Geothermal Anomalies and Coupling with the Ionosphere before the 2020 Jiashi Ms6.4 Earthquake
Abstract
:1. Introduction
2. Regional Tectonic Background
3. Observational Data Sources and Processing
3.1. Source and Processing Method of Rock Geothermal Observation Data
3.2. Ionospheric Data Sources and Processing Methods
4. Changes in Rock Temperature before the Earthquake
4.1. Fluctuations Immediately Preceding the Earthquake
4.2. Short-Term Changes
5. Ionospheric Observation Anomalies
6. Loading/Unloading Response Ratio Analysis
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geller, R.J. Earthquake Prediction: A critical review. Geophys. J. Int. 1997, 131, 425–450. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.W.; Peter, M.S. California foreshock sequences suggest aseismic triggering process. Geophys. Res. Lett. 2013, 40, 2602–2607. [Google Scholar] [CrossRef]
- Ma, S.L.; Ma, J.; Liu, L.Q. Experimental evidence for seismic nucleation phase. Chin. Sci. Bull. 2002, 47, 769–773. [Google Scholar] [CrossRef]
- Dong, L.J.; Luo, Q.M. Investigations and new insights on earthquake mechanics from fault slip experiments. Earth-Sci. Rev. 2022, 228, 104019. [Google Scholar] [CrossRef]
- Beeler, N.M. Review of the Physical Basis of Laboratory-Derived Relations for Brittle Failure and Their Implications for Earthquake Occurrence and Earthquake Nucleation. Pure Appl Geophys. 2004, 161, 1853–1876. [Google Scholar] [CrossRef]
- Sobolev, G.A. Seismological Evidence for the Nucleation of Two Strong Earthquakes. Izv. Phys. Solid Earth. 2008, 44, 873–882. [Google Scholar] [CrossRef]
- Chi, S.L.; Zhang, J.; Chi, Y. The Transformation of Strain Data from Self-Consistent to Incongruent and Earthquake Nucleation before the Wenchuan, Ludian and Kangding Earthquakes. Recent Dev. World Seismol. 2014, 12, 3–13. (In Chinese) [Google Scholar]
- Ma, Y.C.; Yan, R.; Wang, G.C.; Yu, H.Z.; Li, M.X.; Ding, Z.H.; Zhang, Z.G. The Relationship between Groundwater Level Change and Earthquake Nucleation Process before Tangshan M7.8 Earthquake in 1976. Chin. J. Geophys. 2022, 65, 1325–1335. (In Chinese) [Google Scholar]
- Yu, H.Z.; Shen, Z.K.; Wan, Y.G.; Zhu, Q.Y.; Yin, X.C. Increasing Critical Sensitivity of the Load/Unload Response Ratio before Large Earthquakes with Identified Stress Accumulation Pattern. Tectonophysics 2006, 428, 87–94. [Google Scholar] [CrossRef]
- Zhang, G.W.; Li, Y.J.; Hu, X.P. Nucleation mechanism of the 2021 Mw 7.4 Maduo earthquake, NE Tibetan Plateau: Insights from seismic tomography and numerical modeling. Tectonophysics 2022, 839, 229528. [Google Scholar] [CrossRef]
- Ross, S.S. The role of stress transfer in earthquake occurrence. Nature 1999, 402, 605–609. [Google Scholar]
- Yang, X.Q.; Lin, W.R.; Osamu, T.D.; Zeng, X.; Yu, C.H.; Encho, Y.; Li, H.B.; Wang, H. Experimental and numerical investigation of the temperature response to stress changes of rocks. J. Geophys. Res. Solid Earth 2017, 122, 5101–5117. [Google Scholar] [CrossRef]
- Chen, S.Y.; Liu, P.X.; Guo, Y.S.; Liu, L.Q.; Ma, J. An experiment on temperature variations in sandstone during biaxial loading. Phys. Chem. Earth Parts A/B/C 2015, 85-86, 3–8. [Google Scholar] [CrossRef]
