Touch Matters: The Impact of Physical Contact on Haptic Product Perception in Virtual Reality
Abstract
:1. Introduction
1.1. State of the Research Field and Research Hypotheses
- H1: Evaluations of the product’s characteristics are influenced by the presentation means.
- H2: The presentation means allowing a product to be touched or not influence the evaluation of the physical characteristics of material products with high haptic importance.
- H3: A material product with great haptic importance is most liked when it is presented by means that allow it to be touched.
- H4: Adding haptic stimuli to a product as a means of increasing users’ sense of presence.
- H5: The presenting of a product by means capable of eliciting more presence can favor better product evaluations.
- H6: The purchase intention of a material product with high haptic importance is greater when it is presented in a means that allows physical contact.
1.2. Main Aim of the Work and Principal Conclusions
2. Materials and Methods
2.1. Experimental Study
- Room 1 (R). A square set was built with white panels that simulated the walls of a room, and the real chair stood in the middle. White light was vertically projected onto the chair from the ceiling. Each panel measured 2.60 m long, except for one that measured only 2 m to leave an opening so that participants could enter and leave the setting. All the white panels were 2 m high. The participants could move around the chair, touch it, and sit on it.
- Room 2 (VR). The chair and Room 1 setting were modelled and rendered with the same details, textures, and lighting. It was presented in VR. The participants could move around the chair, but not touch it or sit on it because there was no physical chair in this room.
- Room 3 (VRPH). The scene was the same as in Room 2 and was presented in VR, but a physical chair was added by synchronizing its position with the viewed 3D model so that the participants could touch the chair and sit on it. For a correct use of passive haptics in VR, two criteria must be met: similarity between haptic proxies and virtual objects in both material and geometrical properties, and co-location, i.e., both must share the same position and alignment [44,45].
- Room 4 (V). The same scene was rendered on a tablet screen. The chair and the scene automatically turned at constant speed in relation to the vertical axis that passed through the center of the chair. The scene took 12 s to turn 360 degrees. The participants could watch the animation, but could not interact with it.
- Room 5 (3Di). The same scene rendered in Room 4 was created and presented on another tactile screen with the same characteristics. In this case, the participants could touch the screen and slide their fingers to the right or left, turning the scene around the vertical axis that passed through the center of the chair. This allowed them to view the chair from multiple angles.
2.2. Semantic Differential
2.3. Stimulus
2.4. Sampling
2.5. Experiment Protocol
2.5.1. Phase A (Room 1: R, Room 2: VR, Room 3: VRPH)
- Stage A1. Welcome room (2 min).
- Stage A2. Room 1, 2 or 3 (3 min in each room). The viewing order was alternated to balance any possible resulting effects.
- Stage A3. Survey room (5 min).
2.5.2. Phase B (Room 4: V, Room 5: 3Di)
- Stage B1. Welcome room (2 min).
- Stage B2. Room 4 or 5 (3 min in each room). The viewing order was alternated to balance any possible resulting effects.
