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Abstract: The video classification task has gained significant success in the recent years. Specifically, 

the topic has gained more attention after the emergence of deep learning models as a successful tool 

for automatically classifying videos. In recognition of the importance of the video classification task 

and to summarize the success of deep learning models for this task, this paper presents a very com-

prehensive and concise review on the topic. There are several existing reviews and survey papers 

related to video classification in the scientific literature. However, the existing review papers do not 

include the recent state-of-art works, and they also have some limitations. To provide an updated 

and concise review, this paper highlights the key findings based on the existing deep learning mod-

els. The key findings are also discussed in a way to provide future research directions. This review 

mainly focuses on the type of network architecture used, the evaluation criteria to measure the suc-

cess, and the datasets used. To make the review self-contained, the emergence of deep learning 

methods towards automatic video classification and the state-of-art deep learning methods are well 

explained and summarized. Moreover, a clear insight of the newly developed deep learning archi-

tectures and the traditional approaches is provided. The critical challenges based on the benchmarks 

are highlighted for evaluating the technical progress of these methods. The paper also summarizes 

the benchmark datasets and the performance evaluation matrices for video classification. Based on 

the compact, complete, and concise review, the paper proposes new research directions to solve the 

challenging video classification problem. 
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1. Introduction 

The task of automatically classifying videos has become very successful recently. Par-

ticularly, the subject has drawn increased interest since deep learning models became an 

effective method for automatically classifying videos. The importance of the accurate 

video classification task can be realized by the large amount of video data available online. 

People around the world generate and consume a huge amount of video content. Cur-

rently, on YouTube only, over 1 billion hours of video are being watched by different 

people every single day. In recognition to the importance of the video classification task, 

a combined effort is being made by researchers for proposing an accurate video classifi-

cation framework. Companies such as Google AI are investing in different competitions 

to solve the challenging problem under constrained conditions. To further advance the 

progress of the automatic video classification task, Google AI has released a public dataset 

called YouTube-8M with millions of video features and more than 3700 labels. All these 

efforts being made demonstrate the need for a powerful video classification model. 

An artificial neural network (ANN) is an algorithm based on interconnected nodes 

to recognize the relationships in a set of data. Algorithms based on ANNs have shown a 
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great success in modeling both the lineßar and the non-linear relationships in the under-

lying data. Due to the huge success rate of these algorithms, they are extensively being 

used for different real-time applications [1–4]. Moreover, with an increase in the availa-

bility of huge datasets, the deep learning models have specifically shown a significant 

improvement in the classification of videos. This paper reviews studies based on deep 

learning approaches for video classification. 

Contribution 

There are several existing reviews and survey papers related to video classification 

in the scientific literature. Some of the recent works are summarized here in Table 1. How-

ever, these review papers do not include the recent state-of-art works, and they have some 

limitations. In the following text, the limitations and highlights of these works are dis-

cussed. 

Table 1. Summary of recent related works. 

Reference Year Coverage Highlights Drawbacks 

A. Anusya [5] 2020 2014–2019 Video classification, tagging, and clustering. 
Not comprehensive and lacks 

concise information. 

Rani et al. [6] 2020 2001–2016 
Text, audio, and visual modalities for video classi-

fication. 

Missing analysis of recent 

state-of-art approaches. 

Y. Li et al. [7] 2020 2012–2019 Live sport video classification. 
More specific to live sport 

video classification. 

Md Islam et al. [8] 2021 2004–2020 
Machine learning approaches for video classifica-

tion. 

Focus of review is not on 

deep learning approaches. 

Ullah. H. et al. [9] 2021 2015–2020 Human activity recognition using deep learning. 
Focus only on the human ac-

tivity recognition. 

This study 2022 2000–2022 
Comprehensive deep learning review for video 

classification. 
- 

1. A more recent review was done by A. Anusya [5]; this review covers very few meth-

ods for video classification, clustering, and tagging. However, the review provided 

is not comprehensive and lacks concise information, coverage of topic, datasets, anal-

ysis of state-of-art approaches, and research limitations; 

2. Rani et al. [6] also conducted a recent review on video classification methods, and 

their review covered some recent video classification approaches and summary-

based description of some recent works. This review also had some limitations in-

cluding the missing analysis of recent state-of-art approaches and a very limited de-

scription of topics covered; 

3. Y. Li et al. [7] recently conducted a systematic and good review on live sport video 

classification. This review covers most of the recent works in live sport video classi-

fication, including the tools, video interaction features, and feature extraction meth-

ods. This is a comprehensive review, but the findings are not summarized in tables 

for research gaps and advantages and disadvantages of existing methods for a quick 

review. Moreover, this review is more specific to live sport video classification; 

4. A recent review was also done by Md Islam et al. [8]; in this review, they included all 

the methods for video classification, including deep learning. However, as the focus 

of review is not on deep learning approaches, these methods are therefore not com-

pletely covered in this review; 

5. Ullah. H. et al. [9] also conducted a recent systematic review; however, the focus of 

their review remained on human activity recognition; 

6. Z. Wu. [10] presented a concise review on video classification specific to deep learn-

ing methods. This review provides a good description on deep learning models, fea-

ture extraction tools, benchmark dataset, and comparison of existing methods for 
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video classification. However, this review was conducted in the year 2016, and it does 

not cover the recent state-of-art deep learning methods; 

7. Q. Ren [11] conducted a simple review on video classification methods; however, the 

techniques covered in this review are not well described, and the review also lacks 

in the description of research gaps, benchmark datasets, limitations of existing meth-

ods, and performance metrics. 

