Study of the Effect of Water Content in Deep Eutectic Phases on the Extraction of Fatty Acids from Microalgae Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of DES
2.2. Primary Extraction and Sample Collection
2.3. Transesterification
2.4. Gas Chromatography
2.5. Infrared Spectroscopy
3. Results and Discussion
3.1. Characterization of DES with FTIR
3.2. Formation Temperature of DES
3.3. Extractive Capacity of DES
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial Applications of Microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Mourelle, M.L.; Gómez, C.P.; Legido, J.L. The Potential Use of Marine Microalgae and Cyanobacteria in Cosmetics and Thalassotherapy. Cosmetics 2017, 4, 46. [Google Scholar] [CrossRef]
- Metsoviti, M.N.; Nikolaos, K.; Karapanagiotidis, I.T.; Papapolymerou, G. Current and Potential Applications of Microalgae: A Mini Review. Oceanogr. Fish. Open Access J. 2019, 11, 555811. [Google Scholar] [CrossRef]
- Monika; Banga, S.; Pathak, V.V. Biodiesel Production from Waste Cooking Oil: A Comprehensive Review on the Application of Heterogenous Catalysts. Energy Nexus 2023, 10, 100209. [Google Scholar] [CrossRef]
- Al-Zuhair, S. Production of Biodiesel: Possibilities and Challenges. Biofuels Bioprod. Biorefining 2007, 1, 57–66. [Google Scholar] [CrossRef]
- Nazloo, E.K.; Moheimani, N.R.; Ennaceri, H. Biodiesel Production from Wet Microalgae: Progress and Challenges. Algal Res. 2022, 68, 102902. [Google Scholar] [CrossRef]
- Kim, J.; Yoo, G.; Lee, H.; Lim, J.; Kim, K.; Kim, C.W.; Park, M.S.; Yang, J.W. Methods of Downstream Processing for the Production of Biodiesel from Microalgae. Biotechnol. Adv. 2013, 31, 862–876. [Google Scholar] [CrossRef]
- Smith, A.D.; Warren, M.J.; Refsum, H. Vitamin B12. In Advances in Food and Nutrition Research; Academic Press Inc.: Cambridge, MA, USA, 2018; Volume 83, pp. 215–279. [Google Scholar]
- Oh, R.C.; Brown, D.L. Vitamin B 12 Deficiency Clinical Manifestations of Vitamin B 12 Deficiency. Am. Fam. Physician 2003, 67, 979–986. [Google Scholar]
- Grossman, A. Nutrient Acquisition: The Generation of Bioactive Vitamin B12 by Microalgae. Curr. Biol. 2016, 26, R319–R321. [Google Scholar] [CrossRef]
- Byelashov, O.A.; Sinclair, A.J.; Kaur, G. Dietary Sources, Current Intakes, and Nutritional Role of Omega-3 Docosapentaenoic Acid. Lipid Technol. 2015, 27, 79–82. [Google Scholar] [CrossRef]
- Troesch, B.; Eggersdorfer, M.; Laviano, A.; Rolland, Y.; Smith, A.D.; Warnke, I.; Weimann, A.; Calder, P.C. Expert Opinion on Benefits of Long-Chain Omega-3 Fatty Acids (DHA and EPA) in Aging and Clinical Nutrition. Nutrients 2020, 12, 2555. [Google Scholar] [CrossRef] [PubMed]
- Jakhwal, P.; Kumar Biswas, J.; Tiwari, A.; Kwon, E.E.; Bhatnagar, A. Genetic and Non-Genetic Tailoring of Microalgae for the Enhanced Production of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA)—A Review. Bioresour. Technol. 2022, 344, 126250. [Google Scholar] [CrossRef] [PubMed]
- Sharntell, M.; Water, S.U.; Rajagopaul, R. Evaluation and Selection of an Appropriate Automatic Coagulant Dose Control System for Water Treatment Plants; Water Research Commission: Petroria, South Africa, 2016. [Google Scholar]
