzolin, V.F.; Teixeira, C.F.; Braun, L.E.; De Oliveira Nerys, D.A.; Motano, M.A.E.; Duarte, M.M.M.F.; Maia-Ribeiro, E.A.; da Cruz, I.B.M.; et al. Avocado Oil (Persea americana) Protects SH-SY5Y Cells against Cytotoxicity Triggered by Cortisol by the Modulation of BDNF, Oxidative Stress, and Apoptosis Molecules. J. Food Biochem. 2021, 45. [Google Scholar] [CrossRef]
- Quintero-Espinosa, D.A.; Ortega-Arellano, H.F.; Velez-Pardo, C.; Jimenez-Del-Rio, M. Phenolic-Rich Extract of Avocado Persea americana (Var. Colinred) Peel Blunts Paraquat/Maneb-Induced Apoptosis through Blocking Phosphorylation of LRRK2 Kinase in Human Nerve-like Cells. Environ. Toxicol. 2022, 37, 660–676. [Google Scholar] [CrossRef]
- Santos, N.C.; Almeida, R.L.J.; de Andrade, E.W.V.; Gomes, J.P.; de Medeiros, M.D.F.D.; Pedrini, M.R.D.S. Breads Formulated with Avocado Pulp Powder as a Fat Substitute: Quality Parameters and In Vitro Inhibition Activities. J. Food Sci. 2024, 89, 2110–2123. [Google Scholar] [CrossRef] [PubMed]
- Adeyeye, S.A.O.; Bolaji, O.T.; Abegunde, T.A.; Emun, H.O.; Oyenubi, R.A. Quality Evaluation and Acceptability of Cookies Produced from Wheat (Triticum aestivum) Flour Substituted with Avocado Puree as Fat Substitute. Nutr. Food Sci. 2023, 53, 929–945. [Google Scholar] [CrossRef]
- Viola, E.; Buzzanca, C.; Tinebra, I.; Settanni, L.; Farina, V.; Gaglio, R.; Di Stefano, V. A Functional End-Use of Avocado (Cv. Hass) Waste through Traditional Semolina Sourdough Bread Production. Foods 2023, 12, 3743. [Google Scholar] [CrossRef]
- El-Sayed, S.M.; El-Sayed, H.S. Boosting the Nutritional Value of Stirred Yogurt by Adding Nano-Sized Avocado Seed Powder and Lactobacillus Acidophilus. Egypt. J. Chem. 2024, 67, 13–25. [Google Scholar] [CrossRef]
- Nyakang’I, C.O.; Marete, E.; Ebere, R.; Arimi, J.M. Physicochemical Properties of Avocado Seed Extract Model Beverages and Baked Products Incorporated with Avocado Seed Powder. Int. J. Food Sci. 2023, 2023, 6860806. [Google Scholar] [CrossRef]
- Machado, M.; Sousa, S.; Morais, P.; Miranda, A.; Rodriguez-Alcalá, L.M.; Gomes, A.M.; Pintado, M. Novel Avocado Oil-Functionalized Yogurt with Anti-Obesity Potential: Technological and Nutraceutical Perspectives. Food Biosci. 2022, 50, 101983. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Santos, L. From By-Product to Functional Ingredient: Incorporation of Avocado Peel Extract as an Antioxidant and Antibacterial Agent. Innov. Food Sci. Emerg. Technol. 2022, 80, 103116. [Google Scholar] [CrossRef]
- Martín-Martínez, A.; Sánchez-Marzo, N.; Martínez-Casanova, D.; Abarquero-Cerezo, M.; Herranz-López, M.; Barrajón-Catalán, E.; Matabuena-Yzaguirre, M. High Global Antioxidant Protection and Stimulation of the Collagen Synthesis of New Anti-Aging Product Containing an Optimized Active Mix. J. Cosmet. Dermatol. 2022, 21, 3993–4000. [Google Scholar] [CrossRef] [PubMed]
- Ebad Sichani, M.R.; Farid, M.; Khorasgani, E.M. Histomorphological Examination of Skin Wound Healing under the Effect of Avocado Oil in Wistar Rats. Acta Vet. Eurasia 2021, 47, 121–128. [Google Scholar] [CrossRef]
- Naeimifar, A.; Ahmad Nasrollahi, S.; Samadi, A.; Talari, R.; Sajad Ale-Nabi, S.; Massoud Hossini, A.; Firooz, A. Preparation and Evaluation of Anti-Wrinkle Cream Containing Saffron Extract and Avocado Oil. J. Cosmet. Dermatol. 2020, 19, 2366–2373. [Google Scholar] [CrossRef] [PubMed]
