Effect of Plasma Treatment on Root Canal Sealers’ Adhesion to Intraradicular Dentin—A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Search Strategy
2.3. Selection of the Studies
2.4. Data Extraction
2.5. Risk-of-Bias Assessment
3. Results
3.1. NTP Treatment Methodology
3.2. Dentin Sealers’ Adhesion Assessment
- -
- (a)
- (b)
- Slice thickness and canal segments: The thickness of the slices varied between 1 and 2 mm. Yeter, et al. [23] did not clearly describe the slice thickness. Menezes, et al. [24] used apical, middle, and coronal thirds, Garlapati, et al. [25] used only the middle third, and Yeter, et al. [23] used the coronal and middle thirds.
- (c)
- Plunger diameter, speed, and direction: Menezes, et al. [24] used three plunger sizes to equal the diameter of each root third, Garlapati, et al. [25] used a plunger of 1 mm, and Yeter, et al. [23] did not mention the plunger diameter used. The plunger’s loading direction was unclear in two studies. Yeter, et al. [23] applied an apical–coronal direction. The crosshead speed varied between 0.5 mm/min and 1 mm/min.
- -
- Contact angle analysis [13].
3.3. Influence of NTP on Dentin Sealers’ Adhesion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Society of Endodontology. Quality guidelines for endodontic treatment: Consensus report of the European Society of Endodontology. Int. Endod. J. 2006, 39, 921–930. [Google Scholar] [CrossRef]
- Abdellatif, D.; Amato, A.; Calapaj, M.; Pisano, M.; Iandolo, A. A novel modified obturation technique using biosealers: An ex vivo study. J. Conserv. Dent. 2021, 24, 369–373. [Google Scholar] [CrossRef]
- Schwartz, R.S. Adhesive dentistry and endodontics. Part 2: Bonding in the root canal system-the promise and the problems: A review. J. Endod. 2006, 32, 1125–1134. [Google Scholar] [CrossRef]
- Komabayashi, T.; Colmenar, D.; Cvach, N.; Bhat, A.; Primus, C.; Imai, Y. Comprehensive review of current endodontic sealers. Dent. Mater. J. 2020, 39, 703–720. [Google Scholar] [CrossRef]
- Fernandes Zancan, R.; Hadis, M.; Burgess, D.; Zhang, Z.J.; Di Maio, A.; Tomson, P.; Hungaro Duarte, M.A.; Camilleri, J. A matched irrigation and obturation strategy for root canal therapy. Sci. Rep. 2021, 11, 4666. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.; Canabarro, A.; Andrade, M.; Cavalcante, D.M.; Von Stetten, O.; Fidalgo, T.; De-Deus, G. Dislodgment Resistance of Bioceramic and Epoxy Sealers: A Systematic Review and Meta-analysis. J. Evid.-Based Dent. Pract. 2019, 19, 221–235. [Google Scholar] [CrossRef]
- BaechtoldI, M.S.; MazaroI, A.F.; CrozetaI, B.M.; LeonardiI, D.P.; TomazinhoI, F.S.F.; Baratto-FilhoI, F.; HaragushikuI, G.A. Adhesion and formation of tags from MTA Fillapex compared with AH Plus® cement. RSBO 2014, 11, 71–76. [Google Scholar]
- Silva, E.J.; Rosa, T.P.; Herrera, D.R.; Jacinto, R.C.; Gomes, B.P.; Zaia, A.A. Evaluation of cytotoxicity and physicochemical properties of calcium silicate-based endodontic sealer MTA Fillapex. J. Endod. 2013, 39, 274–277. [Google Scholar] [CrossRef]
- Sagsen, B.; Ustün, Y.; Demirbuga, S.; Pala, K. Push-out bond strength of two new calcium silicate-based endodontic sealers to root canal dentine. Int. Endod. J. 2011, 44, 1088–1091. [Google Scholar] [CrossRef] [PubMed]