- Stage B3. Survey room (5 min).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chandna, V.; Salimath, M.S. Peer-to-peer selling in online platforms: A salient business model for virtual entrepreneurship. J. Bus. Res. 2018, 84, 162–174. [Google Scholar] [CrossRef]
- Cheba, K.; Kiba-Janiak, M.; Baraniecka, A.; Kołakowski, T. Impact of external factors on e-commerce market in cities and its implications on environment. Sustain. Cities Soc. 2021, 72, 103032. [Google Scholar] [CrossRef]
- Tran, L.T.T. Managing the effectiveness of e-commerce platforms in a pandemic. J. Retail. Consum. Serv. 2021, 58, 102287. [Google Scholar] [CrossRef]
- Guthrie, C.; Fosso-Wamba, S.; Brice Arnaud, J. Online consumer resilience during a pandemic: An exploratory study of e-commerce behavior before, during and after a COVID-19 lockdown. J. Retail. Consum. Serv. 2021, 61, 102570. [Google Scholar] [CrossRef]
- Solanki, M.S. A Review on Impact of COVID-19 on E-Commerce. In International Conference on Intelligent Emerging Methods of Artificial Intelligence & Cloud Computing. IEMAICLOUD 2021. Smart Innovation, Systems and Technologies; García Márquez, F.P., Ed.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Park, J.; Choi, J.; Rhee, C. Futuristic VR image presentation technique for better mobile commerce effectiveness. Virtual Real. 2021, 25, 341–356. [Google Scholar] [CrossRef]
- Jiang, Z.; Benbasat, I. The Effects of Presentation Formats and Task Complexity on Online Consumers’ Product Understanding. MIS Q. 2007, 31, 475–500. [Google Scholar] [CrossRef] [Green Version]
- Israel, K.; Zerres, C.; Tscheulin, D.K.; Buchweitz, L.; Korn, O. Presenting Your Products in Virtual Reality: Do not Underestimate Cybersickness. In HCI in Business, Government and Organizations. eCommerce and Consumer Behavior. HCII 2019. Lecture Notes in Computer Science; Fui-Hoon Nah, F., Siau, K., Eds.; Springer: Greer, SC, USA, 2019; pp. 206–224. ISBN 978-3-030-22334-2. [Google Scholar]
- Su, K.W.; Chen, S.C.; Lin, P.H.; Hsieh, C.I. Evaluating the user interface and experience of VR in the electronic commerce environment: A hybrid approach. Virtual Real. 2020, 24, 241–254. [Google Scholar] [CrossRef]
- Grewal, D.; Noble, S.M.; Roggeveen, A.L.; Nordfalt, J. The future of in-store technology. J. Acad. Mark. Sci. 2020, 48, 96–113. [Google Scholar] [CrossRef] [Green Version]
- Agost, M.J.; Vergara, M.; Bayarri, V. The Use of New Presentation Technologies in Electronic Sales Environments and Their Influence on Product Perception. In Human Interface and the Management of Information. Information Presentation and Visualization. HCII 2021. Lecture Notes in Computer Science; Yamamoto, S., Mori, H., Eds.; Springer: Cham, Switzerland, 2021; Volume 12765, pp. 3–15. ISBN 978-3-030-78321-1. [Google Scholar] [CrossRef]
- Peukert, C.; Pfeiffer, J.; Meißner, M.; Pfeiffer, T.; Weinhardt, C. Shopping in Virtual Reality Stores: The Influence of Immersion on System Adoption. J. Manag. Inf. Syst. 2019, 36, 755–788. [Google Scholar] [CrossRef]
- Su, K.W.; Liu, C.L.; Hsieh, C.I.; Chen, Z.R. The design criteria of virtual reality in e-commerce. In Proceedings of the 50th Nordic Ergonomics and Human Factors Society Conference, Elsinore, Denmark, 25–28 August 2019; Broberg, O., Seim, R., Eds.; DTU Management: Kongens Lyngby, Denmark, 2019; pp. 231–233. [Google Scholar] [CrossRef]
- Luna-Nevarez, C.; McGovern, E. The Rise of the Virtual Reality (VR) Marketplace: Exploring the Antecedents and Consequences of Consumer Attitudes toward V-Commerce. J. Internet Commer. 2021, 20, 167–194. [Google Scholar] [CrossRef]
- Martínez-Navarro, J.; Bigné, E.; Guixeres, J.; Alcañiz, M.; Torrecilla, C. The influence of virtual reality in e-commerce. J. Bus. Res. 2019, 100, 475–482. [Google Scholar] [CrossRef]
- Kalantari, S.; Neo, J.R.J. Virtual environments for design research: Lessons learned from use of fully immersive virtual reality in interior design research. J. Inter. Des. 2020, 45, 27–42. [Google Scholar] [CrossRef]
- Peck, J.; Childers, T.L. To Have and to Hold: The Influence of Haptic Information on Product Judgments. J. Mark. 2003, 67, 35–48. [Google Scholar] [CrossRef]
- Gerald, A.; Batliwala, R.; Ye, J.; Hsu, P.; Aihara, H.; Russo, S. A Soft Robotic Haptic Feedback Glove for Colonoscopy Procedures. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022), Kyoto, Japan, 23–27 October 2022; Available online: https://sites.bu.edu/mrl/files/2022/10/IROS22_Gerald_Haptic_Glove_OK_2-1.pdf (accessed on 23 December 2022).