In contrast to the existing reviews on classification of videos, this paper provides a 

more comprehensive, concise, and up-to-date review of deep learning approaches for 

video classification. In this current review, most of the recent state-of-art contributions 

related to the topic are analyzed and critically summarized. Deep learning is an emerging 

and vibrant field for the analysis of videos; therefore, we hope this review will help in 

stimulating future research along the line. The following are the key contributions to this 

review paper: 

1. A summary of state-of-art, CNN-based deep learning models for image analysis; 

2. An in-depth review of deep learning approaches for video classification highlighting 

the notable findings; 

3. A summary of breakthroughs in the automatic video classification task; 

4. Analysis of research trends from past towards future; 

5. Description of benchmark datasets, evaluations metrics, and comparison of recent 

state-of-art deep learning approaches in terms of performance. 

The rest of the paper is organized as follows: Section 2 reviews some existing CNNs 

for images; Section 3 provides an in-depth review on deep learning models for video clas-

sification; Section 4 provides a summary for benchmark datasets, evaluation metrics, and 

comparison of existing state-of-art methods for the video classification task; and Section 5 

provides conclusion and future research directions. 

2. Convolutional Neural Networks (CNN) for Image Analysis 

Deep learning models, specifically convolutional neural networks (CNNs), are well 

known for understanding images. A number of CNN architectures are proposed and de-

veloped in the scientific literature for image analysis. Among these, the most popular ar-

chitectures are LeNet-5 [12], AlexNet [13], VGGNet [14], GoogleNet [15], ResNet [16], and 

DenseNet [17]. The trend that follows from the formerly proposed architectures towards 

the recently proposed architectures is to deepen the network. A summary of these popular 

CNN architectures along with trend of deepening the network is shown in Figure 1, where 

the depth of network increases from left-most (LeNet-5) to right-most (DenseNet). Deep 

networks are believed to better approximate the target function and to generate better 

feature representation with more powerful discriminatory powers [18]. Although deeper 

networks are better in terms of having more discriminatory powers, the deeper networks 

require more data for training and more parameters to tune [19]. Finding a professionally 

labeled, huge dataset is still a big challenge faced by the research community, and there-

fore, it limits the development of deeper neural networks. 
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Figure 1. State-of-art image recognition CNN networks. The trend is that the depth and discrimina-

tory powers of network architectures increases from formerly proposed architectures towards the 

recently proposed architectures. 

3. Video Classification 

In this section, a very comprehensive and concise review for deep learning models 

employed in the video classification task is provided. This section covers a description on 

video data modalities, traditional handcrafted approaches, breakthroughs in video classi-

fication, and recent state-of-art deep learning models for video classification. 

3.1. Video Data Modalities 

As compared to images, videos are more challenging to understand and classify due 

to the complex nature of the temporal content. However, three different modalities, i.e., 

visual information, audio information, and text information, might be available to classify 

videos in contrast to image classification, where only a single visual modality can be uti-

lized. Based on the availability of different modalities in videos, the task of classification 

can be categorized as a uni-modal video classification or a multi-modal video classifica-

tion, as summarized in Figure 2. The existing literature has utilized both of these models 

for the video classification task, and it is generally believed that models utilizing multi-

modal data perform better than the models based on uni-modal data [20,21]. Moreover, 

the visual description [22] of a video works better than the text [23] and the audio [24,25] 

description for the classification purpose of a video. 

 

Figure 2. Different modalities used for classification of videos. 

3.2. Traditional Handcrafted Features 

During the earlier developments of the video classification task, the traditional hand-

crafted features were combined with state-of-art machine learning algorithms to classify 

the videos. Some of the most popular handcrafted feature representation techniques used 

in the literature are spatiotemporal interest points (STIPs) [26], improved dense trajecto-

ries (iDT) [27], SIFT-3D [28], HOG3D [29], motion boundary histogram [30], action-bank 

[31], cuboids [32], 3D SURF [33], and dynamic-poselets [34]. These hand-designed 

Visual/Image recognition:

Popular CNN architectures

AlexNet LeNet-5  VGGNet GoogleNet ResNet DenseNet 

Depth of the network architectures has increased over time

Video Classification based on different 

Modalities
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representations use different feature encoding schemes such as the ones based on pyra-

mids and histograms. iDT is one of these handcrafted representations that is widely con-

sidered the state-of-the-art. Many recent competitive studies demonstrated that hand-

crafted features [35–38] and high-level [39,40] and mid-level [41,42] video representations 

have contributed towards the task of video classification with deep neural networks. 

3.3. Deep Learning Frameworks 

Along with the development of more powerful deep learning architectures in the re-

cent years, the trend for the video classification task has followed a shift from traditional 

handcrafted approaches to the fully automated deep learning approaches. Among the 

very common deep learning architectures used for video classification is a 3D-CNN 

model. An example of 3D-CNN architecture used for video classification is given in Figure 

3 [43]. In this architecture, 3D blocks are utilized to capture the video information neces-

sary to classify the video content. One more very common architecture is a multi-stream 

architecture, where the spatial and temporal information is separately processed, and the 

features extracted from different streams are then fused to make a decision. To process 

the temporal information, different methods are used, and the two most common meth-

ods are based on (i) RNN (mainly LSTM) and (ii) optical flow. An example of a multi-

stream network model [44], where the temporal stream is processed using optical flow, is 

shown in Figure 4. A high-level overview of the video classification process is shown in 

Figure 5, where the stages of feature extraction and prediction are shown with the most 

common type of strategies used in the literature. In the upcoming sections, the break-

throughs in video classification and studies related to classification of videos, specifically 

using deep learning frameworks, are summarized, describing the success rate of utilizing 

deep learning architectures and the associated limitations. 