- Liu, P.X.; Chen, S.Y.; Liu, Q.Y.; Gao, Y.S.; Ren, Y.Q.; Zhuo, Y.Q.; Feng, J.H. A Potential Mechanism of the Satellite Thermal Infrared Seismic Anomaly Based on Change in Temperature Caused by Stress Variation: Theoretical, Experimental and Field Investigations. Remote Sens. 2022, 14, 5697. [Google Scholar] [CrossRef]
- Chen, S.Y.; Liu, L.Q.; Liu, P.X.; Ma, J.; Chen, G.Q. Theoretical and Experimental Study on the Relationship between Stress-Strain and Temperature Response. Sci. China (Earth Sci.) 2009, 39, 1446–1455. (In Chinese) [Google Scholar]
- Zoran, M. MODIS and NOAA-AVHRR1 and Surface Temperature Data Detect a Thermal Anomaly Preceding the 11 March 2011 Tohoku Earthquake. Int. J. Remote Sens. 2012, 33, 6805–6817. [Google Scholar] [CrossRef]
- Qiang, Z.J.; Xu, X.D.; Dian, C.G. Case 27 thermal infrared anomaly precursor of impending earthquakes. Pure Appl. Geophys. 1997, 149, 159–171. [Google Scholar] [CrossRef]
- Green, H.W. Phase-Transformation-Induced Lubrication of Earthquake Sliding. Philos. Trans. A Math. Phys. Eng. Sci. 2017, 375, 20160008. [Google Scholar] [CrossRef] [Green Version]
- Yasuyu, K.; Jim, M.; Ryo, F.; Hisao, I.; Takashi, Y.; Setsuro, N.; Ma, K.F. Heat signature on the Chelungpu fault associated with the 1999 Chi-Chi, Taiwan earthquake. Geophys. Res. Lett. 2006, 33, L14306. [Google Scholar]
- Chen, M.H.; Deng, Z.H.; Ma, X.J. Probable Surface Latent Heat Flux Anomalies before the 2010 Chile Ms8.8 Earthquake and Its Relationship to the Variations of Surface Temperature. Chin. J. Geophys. 2011, 54, 1738–1744. (In Chinese) [Google Scholar]
- Ma, X.J.; Deng, Z.H.; Chen, M.H.; Yang, Z.Z.; Gao, X.L. Thermal Infrared Anomalies before Earthquakes Seen from the Relationship between Satellite Infrared Brightness Temperature and Terrestrial Heat Flow. Chin. J. Geophys. 2009, 52, 2746–2751. (In Chinese) [Google Scholar]
- Chen, S.Y.; Ma, J.; Liu, P.X.; Liu, L.Q.; Hu, X.Y. Exploring Co-seismic Thermal Response of Wenchuan Earthquake by Using Land Surface Temperatures of Terra and Aqua Satellites. Chin. J. Geophys. 2013, 56, 3788–3799. (In Chinese) [Google Scholar]
- Choudhury, S.; Dasgupta, S.; Saraf, A.K.; Panda, S. Remote Sensing Observations of Pre-earthquake Thermal Anomalies in Iran. Int. J. Remote Sens. 2006, 27, 4381–4396. [Google Scholar] [CrossRef]
- Guo, G.M. Studying Thermal Anomaly before Earthquake with NCEP Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 8561–8563. [Google Scholar]
- Ma, J.; Ma, S.P.; Liu, P.X.; Liu, L.Q. Thermal field indicators for identifying active fault and its instability from laboratory experiments. Seismol. Geol. 2008, 30, 363–382. (In Chinese) [Google Scholar]
- Feng, J.; Remash, P.S.; Shen, X.H. Land-Atmosphere-Meteorological coupling associated with the 2015 Gorkha (M 7.8) and Dolakha (M 7.3) Nepal earthquakes. Geomat. Nat. Hazards Risk 2019, 10, 1267–1284. [Google Scholar]
- Zhang, X.; Zhang, Y.S.; Tian, X.F.; Zhang, Q.L.; Tian, J. Tracking of thermal infrared anomaly before one strong earthquake in the case of Ms6.2 earthquake in Zadoi, Qinghai on 17 October 2016. J. Phys. Conf. Ser. 2017, 910, 012048. [Google Scholar] [CrossRef]