- Al-Haddad, A.; Che Ab Aziz, Z.A. Bioceramic-Based Root Canal Sealers: A Review. Int. J. Biomater. 2016, 2016, 9753210. [Google Scholar] [CrossRef] [PubMed]
- Silva Almeida, L.H.; Moraes, R.R.; Morgental, R.D.; Pappen, F.G. Are Premixed Calcium Silicate-based Endodontic Sealers Comparable to Conventional Materials? A Systematic Review of In Vitro Studies. J. Endod. 2017, 43, 527–535. [Google Scholar] [CrossRef]
- Lata, S.; Chakravorty, S.; Mitra, T.; Pradhan, P.K.; Mohanty, S.; Patel, P.; Jha, E.; Panda, P.K.; Verma, S.K.; Suar, M. Aurora Borealis in dentistry: The applications of cold plasma in biomedicine. Mater. Today Bio 2022, 13, 100200. [Google Scholar] [CrossRef] [PubMed]
- Prado, M.D.; Roizenblit, R.N.; Pacheco, L.V.; Barbosa, C.A.d.M.; Lima, C.O.d.; Simão, R.A. Effect of Argon Plasma on Root Dentin after Use of 6% NaOCl. Braz. Dent. J. 2016, 27, 41–45. [Google Scholar] [CrossRef][Green Version]
- Ritts, A.C.; Li, H.; Yu, Q.; Xu, C.; Yao, X.; Hong, L.; Wang, Y. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration. Eur. J. Oral Sci. 2010, 118, 510–516. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Y.; Sky Driver, M.; Caruso, A.N.; Yu, Q.; Wang, Y. Surface modification of several dental substrates by non-thermal, atmospheric plasma brush. Dent. Mater. 2013, 29, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, A.G.; Graham, E.M.; Baxter, R.L.; Jones, A.C.; Richardson, P.R.; Meek, G.; Campbell, G.A.; Aitken, A.; Baxter, H.C. Plasma cleaning of dental instruments. J. Hosp. Infect. 2004, 56, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.H.; Lee, H.W.; Cho, S.H.; Lee, J.K.; Jeon, Y.C.; Kim, G.C. High-efficiency tooth bleaching using non-thermal atmospheric pressure plasma with low concentration of hydrogen peroxide. J. Appl. Oral Sci. Rev. FOB 2013, 21, 265–270. [Google Scholar] [CrossRef]
- Jungbauer, G.; Moser, D.; Müller, S.; Pfister, W.; Sculean, A.; Eick, S. The Antimicrobial Effect of Cold Atmospheric Plasma against Dental Pathogens-A Systematic Review of In-Vitro Studies. Antibiotics 2021, 10, 211. [Google Scholar] [CrossRef]
- Lehmann, A.; Rueppell, A.; Schindler, A.; Zylla, I.-M.; Seifert, H.J.; Nothdurft, F.; Hannig, M.; Rupf, S. Modification of Enamel and Dentin Surfaces by Non-Thermal Atmospheric Plasma. Plasma Process. Polym. 2013, 10, 262–270. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. J. Clin. Epidemiol. 2009, 62, 1006–1012. [Google Scholar] [CrossRef]
- Augusto, C.M.; Cunha Neto, M.A.; Pinto, K.P.; Barbosa, A.F.A.; Silva, E.; Dos Santos, A.P.P.; Sassone, L.M. Influence of the use of chelating agents as final irrigant on the push-out bond strength of epoxy resin-based root canal sealers: A systematic review. Aust. Endod. J. 2022, 48, 347–363. [Google Scholar] [CrossRef] [PubMed]
- Prado, M.; Menezes, M.S.O.; Gomes, B.; Barbosa, C.A.M.; Athias, L.; Simão, R.A. Surface modification of gutta-percha cones by non-thermal plasma. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 68, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Yeter, K.Y.; Gunes, B.; Terlemez, A.; Seker, E. The effect of nonthermal plasma on the push-out bond strength of two different root canal sealers. Niger. J. Clin. Pract. 2020, 23, 811–816. [Google Scholar] [CrossRef]