 

Figure 3. An example of 3D-CNN architecture to classify videos. 

 

Figure 4. An example of two-stream architecture with optical flow. 
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Figure 5. An overview of video classification process. 

3.4. Breakthroughs 

The breakthroughs in recognition of still-images originated with the introduction of 

a deep learning model called AlexNet [13]. The same concept of still-image recognition 

using deep learning is also extended for videos, where individual video frames are collec-

tively processed as images by a deep learning model to predict the contents of a video. 

The features from individual video frames are extracted, and then, temporal integration 

of such features into a fixed-size descriptor using pooling is performed. The task is either 

done using high-dimensional feature encoding [45,46] or through the RNN architectures 

[47–50]. For un-supervised spatiotemporal feature learning in 3D convolutions, restricted 

Boltzmann machines [51] and stacked ISA [52] are also studied in parallel. The 3D-CNNs 

using temporal convolutions to extract temporal features automatically were first pro-

posed by Baccouche et al. [53] and by Ji et al. [54]. 

3.5. Basic Deep Learning Architectures for Video Classification 

The two most widely used deep learning architectures for video classification are 

convolutional neural network (CNN) and recurrent neural network (RNN). CNNs are 

mostly used to learn the spatial information from videos, whereas RNNs are used to learn 

the temporal information from videos, as the main difference between these two architec-

tures is the ability to process temporal information or data that come in sequences. There-

fore, both these network architectures are used for completely different purposes in gen-

eral. However, the nature of video data with the presence of both the spatial and the tem-

poral information demands the use of both these network architectures to accurately pro-

cess the two-stream information. The architecture of a CNN applies different filters in the 

convolutional layers to transform the data. RNNs, on the other hand, reuse the activation 

functions to generate the next output in a series from the other data points in the sequence. 

However, the use of only 2D-CNNs alone limits the understanding of video to only spatial 

domain. RNNs, on the other hand, can understand the temporal content of a sequence. 

Both these basic architectures and their enhanced versions are applied in several studies 

for the task of video classification. 

3.6. Developments in Video Classification over Time 

The existing approaches for video classification are categorized based on their work-

ing principle in Table 2. The trend observed for the classification of videos from the exist-

ing literature is that the recently developed state-of-art deep learning models are outper-

forming the earlier handcrafted classical approaches. This is mainly due to the availability 

of large-scale video data for learning deep architectures of neural networks. Besides an 

improvement in classification performance the recently developed models are mostly self-

learned and does not require any manual feature engineering. This added advantage 

makes them more feasible for use in real applications. However, the better performing 

recently developed architectures are deeper as compared to the previously developed ar-

chitectures which brings a compromise on the computational complexity of the deep ar-

chitectures. 
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Table 2. Different categories of approaches of video classification. 

Categories Working Principle References 

Hand-crafted ap-

proaches 

These representations are handcrafted and employ vari-

ous feature encoding techniques, such as histograms and 

pyramids. 

Spatiotemporal Interest Points (STIPs) 

[26], iDT [27], SIFT-3D [28], HOG3D 

[29], Motion Boundary Histogram 

[30], Cuboids [32], Action- Bank [31], 

3D SURF [33], Dynamic-Poselets [34]. 

2D- CNNs 

These are image based models where frame level feature 

extraction is performed using CNN architecture and clas-

sification is performed using state-of-art classification 

models, for example SVM. 

[55] 

3D-CNNs 
2D image classification extension to 3D for video (For ex-

ample the Inception 3D (I3D) architecture).  
[56] 

Spatiotemporal Con-

volutional Networks 

To aggregate the temporal and the spatial information, 

these methods primarily depend on convolution and 

pooling. 

[54,57,58] 

Recurrent Spatial Net-

works 

To represent temporal information in videos, recurrent 

neural networks such as LSTM or GRU are used. 
[47,53,59,60] 

Two/multi Stream 

Networks 

In addition to the context frame visuals, these methods 

use layered optical flow to identify movements. 
[50,61–63] 

Mixed convolutional 

models 

Models built with the ResNet architecture in mind. They 

are particularly interested in models that utilize 3D con-

volution in the bottom or top layers but 2D in the remain-

der; these are referred to as “mixed convolutional” mod-

els. Or the methods based on mixed temporal convolu-

tion with different kernel sizes. 

[64,65] 

Hybrid Approaches 
These are models based on integration of CNN and RNN 

architectures. 
[66–68] 

Among the initially developed hand-crafted representations, improved Dense Tra-

jectories (iDT) [27] is widely considered the state-of-the-art. Whereas, many recent com-

petitive studies demonstrated that hand-crafted features [35–38], high-level [39,40], and 

mid-level [41,42] video representations have contributed towards the task of video classi-

fication with deep neural networks. The hand-crafted models were among the very early 

developments of video classification problem. Later, 2D-CNNs were proposed for video 

classification, where image-based CNN models are used to extract frame level features 

and based on the frame level CNN features, some state-of-art classification models (for 

example SVM) are learned to classify videos. These 2D-CNN models do not require any 

manual feature extraction and these models performed better than the competing hand-

crafted approaches. After successful development of 2D-CNN models where features are 

extracted from frame level, the same concept was extended to propose 3D-CNNs to extract 

features from videos. The proposed 3D-CNNs are computationally more expensive as 

compared to the 2D-CNN models. However, these models consider the time variations in 

feature extraction therefore these 3D-CNN models are believed to perform better as com-

pared to 2D-CNN models for video classification [54,58,69]. 