- Liu, T.Q.; Zhu, Q.J.; Su, Y.P.; Zhang, X.Y. Analysis of Influence of Bedrock Rupture on Earthquake in Tangshan City. Chin. J. Rock Mech. Eng. 2004, 10, 1765–1769. (In Chinese) [Google Scholar]
- Chen, S.Y.; Liu, P.X.; Liu, L.Q.; Ma, J. Variation of Ground Temperature in Kangding before the Lushan Earthquake. Seismol. Geol. 2013, 35, 634–640. (In Chinese) [Google Scholar]
- Chen, S.Y.; Liu, P.X.; Liu, L.Q.; Ma, J. Bedrock Temperature as a Potential Method for Monitoring Change in Crustal Stress: Theory, In Situ Measurement, and a Case History. J. Asian Earth Sci. 2016, 123, 22–33. [Google Scholar] [CrossRef]
- Chen, S.Y.; Liu, P.X.; Guo, Y.S.; Liu, L.Q.; Ma, J. Co-Seismic Response of Bedrock Temperature to the Ms6.3 Kangding Earthquake on 22 November 2014 in Sichuan, China in Sichuan. Pure Appl. Geophys. 2019, 176, 97–117. [Google Scholar] [CrossRef]
- Zeng, D.; Chen, L.C.; Chen, S.Y.; Li, D.Y. Reanalysis of Bedrock Geothermal Changes Prior to the 2013 Lushan Ms 7.0 Earthquake. Seismol. Geol. 2017, 39, 994–1006. (In Chinese) [Google Scholar]
- Chen, C.H.; Sun, Y.Y.; Lin, K.; Liu, J.; Wang, Y.; Gao, Y.; Zhang, D.; Xu, R.; Chen, C. The LAI Coupling Associated with the M6 Luxian Earthquake in China on 16 September 2021. Atmosphere 2021, 12, 1621. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Zhang, X.; Shen, X. Indications of Ground-Based Electromagnetic Observations to A Possible Lithosphere–Atmosphere–Ionosphere Electromagnetic Coupling before the 12 May 2008 Wenchuan Ms8.0 Earthquake. Atmosphere 2019, 10, 355. [Google Scholar] [CrossRef] [Green Version]
- Carbone, V.; Piersanti, M.; Materassi, M.; Battiston, R.; Lepreti, F.; Ubertini, P. A Mathematical Model of Lithosphere–Atmosphere Coupling for Seismic Events. Sci. Rep. 2021, 11, 8682. [Google Scholar] [CrossRef]
- Zhao, B.B.; Qian, C.; Yu, H.Z.; Liu, J.; Maimaitusun, N.; Yu, C.; Zhang, X.; Ma, Y. Preliminary Analysis of Ionospheric Anomalies before Strong Earthquakes in and around Mainland China. Atmosphere 2022, 13, 410. [Google Scholar] [CrossRef]
- Hayakawa, M.; Izutsu, J.; Schekotov, A.; Yang, S.-S.; Solovieva, M.; Budilova, E. Lithosphere–Atmosphere–Ionosphere Coupling Effects Based on Multiparameter Precursor Observations for February–March 2021 Earthquakes (M~7) in the Offshore of Tohoku Area of Japan. Geosciences 2021, 11, 481. [Google Scholar] [CrossRef]
- Chen, S.Y.; Song, C.Y.; Yan, W.; Liu, Q.Y.; Liu, P.X.; Zhuo, Y.Q.; Zhang, Z.H. Variation of Bedrock Temperature before and after the Jiashi Ms6.4 Earthquake on 19 January 2020. Seismol. Geol. 2021, 43, 447–458. (In Chinese) [Google Scholar]
- Jia, D.H.; Zhao, B.B.; Yu, H.Z.; Ma, Y.C.; Xiang, Y.; Yan, W. Multi Field Coupled Coseismic Changes of the Jiashi Ms = 6.4 Earthquake of 19 January 2020, Based on Ground Temperature Observation. Atmosphere 2022, 13, 154. [Google Scholar] [CrossRef]