- Peck, J.; Childers, T.L. Individual differences in haptic information processing: The “need for touch” scale. J. Consum. Res. 2003, 30, 430–442. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, H.; Feng, G.; Guo, F.; Lv, G.; Li, B. RealPot: An immersive virtual pottery system with handheld haptic devices. Multimed. Tools Appl. 2019, 78, 26569–26596. [Google Scholar] [CrossRef]
- See, A.R.; Choco, J.A.G.; Chandramohan, K. Touch, Texture and Haptic Feedback: A Review on How We Feel the World around Us. Appl. Sci. 2022, 12, 4686. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, M.; Shan, X.; Lee, C. Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat. Commun. 2022, 13, 5224. [Google Scholar] [CrossRef]
- Lindeman, R.W.; Sibert, J.L.; Hahn, J.K. Hand-held windows: Towards effective 2D interaction in immersive virtual environments. In Proceedings of the IEEE Virtual Reality, Washington, DC, USA, 13–17 March 1999; IEEE: Piscataway, NJ, USA, 1999; pp. 205–212, ISBN 0-7695-0093-5. [Google Scholar]
- Schwarz, N. Feelings-as-Information Theory. In Handbook of Theories of Social Psychology; Van Lange, P.A.M., Kruglanski, A.W., Higgins, E.T., Eds.; Sage Publications Ltd.: New York, NY, USA, 2012; Volume 1, pp. 289–308. [Google Scholar] [CrossRef]
- Krishna, A.; Schwarz, N. Sensory Marketing, Embodiment, and Grounded Cognition. J. Consum. Psychol. 2014, 24, 159–168. [Google Scholar] [CrossRef]
- Li, H.; Daugherty, T.; Biocca, F. The role of virtual experience in consumer learning. J. Consum. Psychol. 2003, 13, 395–407. [Google Scholar] [CrossRef]
- Velázquez, R.; Pissaloux, E.; Del-Valle-Soto, C.; Arai, M.; Valdivia, L.J.; Del Puerto-Flores, J.A.; Gutiérrez, C.A. Performance Evaluation of Active and Passive Haptic Feedback in Shape Perception. In Proceedings of the IEEE 39th Central America and Panama Convention (CONCAPAN XXXIX), Guatemala City, Guatemala, 20–22 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Rakhin, K.; Onkar, P.; Hayavadana, J. Understanding the Role of Perceptual Haptic Conditions on Design Decision. Proc. Des. Soc. 2022, 2, 2193–2202. [Google Scholar] [CrossRef]
- Zenner, A.; Kosmalla, F.; Ehrlich, J.; Hell, P.; Kahl, G.; Murlowski, C.; Marco Speicher, M.; Daiber, F.; Heinrich, D.; Krüger, A. A Virtual Reality Couch Configurator Leveraging Passive Haptic Feedback. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems; ACM: New York, NY, USA, 2020; pp. 1–8. ISBN 978-1-4503-6819-3/20/04. [Google Scholar]
- Sadowski, W.; Stanney, K. Presence in virtual environments. In Handbook of Virtual Environments: Design, Implementation, and Applications; Stanney, K.M., Ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 791–807. ISBN 9780429163937. [Google Scholar]
- Heeter, C. Being there: The subjective experience of presence. Presence Teleoperators Virtual Environ. 1992, 1, 262–271. [Google Scholar] [CrossRef]
- Witmer, B.G.; Singer, M.J. Measuring presence in virtual environments: A presence questionnaire. Presence Teleoperators Virtual Environ. 1998, 7, 225–240. [Google Scholar] [CrossRef]
- Usoh, M.; Catena, E.; Arman, S.; Slater, M. Using Presence Questionnaires in Reality. Presence Teleoperators Virtual Environ. 2000, 9, 497–503. [Google Scholar] [CrossRef]
- Schubert, T.; Friedmann, F.; Regenbrecht, H. The Experience of Presence: Factor Analytic Insights. Presence Teleoperators Virtual Environ. 2001, 10, 266–281. [Google Scholar] [CrossRef]
- Fröhlich, J.; Wachsmuth, I. The Visual, the Auditory and the Haptic—A User Study on Combining Modalities in Virtual Worlds. In Virtual Augmented and Mixed Reality. Designing and Developing Augmented and Virtual Environments; Shumaker, R., Ed.; Springer: Berlin, Germany, 2013; pp. 159–168. ISBN 978-3-642-39405-8. [Google Scholar]