- Rini; Novelina; Azhar, A.; Nanda, R.F.; Syukri, D. Effect of Avocado (Persea americana Mill.) Seed Oil on Lip Balm Characteristics. Asian J. Plant Sci. 2023, 22, 651–664. [Google Scholar] [CrossRef]
- Kiattisin, K.; Srithongchai, P.; Jaiyong, W.; Boonpisuttinant, K.; Ruksiriwanich, W.; Jantrawut, P.; Sainakham, M. Preparation and Characterization of Ultrasound-Assisted Nanoemulsions Containing Natural Oil for Anti-Aging Effect. J. Agric. Food Res. 2024, 15. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Falé, Z.; Santos, L. Sustainability in Skin Care: Incorporation of Avocado Peel Extracts in Topical Formulations. Molecules 2022, 27, 1782. [Google Scholar] [CrossRef]
- Moldovan, M.L.; Ionuț, I.; Bogdan, C. Cosmetic Products Containing Natural Based Emollients for Restoring Impaired Skin Barrier: Formulation and In Vivo Evaluation. Farmacia 2021, 69, 129–134. [Google Scholar] [CrossRef]
- Lin, M.-H.; Khnykin, D. Fatty Acid Transporters in Skin Development, Function and Disease. Biochim. Biophys. Acta 2014, 1841, 362–368. [Google Scholar] [CrossRef]
- Nasri, C.; Halabi, Y.; Aghzaf, S.; Nounah, I.; Brunel, M.; Oubihi, A.; El-Guorrami, O.; Harhar, H.; Costa, J.; Tabyaoui, M. Seven Persea americana Varieties Essential Oils Comparison: Chemical Composition, Toxicity, Antibacterial, and Antioxidant Activities. Biocatal. Agric. Biotechnol. 2022, 44, 102468. [Google Scholar] [CrossRef]
- Loch, C.d.O.; Souza, P.d.C.; Frigieri, I.; Isaac, V.; Chiavacci, L.A.; Oshiro Júnior, J.A.; Chiari-Andréo, B.G. Development and Characterization of Highly Structured Rinse-off Conditioners Containing Vegetable Oils. J. Dispers. Sci. Technol. 2022, 43, 1283–1290. [Google Scholar] [CrossRef]
- Avalos-Viveros, M.; Santolalla-Vargas, C.-E.; Santes-Hernández, V.-F.; Martínez-Flores, H.-E.; Torres-García, E.; López-Meza, J.-E.; Virgen-Ortiz, J.-J.; Pérez-Calix, E.; García-Pérez, M.-E. Valorization of Avocado Peels by Conventional Extraction and Hydrothermal Carbonization for Cosmeceutical Applications. Sustain. Chem. Pharm. 2023, 36, 101335. [Google Scholar] [CrossRef]
- Deuschle, V.C.K.N.; Brusco, I.; Piana, M.; Faccin, H.; de Carvalho, L.M.; Oliveira, S.M.; Viana, C. Persea americana Mill. Crude Extract Exhibits Antinociceptive Effect on UVB Radiation-Induced Skin Injury in Mice. Inflammopharmacol 2019, 27, 323–338. [Google Scholar] [CrossRef]
Nutrients * | Avocado Fruit 1 | Avocado By-Products 1 |
---|---|---|
Ash | 0.57–10.80 | 1.6 |
Carbohydrates | 4.77–8.89 | 67.5 |
Lipids | 51.83–72.34 | 1.41–4.12 |
Protein | 4.80–8.61 | 3.4 |
Total dietary fiber | 6.03–7.24 | 21.6 |
Total insoluble fiber | - | 18.7 |
Vitamins | 0.02–0.04 | 1.3–6 |
References | [25,26,27,28,29,30] | [26,31] |
Phenolic and Flavonoids Compounds (GAE) *1 | Avocado Fruit | Avocado By-Products |
---|---|---|
TPC | 0.825–5.6 | 66.1–4.250 |
Chlorogenic acid | 0–10.77 | 0–34.96 |
p-hydrobenzoic acid | 18.25–25.34 | 0–11.19 |
Caffeic acid | 4.63–10.19 | 0–4.53 |
Benzoic acid | - | 128.51–147.73 |
Catechin | 58.67–121.61 | 2.58–2.62 |
Epigallocatechin | - | 0.82 |
Rutinoside–3–O–quercetin | - | 0.35–0.45 |
Glycoside–3–O–kaempferol | - | 0.87–0.93 |
Quercetin | 5.06–8.84 | 2.72–2.9 |
Gallic acid | 0.007–32.75 | 0.004–9.22 |
References | [26,42,43,44,45] | [26,31,42,45] |
Antioxidant Capacity * | Avocado Fruit | Avocado By-Products |
TAAc 2 | 0.24–0.27 | 22.01–63.54 |