- Menezes, M.; Prado, M.; Gomes, B.; Gusman, H.; Simão, R. Effect of photodynamic therapy and non-thermal plasma on root canal filling: Analysis of adhesion and sealer penetration. J. Appl. Oral Sci. Rev. FOB 2017, 25, 396–403. [Google Scholar] [CrossRef]
- Garlapati, R.; Chandra, K.M.; Gali, P.K.; Nagesh, B.; Vemuri, S.; Gomathi, N. Effect of nonthermal atmospheric plasma on the push-out bond strength of epoxy resin-based and bioceramic root canal sealers: An in vitro study. J. Conserv. Dent. JCD 2021, 24, 41–45. [Google Scholar] [CrossRef]
- Brichko, J.; Burrow, M.F.; Parashos, P. Design Variability of the Push-out Bond Test in Endodontic Research: A Systematic Review. J. Endod. 2018, 44, 1237–1245. [Google Scholar] [CrossRef]
- Silva, E.; Carvalho, N.K.; Prado, M.C.; Senna, P.M.; Souza, E.M.; De-Deus, G. Bovine teeth can reliably substitute human dentine in an intra-tooth push-out bond strength model? Int. Endod. J. 2019, 52, 1063–1069. [Google Scholar] [CrossRef]
- Neelakantan, P.; Subbarao, C.; Subbarao, C.V.; De-Deus, G.; Zehnder, M. The impact of root dentine conditioning on sealing ability and push-out bond strength of an epoxy resin root canal sealer. Int. Endod. J. 2011, 44, 491–498. [Google Scholar] [CrossRef]
- Ferreira, I.; Braga, A.C.; Pina-Vaz, I. Effect of Gutta-percha Solvents on the Bond Strength of Sealers to Intraradicular Dentin: A Systematic Review. Iran. Endod. J. 2021, 16, 17–25. [Google Scholar] [PubMed]
- Prado, M.; de Assis, D.F.; Gomes, B.P.; Simão, R.A. Effect of disinfectant solutions on the surface free energy and wettability of filling material. J. Endod. 2011, 37, 980–982. [Google Scholar] [CrossRef] [PubMed]
- Gade, V.J.; Belsare, L.D.; Patil, S.; Bhede, R.; Gade, J.R. Evaluation of push-out bond strength of endosequence BC sealer with lateral condensation and thermoplasticized technique: An in vitro study. J. Conserv. Dent. 2015, 18, 124–127. [Google Scholar] [CrossRef]
- de Assis, D.F.; Prado, M.; Simão, R.A. Evaluation of the interaction between endodontic sealers and dentin treated with different irrigant solutions. J. Endod. 2011, 37, 1550–1552. [Google Scholar] [CrossRef]
- Qian, W.; Shen, Y.; Haapasalo, M. Quantitative analysis of the effect of irrigant solution sequences on dentin erosion. J. Endod. 2011, 37, 1437–1441. [Google Scholar] [CrossRef]
- Cha, S.; Park, Y.S. Plasma in dentistry. Clin. Plasma Med. 2014, 2, 4–10. [Google Scholar] [CrossRef]
- Šimončicová, J.; Kryštofová, S.; Medvecká, V.; Ďurišová, K.; Kaliňáková, B. Technical applications of plasma treatments: Current state and perspectives. Appl. Microbiol. Biotechnol. 2019, 103, 5117–5129. [Google Scholar] [CrossRef] [PubMed]
- Samanta, K.; Jassal, M.; Agrawal, A.K. Atmospheric pressure glow discharge plasma and its applications in textile. Indian J. Fibre Text. Res. 2006, 31, 83–98. [Google Scholar]
- Kim, J.-H.; Lee, M.-A.; Han, G.-J.; Cho, B.-H. Plasma in dentistry: A review of basic concepts and applications in dentistry. Acta Odontol. Scand. 2014, 72, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.C.; Kostov, K.G.; Pessoa, R.S.; de Abreu, G.M.A.; Lima, G.d.M.G.; Figueira, L.W.; Koga-Ito, C.Y. Applications of Cold Atmospheric Pressure Plasma in Dentistry. Appl. Sci. 2021, 11, 1975. [Google Scholar] [CrossRef]