- Ma, J.; Guo, Y.S.; Sherman, S.I. Accelerated synergism along a fault: A possible indicator for an impending major earthquake. Geodyn. Tectonophys. 2014, 5, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Gu, X.L.; Liu, T.; Chen, F.; Ding, G.F.; Du, J.Y. Genetic types and heat control models of geothermal resources in Xinjiang. XinJiang Geol. 2015, 33, 275–278. (In Chinese) [Google Scholar]
- Yang, X.P.; Ran, Y.K.; Song, F.M.; Xu, X.W.; Chen, J.W.; Min, w.; Han, Z.J.; Chen, L.C. The Analysis for Crust Shortening of Kalpin Thrust Tectonic Zone Southwestern Tianshan Xinjiang China. Seismol. Geol. 2006, 28, 194–204. (In Chinese) [Google Scholar]
- Zhu, Z.G.; Liu, L.; Gao, R.; Li, G.R. Characteristics of Crustal Deformation before the 2020 Jiashi Ms6.4 Earthquake Based on GNSS. Inland Earthq. 2021, 35, 354–362. (In Chinese) [Google Scholar]
- Wang, Z.T.; Zhang, H.; Meng, Q.; Shi, Y.L. Finite Element Simulation of Deformation and Stress Changes of Kalpin-Kemin Fault System in the Southwest Tianshan Orogenic Belt. Sci. China Earth Sci. 2022, 65, 863–873. [Google Scholar] [CrossRef]
- Guo, Z.; Gao, X.; Lu, Z. Relocation and Focal Mechanism of the January 19 2020 Jiashi M6.4 Earthquake in Xinjiang. Seismol. Geol. 2021, 43, 345–356. (In Chinese) [Google Scholar]
- Xu, X.W.; Zhang, X.K.; Ran, Y.K.; Cui, X.F.; Ma, W.T.; Shen, J.; Yang, X.P.; Han, Z.J.; Song, F.M.; Zhang, L.F. The Preliminary Study on Seismogenics Structure of the Bachu-Jiashi Earthquake (Ms6.8) in the Southern Tianshan. Seismol. Geol. 2006, 28, 161–178. (In Chinese) [Google Scholar]
- Xu, Y.; Liu, F.T.; Liu, J.H.; Sun, R.M. Crustal Structure and Tectonic Environment of Strong Earthquakes in the Tianshan Earthquake Belt. Chin. J. Geophys. 2000, 43, 184–193. (In Chinese) [Google Scholar] [CrossRef]
- Li, J.; Qiao, X.J.; Yang, S.M.; Nie, Z.S.; Wang, D.J.; Zou, R.; Ding, K.H.; Wang, Q. Three-Dimensional Displacement Field and Fault Dislocation Model on the Surface of Southwest Tianshan Mountains. Chin. J. Geophys. 2015, 58, 3517–3529. (In Chinese) [Google Scholar]
- Jiang, J.; Li, S.L.; Zhang, Y.B.; Pan, H.W.; Sun, S.A.; Che, S. Earthquake Precursor Information Processing and Software System; Earthquake Press: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Li, M.; Michel, P. Statistical analysis of the ionospheric ion density recorded by DEMETER in the epicenter areas of earthquakes as well as in their magnetically conjugate point areas. Adv. Space Res. 2018, 61, 974–984. [Google Scholar] [CrossRef]
- Zhu, F.Y.; Lin, J.; Su, F.F.; Zhou, Y.Y. A spatial analysis of the ionospheric TEC anomalies prior to M7.0+ earthquakes during 2003–2014. Adv. Space Res. 2016, 58, 1732–1738. [Google Scholar] [CrossRef]
- Ma, J.; Sherman, S.I.; Guo, Y.S. Identification of Sub-instable Stress State Based on Experimental Study of Evolution of the Temperature Field during Stick-Slip Instability on a 5°Bending Fault. Sci. China (Earth Sci.) 2012, 42, 633–645. (In Chinese) [Google Scholar]
- Ren, Y.Q.; Liu, P.X.; Ma, J.; Chen, S.Y. Experimental Study One Evolution of Thermal Field of En Echelon Fault during the Sub-instability Stage. Chin. J. Geophys. 2013, 56, 2348–2357. (In Chinese) [Google Scholar]
