The Impact of the Log-Sawing Patterns on the Quantitative and Qualitative Yield of Beech Timber (Fagus sylvatica L.)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- Evaluation of Quantitative Yield
- Evaluation of Qualitative Yield
- Effect of Log-Sawing Patterns on Quantitative and Qualitative Yields
4. Conclusions
- The results of the research confirmed that the type of sawing pattern remarkably influenced the overall quantitative and qualitative yields of beech-edged and unedged timber. The results showed that the highest quantitative yield was observed with the cant sawing pattern at 84%, which was, on average, 17.3% higher compared to other types of cutting.
- The largest proportion of radial timber (quality) was achieved with the quarter sawing pattern on average, with a yield of 55%. The lowest yield of radial timber was achieved with cant sawing, with an average yield of only 7%. Based on the level of significance (p), which reached the value of p = 0.0105, the hypothesis that the sawing pattern affects the qualitative yield of lumber was confirmed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmidt, J.; Schreiner, F.; Thorenz, B.; Döpper, F. Evaluation of Material Properties of Spruce Wood Samples to Improve the Development Process for More Sustainable Sawing Processes. In Manufacturing Driving Circular Economy; Kohl, H., Seliger, G., Dietrich, F., Eds.; Lecture Notes in Mechanical Engineering; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Rongrong, L.; Cao, P.; Guo, X.; Ji, F.; Mats, E.; Xiaodong, W. Novel Sawing Method for Small-Diameter Log. Wood Res. 2015, 60, 239–300. [Google Scholar]
- Steele, P.H. Factors Determining Lumber Recovery in Sawmilling; General Technical Report FPL; Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1984; Volume 39, 8p.
- Carreiro, G.D.; da Silva, P.Y.C.; Mulin, L.B.; da Silva, J.G.M.; Oliveira, M.P.; Moulin, J.C. Sawing Patterns for The Breakdown of Pinus caribaea var. caribaea Wood on Portable Sawmills. Floresta 2021, 51, 686–695. [Google Scholar]
- Klement, I.; Detvaj, J. Technológia Prvostupňového Spracovania Dreva; Technická Univerzita Vo Zvolene: Zvolen, Slovakia, 2007; ISBN 978-80-228-1811-7. [Google Scholar]
- Sandberg, D. Radially Sawn Timber: Star-Sawing—A New Method for Producing Timber with Vertical Annual Rings. Eur. J. Wood Wood Prod. 1996, 54, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Ištvanić, J.; Obućina, M.; Jovanovic, J.; Smajic, S. Determination of Success Sawmill Processing of Pedunculate Oak (Quercus robur L.) Logs by Live Sawing Method. In Proceedings of the 14th International Scientific Conference WoodEMA, Koper, Slovenia, 16–18 June 2021. [Google Scholar]
- Shenga, P.; Bomark, P.; Broman, O.; Sandberg, D. Log sawing positioning optimization and log bucking of tropical hardwood species to increase the volume yield. Wood Mater. Sci. Eng. 2017, 12, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, Y.; Murata, K.; Ikami, Y.; Matsumura, J. Influence of Sawing Patterns on Lumber Quality and Yield in Large Sugi (Cryptomeria japonica) Logs. For. Prod. J. 2012, 62, 25–31. [Google Scholar] [CrossRef]