- Fu, Q.; Gabriel, M.; Schmidt, F.; Müller, W.D.; Schwitalla, A.D. The impact of different low-pressure plasma types on the physical, chemical and biological surface properties of PEEK. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2021, 37, e15–e22. [Google Scholar] [CrossRef] [PubMed]
- Abreu, J.L.B.d.; Prado, M.; Simão, R.A.; Silva, E.M.d.; Dias, K.R.H.C. Effect of non-thermal argon plasma on bond strength of a self-etch adhesive system to NaOCl-Treated Dentin. Braz. Dent. J. 2016, 27, 446–451. [Google Scholar] [CrossRef]
- Sevilla, P.; Lopez-Suarez, C.; Pelaez, J.; Tobar, C.; Rodriguez-Alonso, V.; Suarez, M.J. Influence of low-pressure plasma on the surface properties of CAD-CAM leucite-reinforced feldspar and resin matrix ceramics. Appl. Sci. 2020, 10, 8856. [Google Scholar] [CrossRef]
- Strazzi-Sahyon, H.B.; Suzuki, T.Y.U.; Lima, G.Q.; Delben, J.A.; Cadorin, B.M.; Nascimento, V.D.; Duarte, S.; Santos, P.H.D. In vitro study on how cold plasma affects dentin surface characteristics. J. Mech. Behav. Biomed. Mater. 2021, 123, 104762. [Google Scholar] [CrossRef] [PubMed]
- Izdebska-Podsiadły, J. Study of Argon and Oxygen Mixtures in Low Temperature Plasma for Improving PLA Film Wettability. Coatings 2023, 13, 279. [Google Scholar] [CrossRef]
Database | Search Strategy | Findings |
---|---|---|
PubMed | #1 ((non-thermal plasma[Title/Abstract]) or (nonthermal plasma[Title/Abstract]) or (Plasma Gases[Title/Abstract]) or (plasma treatment[Title/Abstract]) or plasma[Title/Abstract] or (Plasma Gases[MeSH Terms]) or plasma[MeSH Terms]) | |
#2 ((dental cements[MeSH Terms]) or (root canal sealants[MeSH Terms]) or (dental cement *[Title/Abstract]) or (root canal seal *[Title/Abstract]) or (endodontic seal *[Title/Abstract]) or (root canal fill *[Title/Abstract]) or (seal*[Title/Abstract])) | ||
#3 ((endodontic *[Title/Abstract]) or (root canal[Title/Abstract]) or (endodontic treatment[Title/Abstract]) or (root canal treatment[Title/Abstract]) or (Root Canal Therapy[Title/Abstract]) or (Root Canal Therapy[MeSH Terms]) or (Endodontics[MeSH Terms]) | ||
#1 and #2 and #3 | 96 | |
Scopus | #1 TITLE-ABS-KEY(“non-thermal plasma” or “nonthermal plasma” or “Plasma Gases” or “plasma treatment” or plasma) | |
#2 TITLE-ABS-KEY(“dental cements” or “root canal sealants” or “dental cement *” or “root canal seal *” or “endodontic seal *” or “root canal fill *” or “seal *”) | ||
#3 TITLE-ABS-KEY(“endodontic *” or “root canal” or “endodontic treatment” or “root canal treatment” or “Root Canal Therapy”) | ||
#1 and #2 and #3 | 140 | |
Web of Science | #1 TS = (“non-thermal plasma” or “nonthermal plasma” or “Plasma Gases” or “plasma treatment” or plasma) | |
#2 TS = (“dental cements” or “root canal sealants” or “dental cement *” or “root canal seal*” or “endodontic seal *” OR “root canal fill *” or “seal *”) | ||
#3 TS = (“endodontic *” or “root canal” or “endodontic treatment” or “root canal treatment” or “Root Canal Therapy”) | ||
#1 and #2 and #3 | 83 |
Author (Year) | Randomization | Blinding | Standardization of Sample Selection | Standardization Preparation (Single Operator) | Reporting of Data |
---|---|---|---|---|---|