- Feng, M.; Dey, A.; Lindeman, R.W. An initial exploration of a multi-sensory design space: Tactile support for walking in immersive virtual environments. In Proceedings of the 2016 IEEE Symposium on 3D User Interfaces (3DUI), Greenville, SC, USA, 19–20 March 2016; Thomas, B.H., Lindeman, R., Marchal, M., Eds.; IEEE: Piscataway, NJ, USA, 2016; pp. 95–104, ISBN 9781509008421. [Google Scholar]
- Gibbs, J.K.; Gillies, M.; Pan, X. A comparison of the effects of haptic and visual feedback on presence in virtual reality. Int. J. Hum.-Comput. Stud. 2022, 157, 102717. [Google Scholar] [CrossRef]
- Citrin, A.V.; Stem, J.D.E.; Spangenberg, E.R.; Clark, M.J. Consumer need for tactile input: An internet retailing challenge. J. Bus. Res. 2003, 56, 915–922. [Google Scholar] [CrossRef]
- McCabe, D.B.; Nowlis, S.M. The effect of examining actual products or product descriptions on consumer preference. J. Consum. Psychol. 2003, 13, 431–439. [Google Scholar] [CrossRef]
- Balaji, M.S.; Raghavan, S.; Jha, S. Role of tactile and visual inputs in product evaluation: A multisensory perspective. Asia Pac. J. Mark. Logist. 2011, 23, 513–530. [Google Scholar] [CrossRef]
- Keng, C.J.; Liao, T.H.; Yang, Y.I. The effects of sequential combinations of virtual experience, direct experience, and indirect experience: The moderating roles of need for touch and product involvement. Electron. Commer. Res. 2012, 12, 177–199. [Google Scholar] [CrossRef]
- Kukar-Kinney, M.; Yazdanparast, A. Haptic Information Impacts Online Purchase Behavior: The Role of Price Framing and Consumer Characteristics: An Abstract. In From Micro to Macro: Dealing with Uncertainties in the Global Marketplace. AMSAC 2020. Developments in Marketing Science: Proceedings of the Academy of Marketing Science; Pantoja, F., Wu, S., Eds.; Springer: Cham, Switzerland, 2022; ISBN 978-3-030-89883-0. [Google Scholar] [CrossRef]
- Inoue, Y. Effects of haptic imagery on purchase intention. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Nilsson, N.C.; Zenner, A.; Simeone, A.L. Propping up virtual reality with haptic proxies. IEEE Comput. Graph. Appl. 2021, 41, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Zenner, A.; Ullmann, K.; Krüger, A. Combining dynamic passive haptics and haptic retargeting for enhanced haptic feedback in virtual reality. IEEE Trans. Vis. Comput. Graph. 2021, 27, 2627–2637. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, S.W.; Chiu, F.Y.; Chen, C.S. Applying aesthetics measurement to product design. Int. J. Ind. Ergon. 2008, 38, 910–920. [Google Scholar] [CrossRef]
- Perez, M.; Ahmed-Kristensen, S.; Brunn, P.; Yanagisawa, H. Investigating the influence of product perception and geometric features. Res. Eng. Des. 2017, 28, 357–379. [Google Scholar] [CrossRef]
- Achiche, S.; Maier, A.; Milanova, K.; Vadean, A. Visual Product Evaluation: Using the Semantic Differential to Investigate the Influence of Basic Geometry on User Perception. In Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. Volume 11: Systems, Design, and Complexity, Montrealm QC, Canada, 14–20 November 2014; ASME: New York, NY, USA, 2014; pp. 1–10, ISBN 978-0-7918-4960-6. [Google Scholar]
- Rojas, J.C.; Contero, M.; Bartomeu, N.; Guixeres, J. Using combined bipolar semantic scales and eye-tracking metrics to compare consumer perception of real and virtual bottles. Packag. Technol. Sci. 2015, 28, 1047–1056. [Google Scholar] [CrossRef]
- Tiger, L. The Pursuit of Pleasure; Little, Brown & Company: Boston, MA, USA, 1992; ISBN 0-316-84543-4. [Google Scholar]
- Al-Hindawe, J. Considerations when constructing a semantic differential scale. La Trobe Pap. Linguist. 1996, 9, 41–58. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2017, 39, 175–191. [Google Scholar] [CrossRef]
- Williamson, M. Sample Size Calculation with GPower. Available online: https://med.und.edu/research/daccota/_files/pdfs/berdc_resource_pdfs/sample_size_gpower_module.pdf (accessed on 10 February 2023).