- Shin, H.Y.; Shim, S.H.; Ryu, Y.J.; Yang, J.H.; Lim, S.M.; Lee, C.G. Lipid Extraction from Tetraselmis Sp. Microalgae for Biodiesel Production Using Hexane-Based Solvent Mixtures. Biotechnol. Bioprocess Eng. 2018, 23, 16–22. [Google Scholar] [CrossRef]
- Mehariya, S.; Fratini, F.; Lavecchia, R.; Zuorro, A. Green Extraction of Value-Added Compounds Form Microalgae: A Short Review on Natural Deep Eutectic Solvents (NaDES) and Related Pre-Treatments. J. Environ. Chem. Eng. 2021, 9, 105989. [Google Scholar] [CrossRef]
- Moghadam, A.J.; Aghababai Beni, A. Comparison of Biodiesel Production from Dunaliella Salina Teodor and Chlorella Vulgaris Microalgae Using Supercritical Fluid Technique. S. Afr. J. Chem. Eng. 2022, 41, 150–160. [Google Scholar] [CrossRef]
- Canela, A.P.R.F.; Rosa, P.T.V.; Marques, M.O.M.; Meireles, M.A.A. Supercritical Fluid Extraction of Fatty Acids and Carotenoids from the Microalgae Spirulina Maxima. Ind. Eng. Chem. Res. 2002, 41, 3012–3018. [Google Scholar] [CrossRef]
- Eppink, M.H.M.; Ventura, S.P.M.; Coutinho, J.A.P.; Wijffels, R.H. Multiproduct Microalgae Biorefineries Mediated by Ionic Liquids. Trends Biotechnol. 2021, 39, 1131–1143. [Google Scholar] [CrossRef] [PubMed]
- Chiappe, C.; Mezzetta, A.; Pomelli, C.S.; Iaquaniello, G.; Gentile, A.; Masciocchi, B. Development of Cost-Effective Biodiesel from Microalgae Using Protic Ionic Liquids. Green Chem. 2016, 18, 4982–4989. [Google Scholar] [CrossRef]
- Piedade, P.J.; Kochańska, E.; Lukasik, R.M. Biodegradable Ionic Liquids in Service of Biomass Upgrade. Curr. Opin. Green Sustain. Chem. 2022, 35, 100609. [Google Scholar] [CrossRef]
- Zhekenov, T.; Toksanbayev, N.; Kazakbayeva, Z.; Shah, D.; Mjalli, F.S. Formation of Type III Deep Eutectic Solvents and Effect of Water on Their Intermolecular Interactions. Fluid Phase Equilibria 2017, 441, 43–48. [Google Scholar] [CrossRef]
- Cao, D.; Liu, Q.; Jing, W.; Tian, H.; Yan, H.; Bi, W.; Jiang, Y.; Chen, D.D.Y. Insight into the Deep Eutectic Solvent Extraction Mechanism of Flavonoids from Natural Plant. ACS Sustain. Chem. Eng. 2020, 8, 19169–19177. [Google Scholar] [CrossRef]
- Zaib, Q.; Masoumi, Z.; Aich, N.; Kyung, D. Review of the Synthesis and Applications of Deep Eutectic Solvent-Functionalized Adsorbents for Water Treatment. J. Environ. Chem. Eng. 2023, 11, 110214. [Google Scholar] [CrossRef]
- Moreno Martínez, P.; Ortiz-Martínez, V.M.; Sánchez Segado, S.; Salar-García, M.J.; de los Ríos, A.P.; Hernández Fernández, F.J.; Lozano-Blanco, L.J.; Godínez, C. Deep Eutectic Solvents for the Extraction of Fatty Acids from Microalgae Biomass: Recovery of Omega-3 Eicosapentaenoic Acid. Sep. Purif. Technol. 2022, 300, 121842. [Google Scholar] [CrossRef]
- El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Basics and Properties of Deep Eutectic Solvents: A Review. Environ. Chem. Lett. 2021, 19, 3397–3408. [Google Scholar] [CrossRef]
- Martínez, G.M.; Townley, G.G.; Martínez-Espinosa, R.M. Controversy on the Toxic Nature of Deep Eutectic Solvents and Their Potential Contribution to Environmental Pollution. Heliyon 2022, 8, e12567. [Google Scholar] [CrossRef] [PubMed]