ABTs 3 | 0.23–0.44 | 63.67–155.04 |
DPPH 4 | 0.09–0.58 | 94.56–182.66 |
FRAP 4 | 0.05–0.18 | 1.74–4.38 |
References | [26,46] | [47] |
Lipid Composition 1 | Avocado Fruit | Avocado By-Products | Avocado Oil | |
---|---|---|---|---|
Total lipids | 15.04–18.61 | 0.38–1.595 | 99.88–99.89 | |
Fatty acid Composition 1 | Avocado fruit/pulp | Avocado by-products (s/p) | Avocado oil (g/100 g) | |
(peel) | (seed) | |||
SFA | 19.55–24.89 | 17.27–25.198 | 16.88–34.99 | 12.54–30.51 |
UFA | 61.94–80.12 | 66.43–82.508 | 56.539–95.28 | 53.18–76.86 |
MUFA | 51.91–68.99 | 47.67–66.478 | 22.735–45.76 | 45.39–86.93 |
PUFA | 10.03–20.06 | 10.97–27.48 | 30.4–49.52 | 7.05–67.95 |
Palmitic acid (16:0) | 19.33–26.51 | 16.42–23.66 | 16.78–26.21 | 11.79–29.84 |
Stearic acid (18:0) | 0.47–0.73 | 0.62–1.583 | 0.10–5.79 | 0.053–3.7 |
Cis-Oleic acid (18:1) | 48.5–57.45 | 48.29–60.06 | 27.04–42.87 | 33.33–68.14 |
Linoleic acid (18:2) | 11.12–19.04 | 10.97–24.84 | 22.21–39.12 | 7.05–17.15 |
Palmitoleic acid (16:1) | 8.48–13.25 | 7.684–9.938 | 3.519–6.430 | 1.22–14.58 |
GLA (18:3 ω6) | 9.57–19.2 | 16.93–27.04 | 10.97–43.05 | - |
ALA (18:3 ω3) | 0.38–1.17 | 0.92–1.62 | 0.50–6.47 | 0.69–1.18 |
References | [27,42,43,48] | [42,43] | [15,49,50,51,52,53] | |
Vitamins Composition 1 | Avocado fruit mg kg−1 | Avocado by-products (mg/kg) | Avocado oil (mg/kg) | |
(peel) | (seed) | |||
a–carotene | - 2 | 2.7 (FW) | - 2 | 0.7–0.9(DW) |
b-carotene (pro-vitamin A) | - 2 | 1.35 (FW) | - 2 | 0.7–0.9(DW) |
Lutein | - 2 | 0.322–0.324 | 0.322–0.324 | 0.99–1.25(DW) |
Total carotenoids | 6.47–9.34 (FW) | 13.50–17.90 (FW) | 1.37–7.2 (FW) | 15.21–32.78 (FW) 33.3–35.8 (DW) |
α-tocopherols | 17.31–58.07 | 30.32–777.8 | 301.7–309.1 | 86.13–885.4 |
β-tocopherols | - 2 | - 2 | - 2 | 2.44–126.5 |
γ-tocopherols | 25.89–27.43 | 42.19–44.27 | - 2 | 8.93–151.1 |
δ-tocopherols | 6.28–6.86 | 78.04–769.7 | 709.4–721.6 | 26.03–110.3 |
Total tocopherols | 55.34–59.48 | 2302.6–2310.4 | 662–1380 | 125.57–1273.3 |
References | [28,42,45,54] | [31,42,45,54,55,56] | [30,42,49,50,57,58,59] * | |
Vitamins composition 1 | Avocado fruit | Avocado by-products(%/DW) | Avocado oil(mg/kg) | |
Tannins | - | 0.15–0.17 | - | |
References | - | [31] | - |
Functional Food | Bio-Functional Ingredients | Amount | Aims | Results | References |
---|---|---|---|---|---|
Bread | Avocado Pulp Powder | 5–25% |
|
| [127] |
| |||||
Avocado Waste Powder | 5% |
|
| [129] | |
Cookies | Avocado Puree | 25%, 50%, 75% 100% |
|
| [128] |
Avocado Seed Powder | 6%, 12%, 18% |
|
| [31] | |
| |||||
Yogurt | Nano-Avocado Seed Powder | 1.0, 2.0, and 3.0% |
|
| [130] |
| |||||
Avocado Oil | n.d. * |
|
| [132] | |
Beverages | Avocado Seed Powder Extract | n.d. |
|
| [131] |
Baked Products | Avocado Seed Powder | 15, 30, or 50% |
|
| |
Mayonnaise | Avocado Peel Extract | 0.5% and 1.0% of extract |
|
| [133] |
| |||||
Pork sausages | Avocado Waste Water Powder | 0.2% |
|
| [65] |
Bio-Functional Ingredients | Activity | Application | References |
---|---|---|---|
Avocado Oil | Increase in collagen synthesis, reduction in the number of inflammatory cells, accelerating coagulation and regeneration of epithelium | Wound healing | [135] |
Reduction in wound area compared to control group | |||
Avocado oil | One-grade improvement in GIAS (Global Aesthetic Improvement Scale) in 30% and 45% of participants after 6 and 12 weeks, respectively | Anti-wrinkle cream | [136] |