- Artacho-Ramírez, M.A.; Diego-Mas, J.A.; Alcaide-Marzal, J. Influence of the mode of graphical representation on the perception of product aesthetic and emotional features: An exploratory study. Int. J. Ind. Ergon. 2008, 38, 942–952. [Google Scholar] [CrossRef]
- Grohmann, B.; Spangenberg, E.R.; Sprott, D.E. The influence of tactile input on the evaluation of retail product offerings. J. Retail. 2007, 83, 237–245. [Google Scholar] [CrossRef]
- Childers, T.L.; Peck, J. Informational and affective influences of haptics on product evaluation: Is what say how I feel? In Sensory Marketing: Research on the Sensuality of Products; Krishna, A., Ed.; Taylor and Francis: New York, NY, USA, 2010; pp. 63–72. ISBN 9781841698892. [Google Scholar]
- Servotte, J.C.; Goosse, M.; Hetzell Campbell, S.; Dardenne, N.; Pilote, B.; Simoneau, I.L.; Guillaume, M.; Bragard, I.; Ghuysen, A. Virtual Reality Experience: Immersion, Sense of Presence, and Cybersickness. Clin. Simul. Nurs. 2020, 38, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, G.; Melo, M.; Vasconcelos-Raposo, J.; Bessa, M. Impact of Different Sensory Stimuli on Presence in Credible Virtual Environments. IEEE Trans. Vis. Comput. Graph. 2020, 26, 3231–3240. [Google Scholar] [CrossRef] [PubMed]
- Slater, M.; Usoh, M. Representations systems, perceptual position, and presence in immersive virtual environments. Presence Teleoperators Virtual Environ. 1993, 2, 221–233. [Google Scholar] [CrossRef]
- Nichols, S.; Haldane, C.; Wilson, J.R. Measurement of presence and its consequences in virtual environments. Int. J. Hum. Comput. Stud. 2000, 52, 471–491. [Google Scholar] [CrossRef]
- Shu, S.; Peck, J. To hold me is to love me: The role of touch in the endowment effect. In Advances in ConsumerResearch—North American Conference Proceedings Volume 34; Fitzsimons, G., Morwitz, V., Eds.; Association for Consumer Research: Duluth, MN, USA, 2007; pp. 513–514. [Google Scholar]
- Peck, J.; Wiggins Johnson, J. Autotelic need for touch, haptics, and persuasion: The role of involvement. Psychol. Mark. 2011, 28, 222–239. [Google Scholar] [CrossRef]
- Yazdanparast, A.; Spears, N. Can consumers forgo the need to touch products? An investigation of nonhaptic situational factors in an online context. Psychol. Mark. 2013, 30, 46–61. [Google Scholar] [CrossRef]
- Min, X.; Zhang, W.; Sun, S.; Zhao, N.; Tang, S.; Zhuang, Y. VPModel: High-fidelity product simulation in a virtual-physical environment. IEEE Trans. Vis. Comput. Graph. 2019, 25, 3083–3093. [Google Scholar] [CrossRef]