- Pang, S. Effects of Sawing Pattern on Lumber Drying: Model Simulation and Experimental Investigation. Dry. Technol. 2002, 20, 1769–1787. [Google Scholar] [CrossRef]
- Sandberg, D. Influence of Annual Ring Orientation on Crack Formation and Deformation in Water Soaked Pine (Pinus silvestris L.) and Spruce (Picea Abies Karst) Timber; Report Trita-Trä R-95-16; Royal Institue of Technology, Division of Wood Technology and Processing: Stockholm, Sweden, 1995. [Google Scholar]
- Todoroki, C. Autosaw System for Sawing Simulation. N. Z. J. For. Sci. 1990, 20, 332–348. [Google Scholar]
- Todoroki, C.; Rönnqvist, M. Dynamic Control of Timber Production at A Sawmill with Log Sawing Optimization. Scand. J. For. Res. 2002, 17, 79–89. [Google Scholar] [CrossRef]
- Kovryga, A.; Khaloian Sarnaghi, A.; Van De Kuilen, J.W.G. Strength Grading of Hardwoods Using Transversal Ultrasound. Eur. J. Wood Prod. 2020, 78, 951–960. [Google Scholar] [CrossRef]
- Čunderlík, I.; Vilkovský, P. Change adhesion wood/bark on the trunk of a beech during the dormant and growing period. Acta Fac. Xylologiae Zvolen 2015, 57, 5–13. [Google Scholar]
- Barański, J.; Klement, I.; Vilkovská, T.; Konopka, A. High-temperature drying process of beech wood (Fagus sylvatica L.) with different zones of sapwood and red false heartwood. BioResource 2017, 12, 1861–1870. [Google Scholar] [CrossRef] [Green Version]
- Popadić, R.; Šoškić, B.; Milić, G.; Todorović, N.; Furtula, M. Influence of the Sawing Method on Yield of Beech Logs with Red Heartwood. Drvna Industrija 2014, 65, 35–42. [Google Scholar] [CrossRef]
- Popadić, R.; Todorović, N. Uticaj Načina Primarnog Piljenja i Kvaliteta Bukove Oblovine na Učešće Radijalnih, Poluradijalnih i Tangencijalnih Sortimenata. Prerada Drveta 2009, 28, 28–34. [Google Scholar]
- STN EN 1309-1: 2000 (49 1013); Logs and lumber. Method of Measuring Dimensions. Office for Standardization, Metrology and Testing of the Slovak Republic: Bratislava, Slovakia, 2000; Part 1, Timber.
- Zubčević, R. Uticajni Faktori pri Izradi Grubih Obradaka iz Niskokvalitetne Bukove Pilanske Sirovine. Ph.D. Thesis, Mašinski Fakultet, Sarajevo, Bosnia and Herzegovina, 1973. [Google Scholar]
- Knoke, T. Predicting red heartwood formation in beech trees (Fagus sylvatica L.). Ecol. Model. 2003, 169, 163–179. [Google Scholar] [CrossRef] [Green Version]
- Skakić, D. Iskorišćenje Bukove Sirovine pri Izradi Elemenata za Stolove i Stolice. Ph.D. Thesis, Šumarski Fakultet, Belgrade, Serbia, 1985. [Google Scholar]
- Šoškić, B.; Milić, G. Uticaj Kvaliteta Bukovih Trupaca Na Iskorišćenje Pri Pilanskoj Preradi. Prerada Drveta 2005, 12, 15–22. [Google Scholar]
Log | Diameter at the Thinner End of the Log [cm] | Mid Diameter [cm] | Diameter at the Thicker End of the Log [cm] | Length [m] | Type of Cutting | Log-Sawing Patterns |
---|---|---|---|---|---|---|
V1 | 40.0 | 43.0 | 43.0 | 4.1 | Through and through sawing | |