Significant increase in net elasticity (R5) and gross elasticity (R2) after 12 weeks | |||
Avocado oil | Improvement in skin barrier function | Two cosmetic creams for restoring the epidermal barrier | [140] |
Increase in hydration level and transepidermal water loss (TEWL) | |||
Avocado Peel Extracts | Antioxidant and antibacterial agents | Moisturing cream formulations | [139] |
Capacity of integration in both oil-in-water and water-in-oil formulations | |||
Substitution potential of synthetic preservatives | |||
Avocado leaf essential oils | Moderate antibacterial and antioxidative action | Active ingredient in cosmetics | [142] |
Potential source of bioactive phytochemicals for medical and cosmetic use | |||
Avocado seed oil | Potential moisture-increase properties via unsaturated fatty acids profile | Lip balm | [137] |
Avocado oil | Lowest peroxide and IC50 value and highest antioxidative activity in this study | Nano-emulsions | [138] |
Moderate anti-aging activity | |||
Formulation achieved small droplet size and high zeta potential | |||
Avocado oil | Possible increase of structure in the system with an oily phase of vegetable oil | Conditioners | [143] |
Avocado bio-oil (HTC-derived) | Constitution of ethanolic extracts and liquid phase with the highest antioxidant ability | Sustainable cosmeceuticals | [144] |
Higher inhibition effect on tyrosinase and elastase activities in its heavy bio-oils than the control | |||
Capacity for hyperpigmentation and skin flaccidity management | |||
Avocado leaf extract | Formulated gel (3% ALE) prevented the UVB irradiation-induced mechanical allodynia after the 2nd and 3rd day post irradiation. | Post-sunburn pain relief | [145] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marra, A.; Manousakis, V.; Zervas, G.P.; Koutis, N.; Finos, M.A.; Adamantidi, T.; Panoutsopoulou, E.; Ofrydopoulou, A.; Tsoupras, A. Avocado and Its By-Products as Natural Sources of Valuable Anti-Inflammatory and Antioxidant Bioactives for Functional Foods and Cosmetics with Health-Promoting Properties. Appl. Sci. 2024, 14, 5978. https://doi.org/10.3390/app14145978
Marra A, Manousakis V, Zervas GP, Koutis N, Finos MA, Adamantidi T, Panoutsopoulou E, Ofrydopoulou A, Tsoupras A. Avocado and Its By-Products as Natural Sources of Valuable Anti-Inflammatory and Antioxidant Bioactives for Functional Foods and Cosmetics with Health-Promoting Properties. Applied Sciences. 2024; 14(14):5978. https://doi.org/10.3390/app14145978
Chicago/Turabian StyleMarra, Anita, Vasileios Manousakis, Georgios Panagiotis Zervas, Nikolaos Koutis, Marios Argyrios Finos, Theodora Adamantidi, Ellie Panoutsopoulou, Anna Ofrydopoulou, and Alexandros Tsoupras. 2024. "Avocado and Its By-Products as Natural Sources of Valuable Anti-Inflammatory and Antioxidant Bioactives for Functional Foods and Cosmetics with Health-Promoting Properties" Applied Sciences 14, no. 14: 5978. https://doi.org/10.3390/app14145978
APA StyleMarra, A., Manousakis, V., Zervas, G. P., Koutis, N., Finos, M. A., Adamantidi, T., Panoutsopoulou, E., Ofrydopoulou, A., & Tsoupras, A. (2024). Avocado and Its By-Products as Natural Sources of Valuable Anti-Inflammatory and Antioxidant Bioactives for Functional Foods and Cosmetics with Health-Promoting Properties. Applied Sciences, 14(14), 5978. https://doi.org/10.3390/app14145978