- Faust, F.G.; Catecati, T.; de Souza Sierra, I.; Araujo, F.S.; Ramírez, A.R.G.; Nickel, E.M.; Ferreira, M.G.G. Mixed prototypes for the evaluation of usability and user experience: Simulating an interactive electronic device. Virtual Real. 2019, 23, 197–211. [Google Scholar] [CrossRef]
- Zheng, M.; Zhao, D.; Barbic, J. Evaluating the Efficiency of Six-DoF Haptic Rendering-Based Virtual Assembly Training. IEEE Trans. Haptics 2021, 14, 212–224. [Google Scholar] [CrossRef]
Categories | Adjective | Interval Scale | Adjective (Opposite) | ||||||
---|---|---|---|---|---|---|---|---|---|
Physio | Comfortable | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Uncomfortable |
Heavy | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Light | |
Resistant | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Fragile | |
Psycho | Useless | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Practical |
Simple | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Complex | |
Versatile | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Invariable | |
Socio | Classic | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Modern |
Nice | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Ugly | |
Overelaborate | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Minimalist | |
Ideo | Tasteful | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Tasteless |
Industrial | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Handmade | |
Fun | −3 | −2 | −1 | 0 | 1 | 2 | 3 | Boring |
Conditions | ||||||
---|---|---|---|---|---|---|
Semantic Scales | R | VR | VRPH | V | 3Di | |
SD1 Comfortable–Uncomfortable | Mean | −1.57 | −1.07 | −1.97 | −1.60 | −1.63 |
Median | −2.00 | −1.00 | −2.00 | −2.00 | −2.00 | |
Std. Deviation | 1.36 | 1.20 | 1.13 | 0.97 | 1.10 | |
SD2 Heavy–Light | Mean | 0.70 | 0.87 | 0.40 | 1.17 | 1.27 |
Median | 1.00 | 1.00 | 1.00 | 1.50 | 2.00 | |
Std. Deviation | 1.42 | 1.70 | 1.52 | 1.32 | 1.31 | |
SD3 Resistant–Fragile | Mean | −1.27 | −0.80 | −1.53 | −1.30 | −1.27 |
Median | −1.50 | −1.00 | −2.00 | −1.50 | −1.50 | |
Std. Deviation | 1.41 | 1.42 | 1.25 | 1.24 | 1.14 | |
SD4 Useless–Practical | Mean | 2.07 | 1.73 | 1.80 | 1.83 | 1.83 |
Median | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | |
Std. Deviation | 0.74 | 0.74 | 1.06 | 1.09 | 1.21 | |
SD5 Simple–Complex | Mean | −1.93 | −2.00 | −1.83 | −1.80 | −1.63 |
Median | −2.00 | −2.00 | −2.00 | −2.00 | −2.00 | |
Std. Deviation | 1.11 | 1.17 | 1.51 | 1.13 | 1.40 | |
SD6 Versatile–Invariable | Mean | −0.50 | −0.47 | −0.20 | −0.20 | −0.17 |
Median | −1.00 | −1.00 | −0,50 | −1.0 | −1.00 | |