- Ren, Y.Q.; Ma, J.; Liu, P.; Chen, S.Y. Experimental Study on Thermal Field Evolution and Instability Identification of Flat Faults during Stick-Slip Process. Seismol. Geol. 2016, 38, 65–76. (In Chinese) [Google Scholar]
- De, L.G.; Di, C.G.; Tallini, M. A record of changes in the Gran Sasso groundwater before, during and after the 2016 Amatrice earthquake, central Italy. Sci Rep. 2018, 8, 15982. [Google Scholar]
- Yin, X.C.; Mora, P.; Peng, K.Y.; Wang, Y.C.; Weatherly, D. Load-Unload Response Ratio and Accelerating Moment/Energy Release, Critical Region Scaling and Earthquake Prediction. Pure Appl. Geohys. 2002, 159, 2511–2524. [Google Scholar] [CrossRef]
- Valery, K.P.; Masashi, H.K.; Yuri, Y.P.; Georgy, L. AGW as a seismo-ionospheric coupling responsible agent. Phys. Chem. Earth, Parts A/B/C 2009, 34, 485–495. [Google Scholar]
- He, C.R.; Zhang, L.; Chen, Q.F. Characteristics of the Final Stage of Earthquake Nucleation. Figshare 2021. [Google Scholar] [CrossRef]
- Yu, H.Z.; Zhu, Q.Y. A Probabilistic Approach for Earthquake Potential Evaluation Based on the Load/Unload Response Ratio Method. Concurr. Computat. Pract. Exper. 2010, 22, 1520–1533. [Google Scholar] [CrossRef]
- Zhang, X.T.; Song, Z.P.; Li, G. Temporal and Spatial Evolution of Precursory Anomalies of the Jiuzhaigou Ms7.0 Earthquake and Its Analysis. Earthq. Res. China 2018, 34, 772–780. (In Chinese) [Google Scholar]
- Shimojo, K.; Enescu, B.; Yagi, Y.; Takeda, T. Nucleation Process of the 2011 Northern Nagano Earthquake from Nearby Seismic Observations. Sci. Rep. 2021, 11, 8143. [Google Scholar] [CrossRef]
- Nie, X.H.; Liu, J.M.; Xiang, Y.; Gao, R.; Zhang, L.L. Analysis of Seismic Activity Characteristics before the Jiashi Ms6.4 Earthquake in Xinjiang on January 19, 2020. Inland Earthq. 2020, 34, 10–19. (In Chinese) [Google Scholar]
- Li, R.; Yang, L.; Zhao, L.; Ding, Y.; Sun, X.X.; Chen, L. Variation characteristics of gravity field before the Jiashi Ms 6.4 earthquake in Xinjiang on January 19, 2020. Inland Earthq. 2020, 34, 95–102. (In Chinese) [Google Scholar]
- Yan, R.; Parrot, M.; Pinçon, J.L. Statistical study on variations of the ionospheric ion density observed by DEMETER and related to seismic activities. J. Geophys. Res. Space Phys. 2017, 122, 12421–12429. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, D.; Yu, H.; Zhao, B.; Ma, Y. Geothermal Anomalies and Coupling with the Ionosphere before the 2020 Jiashi Ms6.4 Earthquake. Appl. Sci. 2023, 13, 3019. https://doi.org/10.3390/app13053019
Jia D, Yu H, Zhao B, Ma Y. Geothermal Anomalies and Coupling with the Ionosphere before the 2020 Jiashi Ms6.4 Earthquake. Applied Sciences. 2023; 13(5):3019. https://doi.org/10.3390/app13053019
Chicago/Turabian StyleJia, Donghui, Huaizhong Yu, Binbin Zhao, and Yuchuan Ma. 2023. "Geothermal Anomalies and Coupling with the Ionosphere before the 2020 Jiashi Ms6.4 Earthquake" Applied Sciences 13, no. 5: 3019. https://doi.org/10.3390/app13053019
APA StyleJia, D., Yu, H., Zhao, B., & Ma, Y. (2023). Geothermal Anomalies and Coupling with the Ionosphere before the 2020 Jiashi Ms6.4 Earthquake. Applied Sciences, 13(5), 3019. https://doi.org/10.3390/app13053019