Prado et al., 2016 | High | High | Low | High | Low |
Menezes et al., 2017 | High | High | Low | High | Low |
Yeter et al., 2020 | High | High | Low | High | Low |
Garlapati et al., 2021 | High | High | Low | High | Low |
Author | Tooth Type | Non-Thermal Treatment | Methodology for Testing Dentin-Sealer Adhesion Capacity | Main Results | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bond Strength Analysis—Push-Out Test | Contact Angle Analysis | |||||||||||||||
Gas | Plasma Mode | Application Time | Distance | Power | Pressure | Filling Material | Storage and Duration | Canal Segments | Slice Thickness | Plunger Diameter | Crosshead Speed | Plunger Loading Direction | ||||
Prado et al., 2016 | Bovine incisors | Argon | Vacuum | 30 s | - | 60 W | Pbase = 2 Pa Pwork = 10 Pa | AH Plus | - | - | - | - | - | - | Wettability—contact angle between the dentin and the AH Plus sealer | Argon plasma increased the wettability of AH Plus, favoring its bonding to dentin |
Menezes et al., 2017 | Human single-rooted premolars | Mixture of 98% He and 2% O2 | Jet | 1 min | 5 mm | - | 6 bars | GP + AH Plus GP + MTA Fillapex | 100% humidity for 2 days | Coronal; middle; apical | 1 mm | 0.76 mm coronal; 0.60 mm middle; 0.40 mm apical | 0.5 mm/min | Unclear | - | Regarding AH Plus, bond strength was similar in the plasma and control groups. For MTA Fillapex, the bond strength decreased with plasma treatment |
Yeter et al., 2020 | Human single-rooted mandibular premolars | Argon | Jet | 30 s | 5 mm | - | 2.5 bars | GP + AH Plus GP + Endosequence BC | 100% humidity for 7 days | Coronal; middle | Unclear | Unclear | 0.5 mm/min | Apical–coronal | - | Argon plasma did not influence the bond strength of AH Plus to dentin. The Endosequence BC showed a better bond strength than the AH Plus after argon plasma treatment |
Garlapati et al., 2021 | Human single-rooted mandibular premolar | Mixture of He and Ar | Vacuum | 30 s | - | 60 W | Pbase = 2 Pa Pwork = 10 Pa | GP + AH Plus GP + BioRoot RCS | Not mentioned | Middle | 2 mm | 1 mm | 1 mm/min | Unclear | - | Plasma treatment enhanced the bond strength of BioRoot RCS and AH Plus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, I.; Lopes, C.; Ferreira, A.; Vaz, F.; Pina-Vaz, I.; Martín-Biedma, B. Effect of Plasma Treatment on Root Canal Sealers’ Adhesion to Intraradicular Dentin—A Systematic Review. Appl. Sci. 2023, 13, 8655. https://doi.org/10.3390/app13158655
Ferreira I, Lopes C, Ferreira A, Vaz F, Pina-Vaz I, Martín-Biedma B. Effect of Plasma Treatment on Root Canal Sealers’ Adhesion to Intraradicular Dentin—A Systematic Review. Applied Sciences. 2023; 13(15):8655. https://doi.org/10.3390/app13158655
Chicago/Turabian StyleFerreira, Inês, Cláudia Lopes, Armando Ferreira, Filipe Vaz, Irene Pina-Vaz, and Benjamín Martín-Biedma. 2023. "Effect of Plasma Treatment on Root Canal Sealers’ Adhesion to Intraradicular Dentin—A Systematic Review" Applied Sciences 13, no. 15: 8655. https://doi.org/10.3390/app13158655
APA StyleFerreira, I., Lopes, C., Ferreira, A., Vaz, F., Pina-Vaz, I., & Martín-Biedma, B. (2023). Effect of Plasma Treatment on Root Canal Sealers’ Adhesion to Intraradicular Dentin—A Systematic Review. Applied Sciences, 13(15), 8655. https://doi.org/10.3390/app13158655