Std. Deviation | 1.57 | 1.55 | 1.65 | 1.58 | 1.58 | |
SD7 Classic–Modern | Mean | 1.60 | 1.73 | 1.60 | 1.47 | 1.53 |
Median | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | |
Std. Deviation | 1.10 | 1.05 | 1.13 | 1.25 | 1.04 | |
SD8 Ugly–Nice | Mean | −1.10 | −1.27 | −1.17 | −1.37 | −1.27 |
Median | −2.00 | −1.50 | −1.50 | −2.00 | −1.50 | |
Std. Deviation | 1.62 | 1.26 | 1.39 | 1.10 | 1.31 | |
SD9 Ornate–Sober | Mean | 2.47 | 2.36 | 2.43 | 2.17 | 2.30 |
Median | 3.00 | 3.00 | 3.00 | 2.00 | 2.00 | |
Std. Deviation | 0.68 | 1.10 | 0.73 | 1.21 | 0.65 | |
SD10 Elegant–Vulgar | Mean | −1.20 | −1.33 | −1.27 | −1.03 | −1.07 |
Median | −1.50 | −1.00 | −1.00 | −1.00 | −1.00 | |
Std. Deviation | 1.30 | 1.24 | 1.39 | 1.35 | 1.34 | |
SD11 Industrial–Artisan | Mean | −2.27 | −1.93 | −2.17 | −2.03 | −2.30 |
Median | −2.50 | −2.00 | −2.00 | −2.00 | −2.00 | |
Std. Deviation | 0.91 | 1.11 | 0.99 | 1.16 | 0.65 | |
SD12 Fun–Boring | Mean | 0.50 | 0.33 | 0.07 | 0.56 | 0.80 |
Median | 1.00 | 0.00 | 0.50 | 1.00 | 1.00 | |
Std. Deviation | 1.41 | 1.30 | 1.55 | 1.30 | 1.35 |
Conditions | ||||||
---|---|---|---|---|---|---|
Semantic Scales | R | VR | VRPH | V | 3Di | |
I like it (1–5) | Mean | 3.70 | 3.60 | 3.97 | 3.63 | 3.63 |
Median | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | |
Std. Deviation | 0.79 | 0.62 | 0.81 | 0.76 | 0.76 | |
Presence | Mean | 3.70 | 1.87 | 2.40 | 0.77 | 0.60 |
Median | 4.00 | 1.00 | 2.50 | 0.00 | 0.0 | |
Std. Deviation | 1.84 | 2.10 | 2.27 | 1.43 | 1.13 | |
Confidence | Mean | 0.81 | 0.78 | 0.81 | 0.81 | 0.79 |
Median | 0.83 | 0.75 | 0.83 | 0.83 | 0.75 | |
Std. Deviation | 0.10 | 0.12 | 0.12 | 0.12 | 0.11 |
Mean Rank | |||||||
---|---|---|---|---|---|---|---|
Semantic Scales | Friedman’s Test | R | VR | VRPH | V | 3Di | |
Physio | SD1 Comfortable– Uncomfortable | Χ2(4) = 17.60 p = 0.001 | 2.85 | 3.77 | 2.35 | 3.03 | 3.00 |
SD2 Heavy–Light | Χ2(4) = 11.27 p = 0.024 | 2.75 | 3.07 | 2.42 | 3.33 | 3.43 | |
SD3 Resistant–Fragile | Χ2(4) = 7.27 p = 0.12 | 2.88 | 3.57 | 2.67 | 2.88 | 3.00 | |
Psycho | SD4 Useless–Practical | Χ2(4) = 7.00 p = 0.14 | 3.32 | 2.57 | 3.03 | 3.07 | 3.02 |
SD5 Simple–Complex | Χ2(4) = 0.57 p = 0.97 | 3.02 | 2.93 | 2.90 | 3.03 | 3.12 | |
SD6 Versatile– Invariable | Χ2(4) = 1.73 p = 0.78 | 2.77 | 2.90 | 3.15 | 3.07 | 3.12 | |
Socio | SD7 Classic–Modern | Χ2(4) = 2.93 p = 0.57 | 3.05 | 3.25 | 3.05 | 2.85 | 2.80 |
SD8 Ugly–Nice | Χ2(4) = 0.87 p = 0.93 | 2.93 | 3.13 | 3.08 | 2.92 | 2.93 | |
SD9 Ornate–Sober | Χ2(4) = 2.51 p = 0.64 | 3.08 | 3.15 | 3.13 | 2.83 | 2.80 | |