V2 | 46.5 | 45.0 | 46.0 | 4.0 | Through and through sawing | |
V3 | 52.5 | 52.0 | 53.0 | 4.0 | Cant sawing | |
V4 | 62.0 | 60.5 | 65.0 | 4.1 | Cant sawing | |
V5 | 46.5 | 48.0 | 47.5 | 4.2 | Quarter sawing | |
V6 | 46.0 | 50.0 | 52.0 | 4.0 | Quarter sawing |
Log | Mid Diameter [cm] | Length [m] | Quantity [ks] | Bark [m3] | Volume [m3] | The Volume of Lumber [m3] | Quantitative Yield [%] | Waste [%] |
---|---|---|---|---|---|---|---|---|
V1 | 43.0 | 4.10 | 1 | 0.0345 | 0.56 | 0.37 | 66.33 | 33.67 |
V2 | 45.0 | 3.95 | 1 | 0.0364 | 0.59 | 0.46 | 78.24 | 21.76 |
V3 | 52.0 | 4.02 | 1 | 0.0476 | 0.80 | 0.59 | 72.95 | 27.05 |
V4 | 60.5 | 4.08 | 1 | 0.0680 | 1.10 | 0.93 | 84.06 | 15.94 |
V5 | 48.0 | 4.18 | 1 | 0.0439 | 0.71 | 0.45 | 62.69 | 37.31 |
V6 | 50.0 | 4.01 | 1 | 0.0378 | 0.74 | 0.44 | 59.82 | 40.18 |
Log | Mid Diameter [cm] | Length [m] | Quantity [ks] | Bark [m3] | Volume [m3] | Type of Lumber | Qualitative yield [%] | |
---|---|---|---|---|---|---|---|---|
Radial [m3] | Tangential [m3] | |||||||
V1 | 43.0 | 4.10 | 1 | 0.0345 | 0.56 | 0.109 | 0.263 | 19.43 |
V2 | 45.0 | 3.95 | 1 | 0.0364 | 0.59 | 0.118 | 0.345 | 19.94 |
V3 | 52.0 | 4.02 | 1 | 0.0476 | 0.80 | 0.079 | 0.508 | 9.80 |
V4 | 60.5 | 4.08 | 1 | 0.0680 | 1.10 | 0.045 | 0.884 | 4.04 |
V5 | 48.0 | 4.18 | 1 | 0.0439 | 0.71 | 0.447 | 0.000 | 62.69 |
V6 | 50.0 | 4.01 | 1 | 0.0378 | 0.74 | 0.355 | 0.089 | 47.86 |
The Sawing Patterns | Our Research (Beech Logs) | Ištvanić et al. 2021 [7]—Oak Logs | Popadić et al. 2021 [18]—Beech Logs | |||
---|---|---|---|---|---|---|
Average of Quantitative Yield [%] | Average of Qualitative Yield [%] | Average of Quantitative Yield [%] | Average of Qualitative Yield [%] | Average of Quantitative Yield [%] | Average of Qualitative Yield [%] | |
Through and Through sawing | 72.28 | 19.69 | 57.29 | 87.89 | 56.80 | - |
- | ||||||
Cant sawing | 78.50 | 6.92 | - | - | 60.50 | - |
- | - | - | ||||
Quarter sawing | 61.26 | 55.28 | - | - | 60.50 | - |
- | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilkovský, P.; Klement, I.; Vilkovská, T. The Impact of the Log-Sawing Patterns on the Quantitative and Qualitative Yield of Beech Timber (Fagus sylvatica L.). Appl. Sci. 2023, 13, 8262. https://doi.org/10.3390/app13148262
Vilkovský P, Klement I, Vilkovská T. The Impact of the Log-Sawing Patterns on the Quantitative and Qualitative Yield of Beech Timber (Fagus sylvatica L.). Applied Sciences. 2023; 13(14):8262. https://doi.org/10.3390/app13148262
Chicago/Turabian StyleVilkovský, Peter, Ivan Klement, and Tatiana Vilkovská. 2023. "The Impact of the Log-Sawing Patterns on the Quantitative and Qualitative Yield of Beech Timber (Fagus sylvatica L.)" Applied Sciences 13, no. 14: 8262. https://doi.org/10.3390/app13148262
APA StyleVilkovský, P., Klement, I., & Vilkovská, T. (2023). The Impact of the Log-Sawing Patterns on the Quantitative and Qualitative Yield of Beech Timber (Fagus sylvatica L.). Applied Sciences, 13(14), 8262. https://doi.org/10.3390/app13148262