The development of 3D-CNN models paved the way for fully automatic video clas-

sification models using different deep learning architectures. Among the developments 

using deep learning architectures, spatiotemporal convolutional networks are approaches 

based on integration of temporal and spatial information using convolutional networks 

to perform video classification. To collect temporal and spatial information, these meth-

ods primarily rely on convolution and pooling layers. Stack optical flow is used in 

two/multi-stream networks methods to identify movements in addition to context frame 
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visuals. Recurrent spatial networks use recurrent neural networks (RNN) to model tem-

poral information in videos, such as LSTM or GRU. The ResNet architecture is used to 

build mixed convolutional models. They are particularly interested in models that utilize 

3D convolution in the bottom or top layers but 2D in the remainder; these are referred to 

as “mixed convolutional” models. These also include methods based on mixed temporal 

convolution with different kernel sizes. Advanced architectures based on DenseNet have 

also shown promising results for the video classification task. Some of these notable ar-

chitectures based on DenseNet include region-based CNN (R-CNN) [70,71], faster R-CNN 

[72,73], and YOLO [74]. Besides these architectures, there are also hybrid approaches 

based on the integration of CNN and RNN architectures. A summary of these architec-

tures is provided in Figure 6. 

 

Figure 6. Summary of video classification approaches. 

The different deep learning architectures described above employ different fusion 

strategies. These fusion strategies are either for the fusion of different features extracted 

from the video or for the fusion of different models used in the architecture. The fusion 

strategies mainly used for the extracted features are (i) concatenation, (ii) product, (iii) 

summation, (iv) maximum, and (v) weighted, where the concatenation approach simply 

combines all the features together, and all the features are used for classification. The prod-

uct/summation approach performs the product/summation between the features extracted 

using different strategies and uses the result of product/summation to perform classifica-

tion. The maximum approach takes the maximum value of the features extracted using 

different strategies and uses that for classification. The weighted approach gives different 

weights to different features and performs the classification using the weighted features. 

Different fusion methods are summarized in Figure 7. 

 

Figure 7. Different Fusion Types. 
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3.7. Summary of Some Notable Deep Learning Frameworks Developments 

A summary of some deep learnings architectures for video classification is provided 

in Table 3. These studies are summarized based on the architecture, the datasets, the eval-

uation metrics, the fusion strategy, and the notable findings. The most common architec-

tures for video classification are fundamentally based on the RNN and CNN architectures; 

classification accuracy is one of the most common evaluation metrics; UCF-101 and 

Sports-1M datasets are the choice for validation in most cases, multi-class classification 

problem is considered in almost all cases, SMART blocks outperform 3D convolutions in 

terms of spatiotemporal feature learning, and average fusion, kernel average fusion, 

weighted fusion, logistic regression fusion, and MKL fusion are all proven to be inferior 

compared to the multi-stream multi-class fusion technique. Moreover, a more applied 

form of classification in videos is to identify/recommend tags or thumbnails in videos, and 

this specific task is successfully caried out in [75–79]. 

3.8. Few-Shot Video Classification 

FEW-SHOT learning (FSL) has received a great deal of interest in recent years. FSL 

tries to identify new classes with one or a few labeled samples [80–83]. However, due to 

most recent work in few-shot learning being centered on image classification, FSL in the 

video domain is still hardly being explored [84,85]. Some of the notable works done in this 

domain are discussed below. 

A multi-saliency embedding technique was developed by Zhu et al. [85] to encode a 

variable-length video stream into a fixed-size matrix. Graph neural networks (GNN) were 

developed by Hu et al. [86] to enhance the video classification model’s capacity for dis-

crimination. The local–global link in a distributed representation space was still disre-

garded nevertheless. To categorize a previously unseen video, Cao et al. [87] introduced 

a temporal alignment module (TAM) that explicitly took advantage of the temporal or-

dering information in video data through temporal alignment. To combine the two-stream 

aspects of videos more effectively, Fu et al. [88] developed a depth-guided adaptive in-

stance-normalization module (DGAdaIN). A C3D encoder was created by Zhang et al. 

[89] to record close-range action patterns for spatiotemporal video blocks. Few-shot video 

categorization was addressed by Qi et al. [90] by learning a collection of SlowFast net-

works enhanced with memory units. To comprehend realistic films of the target classes, 

Fu et al. [91] presented embodied agent-based one-shot learning, which made use of syn-

thetic videos created in a virtual environment. For the issues of few-shot and zeroshot 

action recognition, Bishay et al. [92] presented the temporal attentive relation network 

(TARN), which was trained to compare representations of varying temporal length. By 

examining local–global linkages and preserving the specifics of properties, Y. Feng et al. 

[93] recently presented a dual-routing capsule graph neural network (DR-CapsGNN) to 

address the issue of severely constrained samples in few-shot learning. 

Apart from this, contrastive learning has also proved successful in recognizing hu-

man actions. Some of the interesting works done in this regard are multi-granularity an-

chor-contrastive representation learning [94] and X-invariant contrastive augmentation 

and representation learning [95]. 