- Gabriele, F.; Chiarini, M.; Germani, R.; Tiecco, M.; Spreti, N. Effect of Water Addition on Choline Chloride/Glycol Deep Eutectic Solvents: Characterization of Their Structural and Physicochemical Properties. J. Mol. Liq. 2019, 291, 111301. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.; Wijffels, R.H.; Eppink, M.H.M. Lipid Extraction from Fresh Nannochloropsis Oceanica Using Semi-Hydrophobic Eutectic Solvents. Algal Res. 2023, 72, 103117. [Google Scholar] [CrossRef]
- Sivrikaya, S. A Novel Vortex-Assisted Liquid Phase Microextraction Method for Parabens in Cosmetic Oil Products Using Deep Eutectic Solvent. Int. J. Environ. Anal. Chem. 2019, 99, 1575–1585. [Google Scholar] [CrossRef]
- Vrancken, N.; Sergeant, S.; Vereecke, G.; Doumen, G.; Holsteyns, F.; Terryn, H.; De Gendt, S.; Xu, X.M. Superhydrophobic Breakdown of Nanostructured Surfaces Characterized in Situ Using ATR-FTIR. Langmuir 2017, 33, 3601–3609. [Google Scholar] [CrossRef]
- Molino, A.; Martino, M.; Larocca, V.; Di Sanzo, G.; Spagnoletta, A.; Marino, T.; Karatza, D.; Iovine, A.; Mehariya, S.; Musmarra, D. Eicosapentaenoic Acid Extraction from Nannochloropsis Gaditana Using Carbon Dioxide at Supercritical Conditions. Mar. Drugs 2019, 17, 132. [Google Scholar] [CrossRef] [PubMed]
DES | Molar Composition (Abbreviation) | % (m/m) Choline Chloride | % (m/m) Ethylene Glycol | % (m/m) Fructose | % (m/m) Water |
---|---|---|---|---|---|
Choline chloride-ethylene glycol-water | 1:2:0 (CE0) | 52.9 | 47.1 | - | 0.0 |
1:2:1 (CE1) | 49.5 | 44.1 | - | 6.4 | |
1:2:2 (CE2) | 46.6 | 41.4 | - | 12.0 | |
1:2:3 (CE3) | 43.9 | 39.1 | - | 17.0 | |
Choline chloride-fructose-water | 2:1:1 (CF1) | 56.4 | - | 36.4 | 7.2 |
2:1:2 (CF2) | 52.5 | - | 33.9 | 13.6 | |
2:1:3 (CF3) | 49.2 | - | 31.8 | 19.0 |
HBA | HBD | ||
---|---|---|---|
Name | Chemical Structure | Name | Chemical Structure |
Choline chloride | Ethylene glycol | ||
Fructose |
DES | Formation Temperature (°C) |
---|---|
CE0 | 63 |
CE1 | 53 |
CE2 | 60 |
CE3 | 45 |
CF1 | 92 |
CF2 | 84 |
CF3 | 73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Soto, P.A.; Saavedra de Santiago, M.I.; Salar-García, M.J.; Sánchez-Segado, S.; Ortiz-Martínez, V.M. Study of the Effect of Water Content in Deep Eutectic Phases on the Extraction of Fatty Acids from Microalgae Biomass. Appl. Sci. 2023, 13, 12680. https://doi.org/10.3390/app132312680
García-Soto PA, Saavedra de Santiago MI, Salar-García MJ, Sánchez-Segado S, Ortiz-Martínez VM. Study of the Effect of Water Content in Deep Eutectic Phases on the Extraction of Fatty Acids from Microalgae Biomass. Applied Sciences. 2023; 13(23):12680. https://doi.org/10.3390/app132312680
Chicago/Turabian StyleGarcía-Soto, Pedro A., María I. Saavedra de Santiago, María J. Salar-García, Sergio Sánchez-Segado, and Víctor M. Ortiz-Martínez. 2023. "Study of the Effect of Water Content in Deep Eutectic Phases on the Extraction of Fatty Acids from Microalgae Biomass" Applied Sciences 13, no. 23: 12680. https://doi.org/10.3390/app132312680
APA StyleGarcía-Soto, P. A., Saavedra de Santiago, M. I., Salar-García, M. J., Sánchez-Segado, S., & Ortiz-Martínez, V. M. (2023). Study of the Effect of Water Content in Deep Eutectic Phases on the Extraction of Fatty Acids from Microalgae Biomass. Applied Sciences, 13(23), 12680. https://doi.org/10.3390/app132312680