Ideo | SD10 Elegant–Vulgar | Χ2(4) = 6.03 p = 0.20 | 2.97 | 2.72 | 2.77 | 3.33 | 3.22 |
SD11 Industrial– Artisan | Χ2(4) = 3.26 p = 0.51 | 2.83 | 3.22 | 3.03 | 3.13 | 2.78 | |
SD12 Fun–Boring | Χ2(4) = 5.91 p = 0.21 | 3.08 | 2.90 | 2.55 | 3.11 | 3.33 |
SD1 Comfortable– Uncomfortable | SD2 Heavy– Light | |||||||
---|---|---|---|---|---|---|---|---|
Pair | R Mean | t Stat. | Sig. | Adj. Sig. | R Mean | t Stat. | Sig. | Adj. Sig. |
R-VR | 0.92 | 2.85 | 0.01 | 0.052 | 0.32 | 0.92 | 0.36 | 1.00 |
R-VRPH | 0.50 | 1.55 | 0.12 | 1.00 | 0.33 | 0.97 | 0.33 | 1.00 |
R-V | 0.18 | 0.57 | 0.57 | 1.00 | 0.58 | 1.70 | 0.09 | 0.91 |
R-3Di | 0.15 | 0.47 | 0.64 | 1.00 | 0.68 | 1.99 | 0.05 | 0.48 |
VR-VRPH | 1.42 | 4.40 | 0.00 | 0.00 | 0.65 | 1.90 | 0.06 | 0.60 |
VR-V | 0.73 | 2.28 | 0.02 | 0.25 | 0.27 | 0.78 | 0.44 | 1.00 |
VR-3Di | 0.77 | 2.38 | 0.02 | 0.19 | 0.37 | 1.07 | 0.29 | 1.00 |
VRPH-V | 0.68 | 2.12 | 0.04 | 0.36 | 0.92 | 2.68 | 0.01 | 0.09 |
VRPH-3Di | 0.65 | 2.02 | 0.05 | 0.46 | 1.02 | 2.97 | 0.00 | 0.04 |
V-3Di | 0.03 | 0.10 | 0.92 | 1.00 | 0.10 | 0.29 | 0.77 | 1.00 |
I Like It | Presence | |||||||
---|---|---|---|---|---|---|---|---|
Pair | R Mean | t Stat. | Sig. | Adj. Sig. | R Mean | t Stat. | Sig. | Adj. Sig. |
R-VR | 0.27 | 0.95 | 0.35 | 1.00 | 1.10 | 3.60 | 0.00 | 0.00 |
R-VRPH | 0.60 | 2.13 | 0.04 | 0.35 | 0.87 | 2.84 | 0.01 | 0.053 |
R-V | 0.07 | 0.24 | 0.81 | 1.00 | 1.95 | 6.39 | 0.00 | 0.00 |
R-3Di | 0.02 | 0.06 | 0.95 | 1.00 | 2.00 | 6.55 | 0.00 | 0.00 |
VR-VRPH | 0.87 | 3.08 | 0.00 | 0.03 | 0.23 | 0.76 | 0.45 | 1.00 |
VR-V | 0.20 | 0.71 | 0.48 | 1.00 | 0.85 | 2.78 | 0.01 | 0.06 |
VR-3Di | 0.25 | 0.89 | 0.38 | 1.00 | 0.90 | 2.95 | 0.00 | 0.04 |
VRPH-V | 0.67 | 2.37 | 0.02 | 0.19 | 1.08 | 3.55 | 0.00 | 0.01 |
VRPH-3Di | 0.62 | 2.19 | 0.03 | 0.30 | 1.13 | 3.71 | 0.00 | 0.00 |
V-3Di | 0.05 | 0.18 | 0.86 | 1.00 | 0.05 | 0.16 | 0.87 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felip, F.; Galán, J.; Contero, M.; García-García, C. Touch Matters: The Impact of Physical Contact on Haptic Product Perception in Virtual Reality. Appl. Sci. 2023, 13, 2649. https://doi.org/10.3390/app13042649
Felip F, Galán J, Contero M, García-García C. Touch Matters: The Impact of Physical Contact on Haptic Product Perception in Virtual Reality. Applied Sciences. 2023; 13(4):2649. https://doi.org/10.3390/app13042649
Chicago/Turabian StyleFelip, Francisco, Julia Galán, Manuel Contero, and Carlos García-García. 2023. "Touch Matters: The Impact of Physical Contact on Haptic Product Perception in Virtual Reality" Applied Sciences 13, no. 4: 2649. https://doi.org/10.3390/app13042649