3.9. Geometric Deep Learning 

Shape descriptors play a significant role in the description of manifolds for 3D 

shapes. In general, a global feature descriptor is created by aggregating local descriptors 

to describe the geometric properties of the entire shape, for example, using the bag-of-

features paradigm. A local feature descriptor assigns a vector to each point on the shape 

in a multi-dimensional descriptor space, representing the local structure of the shape 

around that point. Most deep learning techniques that deal with 3D shapes essentially use 

the CNN paradigm. Volumetric 2D multi-view shape representations are applied directly 

using standard (Euclidean) CNN architectures in neural networks via methods such as 
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[96,97]. These techniques are unsuited for dealing with deformable shapes because the 

shape descriptors they use are dependent on extrinsic structures that are invariant under 

Euclidean transformations, as demonstrated in Figure 8a [98], while some other ap-

proaches [99–103] create a new framework by adopting the CNN feature extraction pat-

tern to investigate the inherent CNN versions that would enable handling shape defor-

mations by using intrinsic filter structure, as shown in Figure 8b [98]. Geometric deep 

learning deals with non-Euclidean graph and manifold data. This type of data (irregularly 

arranged/distributed randomly) is usually used to describe geometric shapes. The pur-

pose of geometric deep learning is to find the underlying patterns in geometric data where 

the traditional Euclidean distance-based deep learning approaches are not suitable. There 

are basically two methods available in the literature to apply deep learning on geometric 

data: (i) extrinsic methods and (ii) intrinsic methods. The filters in extrinsic methods are 

applied on the 3D surfaces such that it effects the structural deformity due to the extrinsic 

filter structure. The key weakness of extrinsic approaches [96,97] is that they continue to 

consider geometric data as Euclidean information. When an object’s position or shape 

changes, the extrinsic data representation fails. Additionally, for these methods to support 

the challenging-in-practice task of attaining the invariance of shape deformation, compli-

cated models and extensive training are required. The filters in intrinsic approaches are 

applied on the 3D surfaces without being affected by the structural deformity. Rather than 

Euclidean realization, intrinsic methods work on the manifold and are isometry-invariant 

by construction. Some of the works based on intrinsic deep learning include (i) geodesic 

CNN [99], (ii) anisotropic CNN [100], (iii) mixture model network [101], (iv) structured 

prediction model [102], (v) localized spectral CNN [103], (vi) PointNet [104], (vii) Point-

Net++ [105], and (viii) RGA-MLP [106]. The application of geometric deep learning 

(mostly intrinsic methods) in analyzing videos can help in better understanding from the 

machine perspective, but it is still an open research problem and needs further investiga-

tion. For further details on geometric deep learning, readers are referred to [98,107]. 

 

Figure 8. Illustration of deep learning approaches on geometric data. (a) Extrinsic method and (b) 

intrinsic method. 
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Table 3. Summary and findings of studies based on deep learning models. 

Study Features Model Evaluation Dataset Problem Fusion Findings 

[57] 

Automatic spatio-temporal features/self-

learning. Temporal features captured 

both locally and globally. 

Multiresolution CNN archi-

tecture. 

By the fraction of 

test samples that 

contained at least 

one of the 

ground truth la-

bels in the top k 

predictions. 

Sports-1M,  

UCF-101. 

Multi-

class 

Single frame, 

Early Fusion, 

Late Fusion, 

Slow Fusion. 

When compared to a multilayer neural network with 

rectified linear units followed by a Softmax classifier 

built using histogram features, the Softmax classifier 

performed better (both local features such as texton, 

HOG, cuboids, etc., and global features such as color 

moments, and hue–saturation). 

[108] 

Visual (dense trajectory descriptors): A 

30-d trajectory shape descriptor, a 96-d 

HOG descriptor, a 108-d HOF descriptor, 

and a 108-d MBH descriptor (local visual 

descriptors). Audio Features: MFCCs and 

Spectrogram SIFT. 

Deep neural network (DNN).  
Mean average 

precision (mAP). 

Hollywood2, 

Columbia Con-

sumer Videos 

(CCV), and 

CCV+. 

Multi-

class 

Regularized 

fusion of mul-

tiple features. 

Found better than dense trajectory features and classifi-

cation utilizing the basic early fusion technique. 

[109] 
Tensor-Train Factorization (global repre-

sentation for the whole sequence). 

Recurrent neural network 

(RNN). 

Classification ac-

curacy. 

UCF11, 

Hollywood2, 

YouTube Celebri-

ties Face Data. 

Multi-

class 
- 

Tensor-Train layer-based RNN such as LSTM and GRU 

perform better than the plain RNN architectures for 

video classification. 

[110] 

Improved Fisher vector (iFV) and explicit 

feature maps to represent features of conv 

and fc layers. Long-term temporal infor-

mation. 

A multilayer and multimodal 

fusion framework of deep 

neural networks based on 

fully connected (FC)-RNN. 

Classification ac-

curacy. 

UCF101, 

HMDB51. 

Multi-

class 

Multilayer 

and multi-

modal fusion 

framework. 

When compared to enhanced dense trajectories, which 

require a number of handcrafted procedures such as 

dense point tracking, camera motion estimation, person 

detection, and so on, the proposed FC-RNN obtained 

competitive results. 

[50] 

Convolutional temporal feature pooling 

architectures (conv pooling, late pooling, 

slow pooling, local pooling). Global 

video-level descriptors. 

Two CNN architectures 

(AlexNet and GoogleNet) 

and LSTM. 

By the fraction of 

test samples that 

contained at least 

one of the 

ground truth la-

bels in the top k 

predictions. 

UCF101, 

Sports 1 million. 

Multi-

class 
Late fusion 

(i) UCF-101 necessitates the utilization of optical flow. 

(ii) Optical flow is not always beneficial, especially 

when the videos are captured in the wild, such as 

Sports-1M. (iii) To make use of optical flow, a more ad-

vanced sequence processing architecture such as LSTM 

is required. (iv) The maximum documented perfor-

mance is achieved by using LSTMs on both image 

frames and optical flow for the Sports-1M benchmark. 

[111] 

Spatiotemporal feature learning: 

a SMART block and ARTNet for short-

term spatiotemporal feature learning with 

ARTNet by integrating the 

SMART block into the C3D-

ResNet18 architecture, where 

Top-1 and Top-5 

accuracy. 

Kinetics, UCF101, 

and HMDB51. 

Multi-

class 

Concatena-

tion and 

(i) In terms of spatiotemporal feature learning, SMART 

blocks outperform 3D convolutions (3D-CNN). (ii) In 

the case of ARTNet, supplementing RGB input with 
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a possibility to explore long-term learn-

ing. 

SMART block architecture is 

composed of appearance 

branch and relationship 

branch. 

reduction op-

eration. 

optical flow improves performance. (iii) The optical 

flow modality can give additional information. (iv) Op-

tical flow’s high computing cost prevents it from being 

used in real-world systems. 

[112] 

Spatial, short-term motion and audio 

clues using CNN. Long-term temporal 

dynamics. 

(Multimodal features). 

CNNs-LSTM model with 

multi-stream multi-class fu-

sion process to adaptively de-

termine the optimal fusion 

weights for generating the fi-

nal scores of each class. 

Classification ac-

curacy. 

UCF-101, 

Columbia Con-

sumer Videos.  

Multi-

class 

Multi-Stream 

Multi-Class 

Fusion. 

Average fusion, kernel average fusion, weighted fusion, 

logistic regression fusion, and MKL fusion are all 

proven to be inferior to the proposed multi-stream 

multi-class fusion technique. 

[113] 

Two distinct layers: 1 × 1 × 1 conventional 

convolutions for channel interaction (but 

no local interaction) and k × k × k depth-

wise convolutions for local spatiotem-

poral interactions (but not channel inter-

action). Global spatiotemporal average 

pooling layer. 

Channel-separated convolu-

tional network (CSN). 

Two models: 

interaction-preserved chan-

nel-separated network (ip-

CSN) and 

interaction-reduced channel-

separated network (ir-CSN). 

Classification ac-

curacy. 

Sports1M and Ki-

netics. 

Multi-

class 
- 

(i) In 3D group convolutional networks, the number of 

channel interactions has a significant impact on accu-

racy. (ii) Separating channel interactions from spatio-

temporal interactions in 3D convolutions improves ac-

curacy and reduces computing cost. (iii) Three-dimen-

sional channel-separated convolutions offer regulariza-

tion and avoid overfitting. 

[114] 

The 3D network is optimized with three 

loss functions: (i) cross-entropy (CE) loss, 

(ii) pseudo-CE loss, and (iii) soft CE loss. 

2D Image and 3D video model capture 

short and long visual descriptors. 

Semi-supervised learning 

(VideoSSL) with 3D ResNet-

18. 

Top-1 

UCF101, 

HMDB51, and 

Kinetics. 

Multi-

class 
- 

(i) For 3D video classification, a direct application of 

current semi-supervised algorithms (which were ini-

tially designed for 2D imagery) cannot yield adequate 

results. (ii) The accuracy of 3D-CNN models is much 

improved by a calibrated use of object appearance indi-

cators for semi-supervised learning. 

[115] Modal- and channel-wise attentions. 
Expansion-squeeze excitation 

fusion network 

Accuracy, confu-

sion matrix 

ETRI-ACTIV-

ITY3D, NUT 

RGB+D 

Multi-

class 
Multi-modal 

(i) Modal-fusion nets (M-Nets) and channel-fusion nets 

(C-Nets) are capable of capturing the modal and chan-

nel-wise dependencies between features in order to im-

prove the discriminative power of features via modal 

and channel-wise ESEs. (ii) By adding the penalty of the 

difference between the minimum prediction losses on 

the single modalities and the prediction loss on the 

fused modality, multi-modal loss (ML) can further en-

force the consistency between the single-modal features 

and the fused multi-modal features. 
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4. Benchmark Datasets, Evaluation Metrics, and Comparison of Existing State-of-the-

Art for Video Classification 

4.1. Benchmark Datasets for Video Classification 

There are several benchmark datasets being utilized for classification of videos, AND 

some of these notable datasets are summarized in Table 4. The details related to these 

datasets, such as total number of videos contained in the dataset, number of classes pre-

sent in the dataset, the year of publication of dataset, and the background of videos in the 

dataset, are included in the summary. 

Table 4. Benchmark datasets. 

Dataset # of Videos  # of Classes Year Background 

KTH 600 6 2004 Static 

Weizmann 81 9 2005 Static 

Kodak 1358 25 2007 Dynamic 

Hollywood 430 8 2008 Dynamic 

Hollywood2 1787 12 2009 Dynamic 

MCG-WEBV 234,414 15 2009 Dynamic 

Olympic Sports 800 16 2010 Dynamic 

HMDB51 6766 51 2011 Dynamic 

CCV 9317 20 2011 Dynamic 

UCF-101 13,320 101 2012 Dynamic 

THUMOS-2014 18,394 101 2014 Dynamic 

MED-2014 (Dev. set) 31,000 20 2014 Dynamic 

Sports-1M 1,133,158 487 2014 Dynamic 

ActivityNet 27,901 203 2015 Dynamic 

EventNet 95,321 500 2015 Dynamic 

MPII Human Pose 20,943 410 2014 Dynamic 

FCVID 91,223 239 2015 Dynamic 

UCF11 1600 11 2009 Dynamic 

YouTube Celebrities Face 1910 47 2008 Dynamic 

Kinetics 300,000 400 2017 Dynamic 

YouTube-8M 6.1 M 3862 2018 Dynamic 

JHMDB 928 21 2011 Dynamic 

Something-something 110,000 174 2017 Dynamic 

4.2. Performance Evaluation Metrics for Video Classification 

The evaluation of video classification models is performed using different perfor-

mance measures. The most common measures utilized to evaluate the models are accu-

racy, precision, recall, F1 score, micro F1, and K-fold [8]. Some of the recent studies using 

these measures are listed in Table 5. 

Table 5. Commonly used evaluation metrics for video classification. 

Evaluation Metric Year of Publication Reference 

Accuracy 2020–2021 [116–120] 

Precision 2020–2021 [116,118,119] 

Recall 2020–2021 [116,118,119] 

F1 Score 2020–2021 [116,118,119] 

Micro F1 2020 [121,122] 

K-Fold 2019 [123] 

Top-k  2018,2021 [111,114] 
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4.3. Comparison of Some Existing Approaches on UCF-101 Dataset 

UCF-101 is a benchmark action recognition dataset published by the researchers of 

University of Central Florida in the year 2012 [124], and the videos in the dataset were 

collected from YouTube. The total videos in the dataset are 13,320, with 101 action cate-

gories. The dataset is challenging because of the uncontrolled environment in the captured 

videos, and it is widely being used by researchers working on the video classification 

problem. Therefore, it is easy to compare most of the existing literature based on this da-

taset. The existing works employing UCF-101 are compared in Table 6, where the methods 

are arranged in ascending order based on the performance. The results reported in Table 

6 are taken from the existing studies in the literature. 

Table 6. Comparison of video classification method on UCF-101. 

Method Accuracy 

LRCN [48] 82.9 

DT + MVSV [125] 83.5 

LSTM–Composite [49] 84.3 

FSTCN [126] 88.1 

C3D [127] 85.2 

iDT + HSV [128] 87.9 

Two-Stream [61] 88.0 

RNN-FV [129] 88.0 

LSTM [50] 88.6 

MultiSource CNN [130] 89.1 

Image-Based [55] 89.6 

TDD [35] 90.3 

Multilayer and Multimodal Fusion [110] 91.6 

Transformation CNN [131] 92.4 

Multi-Stream [112] 92.6 

Key Volume Mining [132] 92.7 

Convolutional Two-Stream [62] 93.5 

Temporal Segment Networks [39] 94.2 

4.4. Comparison of Different Deep Learning Architectures 

In Table 7, some important deep learning architectures are compared in terms of per-

formance and computational requirement. These architectures are the basis of develop-

ment of different deep learning models for video classification, and from this comparison, 

an estimation of the requirement of computational cost for each of these architectures can 

be drawn. 

Table 7. Performance comparison of different deep architectures [127]. 

Architecture Name Parameters Error Rate Depth Category Year 

LeNet 0.060 M 
[dist]MNIST: 0.8 

MNIST: 0.95 
5 Spatial exploitation 1998 

AlexNet 60 M ImageNet: 16.4 8 Spatial exploitation 2012 

ZfNet 60 M ImageNet: 11.7 8 Spatial exploitation 2014 

VGG 138 M ImageNet: 7.3 19 Spatial exploitation 2014 

GoogLeNet 4 M ImageNet: 6.7 22 Spatial exploitation 2015 

Inception-V3 23.6 M 

ImageNet: 3.5 

multi-crop: 3.58 

Single-Crop: 5.6 

159 Depth + width 2015 

Highway networks 2.3 M CIFAR-10: 7.76 19 Depth + multi-path 2015 
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Inception-V4 35 M ImageNet: 4.01 70 Depth +width 2016 

Inception-ResNet 55.8 M ImageNet: 3.52 572 Depth + width + multi-path 2016 

ResNet 
25.6 M 

1.7 M 

ImageNet: 3.6 

CIFAR-10: 6.43 

152 

110 
Depth + multi-path 2016 

DelugeNet 20.2 M 
CIFAR-10: 3.76 

CIFAR-100: 19.02 
146 Multi-path 2016 

FractalNet 38.6 M 

CIFAR-10: 7.27 

CIFAR-10 +: 4.60 

CIFAR-10 ++: 4.59 

CIFAR-100: 28.20 

CIFAR-100 +: 22.49 

CIFAR100 ++: 21.49 

20 

40 
Multi-path 2016 

WideResNet 36.5 M 
CIFAR-10: 3.89 

CIFAR-100: 18.85 

28 

– 
Width 2016 

Xception 22.8 M ImageNet: 0.055 126 Width 2017 

Residual attention neural network 8.6 M 

CIFAR-10: 3.90 

CIFAR-100: 20.4 

ImageNet: 4.8 

452 Attention 2017 

ResNeXt 68.1 M 

CIFAR-10: 3.58 

CIFAR-100: 17.31 

ImageNet: 4.4 

29 

- 

101 

Width 2017 

Squeeze and excitation networks 27.5 M ImageNet: 2.3 152 Feature-map exploitation 2017 

DenseNet 

25.6 M 

25.6 M 

15.3 M 

15.3 M 

CIFAR-10 +: 3.46 

CIFAR100 +:17.18 

CIFAR-10: 5.19 

CIFAR-100: 19.64 

190 

190 

250 

250 

Multi-path 2017 

PolyNet 92 M 
ImageNet: Single:4.25 

Multi:3.45 

– 

– 
Width 2017 

PyramidalNet 

116.4 M 

27.0 M 

27.0 M 

ImageNet: 4.7 

CIFAR-10: 3.48 

CIFAR-100: 17.01 

200 

164 

164 

Width 2017 

Convolutional block attention Module 

(ResNeXt101 (32 × 4d) + CBAM) 
48.96 M ImageNet: 5.59 101 Attention 2018 

Concurrent spatial and channel excita-

tion mechanism 
– 

MALC: 0.12 

Visceral: 0.09 
– Attention 2018 

Channel boosted CNN – – – Channel boosting 2018 

Competitive squeeze and excitation net-

work CMPE-SE-WRN-28 

36.92 M 

36.90 M 

CIFAR-10: 3.58 

CIFAR-100: 18.47 

152 

152 
Feature-map exploitation 2018 

5. Key Findings 

From the analysis of the existing literature, the following key findings are drawn for 

video classification task: (i) The visual description works better than the text and the audio 

description, and the combination of all modalities can contribute to better performance 

with an increase in computational cost. (ii) The architectures employing CNN/RNN for 

feature extraction have the ability to perform better than handcrafted features provided 

that enough data are available for training. (iii) Tensor-Train layer-based RNN such as 

LSTM and GRU perform better than the plain RNN architectures for video classification. 

(iv) It is sometimes necessary to use optical flow for datasets such as UCF-101. (v) It is not 

always helpful to use optical flow, especially for the case of videos taken from the wild, 

e.g., Sports-1 M. (vi) It is important to use a sophisticated sequence processing architecture 

such as LSTM to take advantage of optical flow. (vii) LSTMs, when applied on both the 
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optical flow and the image frames, yield the highest performance measure for the Sports-

1M benchmark dataset. (viii) Augmenting optical flow and RGB input helps in improving 

the performance. (ix) Optical flow modality provides complementary information. (x) The 

high computational requirement of optical flow limits its use in real-time systems. (xi) 

Multi-stream multi-class fusion can perform better than average fusion, weighted fusion, 

kernel average fusion, MKL fusion, and logistic regression fusion on datasets such as 

UCF-101 and CCV. (xii) In 3D group convolutional networks, the volume of channel in-

teractions plays a vital role in achieving a high accuracy. (xiii) The factorization of 3D 

convolutions by separating spatiotemporal interactions and channel interactions can lead 

to an improvement in accuracy and a decrease in the computational cost. (xiv) Further, 

3D channel-separated convolutions results in a kind of regularization and prevents over-

fitting. (xv) Popular frameworks of conventional semi-supervised algorithms (which were 

originally developed for 2D images) are unable to obtain good results for 3D video cate-

gorization. (xvi) For semi-supervised learning, a calibrated employment of the object ap-

pearance cues keenly improves the accuracy of the 3D-CNN models. 

6. Conclusions 

This article reviews deep learning approaches for the task of video classification. 

Some of the notable studies are summarized in detail, and the key findings in these studies 

are highlighted. The key findings are reported as an effort to help the research community 

in developing new deep learning models for video classification. 

The latest developments in deep learning models have demonstrated the potential of 

these approaches for the video classification task. However, most of the existing deep 

learning architectures for video classification are basically adopted from the favored deep 

learning architectures in image/speech domain. Therefore, most of the existing architec-

tures remain insufficient to deal with the more complicated nature of video data that con-

tain rich information in the form of spatial, temporal, and acoustic clues. This calls for 

attention towards the need for a tailored network capable of effectively modeling the spa-

tial, temporal, and acoustic information. Moreover, training CNN/RNN models requires 

labeled datasets, and acquiring those datasets is usually time-consuming and expensive, 

and hence, a promising research direction is to utilize the considerable amount of unla-

beled video data to derive better video representations. 

Furthermore, the deep learning approaches are outperforming other state-of-the-art 

approaches for video classification. The deep learning Google trend is still growing, and 

it is still above the trend for some other very well-known machine learning algorithms, as 

shown in Figure 9a. However, the recent developments in deep learning approaches are 

still under-evaluated and require further investigations for the video classification task. 

One such example is geometric deep learning approaches, and the worldwide research 

interest in this specific topic is shown in Figure 9b, which describes that this topic is still 

confined to some states of U.S., Europe, and India. Therefore, it has yet to be developed 

and investigated further. The use of geometric deep learning in extracting rich spatial in-

formation from videos can also be a new research direction as a future work for better 

accuracy in the video classification task. 
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Figure 9. (a) Google trend on deep learning vs. some other state-of-the-art methods. (b) Worldwide 

research interest in geometric deep learning. 
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