
Citation: Li, Z.; Zhao, G.; Ning, H.;

Jin, X.; Yu, H. Continuous Latent

Spaces Sampling for Graph

Autoencoder. Appl. Sci. 2023, 13, 6491.

https://doi.org/10.3390/app13116491

Academic Editor: Krzysztof Koszela

Received: 4 April 2023

Revised: 18 May 2023

Accepted: 22 May 2023

Published: 26 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Continuous Latent Spaces Sampling for Graph Autoencoder
Zhongyu Li 1, Geng Zhao 1,2, Hao Ning 3, Xin Jin 2 and Haoyang Yu 3,*

1 School of Cyber Science and Technology, University of Science and Technology of China, Hefei 230026, China
2 Beijing Electronic Science and Technology Institute, Beijing 100070, China
3 School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
* Correspondence: yuhaoyang@bupt.edu.cn

Abstract: This paper proposes colaGAE, a self-supervised learning framework for graph-structured
data. While graph autoencoders (GAEs) commonly use graph reconstruction as a pretext task, this
simple approach often yields poor model performance. To address this issue, colaGAE employs
mutual isomorphism as a pretext task for a continuous latent space sampling GAE (colaGAE).
The central idea of mutual isomorphism is to sample from multiple views in the latent space and
reconstruct the graph structure, with significant improvements in terms of the model’s training
difficulty. To investigate whether continuous latent space sampling can enhance GAEs’ learning
of graph representations, we provide both theoretical and empirical evidence for the benefits of
this pretext task. Theoretically, we prove that mutual isomorphism can offer improvements with
respect to the difficulty of model training, leading to better performance. Empirically, we conduct
extensive experiments on eight benchmark datasets and achieve four state-of-the-art (SOTA) results;
the average accuracy rate experiences a notable enhancement of 0.3%, demonstrating the superiority
of colaGAE in node classification tasks.

Keywords: graph neural network; graph contrastive learning; multi-view; latent space representation

1. Introduction

GNNs have achieved remarkable success in recent years, particularly in the domain of
graph-structured data such as biochemistry, physics, and social science data [1–3]. However,
a major limitation of GNNs is that they require a significant amount of manually labeled
data during training [4]. In many real-world scenarios, labeled information is scarce and
expensive, which makes it difficult to meet the demands of large-scale data [5,6]. To
overcome this limitation, the clever integration of GNNs with semi-supervised learning
(SSL) has become a powerful solution for unsupervised graph representation learning.
These solutions include GCL (such as Deep Graph Infomax (DGI) [7], Graph Contrastive
Coding (GCC) [8], Bootstrapped Graph Representation Learning (BGRL) [9], GRAph
Contrastive rEpresentation learning (GRACE) [4], and Graph Contrastive learning with
Adaptive augmentation (GCA) [10]) and GAE (such as Variational Graph Auto-Encoders
(VGAE) [11], Self-Supervised Masked Graph Autoencoders (GraphMAE) [12], Masked
Graph Autoencoders (MaskGAE) [13], Adversarially Regularized Graph Autoencoder
(ARVGA) [14], and Multi-View Graph Representation MVGRL [15]).

These methods transform the nodes, edges, or subgraphs of a graph into low-dimensional
embeddings via an unsupervised objective (preprocessing task), such as graph reconstruc-
tion tasks [11]. This approach preserves critical information, such as the structure and
topology of the graph, to learn widely useful representations from unlabeled graphs in a
task-agnostic manner [16].

However, the success of GCL comes at the cost of relatively complex training strate-
gies [12]. To stabilize the training process, GCL typically requires momentum updates
and exponential moving averages [8,9]. Moreover, most contrastive objectives require
negative samples, which often need to be sampled or constructed from graphs, such as

Appl. Sci. 2023, 13, 6491. https://doi.org/10.3390/app13116491 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13116491
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7317-726X
https://doi.org/10.3390/app13116491
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13116491?type=check_update&version=1

Appl. Sci. 2023, 13, 6491 2 of 14

GRACE [4], GCA [10], and DGI [17], requiring a considerable amount of labor. Finally,
the heavy reliance of contrastive SSL on high-quality data augmentation proves to be a
pain point, such as in the case of CCA-SSG [18], as the effectiveness of graph augmentation
heuristics varies drastically across different graphs.

Fortunately, graph autoencoders (GAEs) naturally avoid the aforementioned issues
in the reconstruction approach, as their learning objective is to directly recover the input
graph data [11]. Specifically, GAEs use node embeddings to train an encoder and expect
to reconstruct the adjacency matrix of the input graph from a decoder-based representa-
tion, thereby preserving topological proximity and enhancing representation learning [13].
Compared to GCL, GAEs are typically relatively simple to implement and easy to integrate
with existing frameworks, as they naturally treat graph reconstruction as a preprocessing
task without the need for view generation augmentation.

However, the simplicity of GAE is its curse as well, as it can lead to poor model
performance. Compared to the fancy objectives and complex structures of GCL, their
pre-processing tasks are few and simple [19]. Previous GAEs have mainly used masking
to increase the model’s training difficulty. This work proposes using graph isomorphism
as a pretext task to increase the model’s training difficulty. The most common principles
of graph reconstruction may overly emphasize prior information, and are not always
beneficial [20]. For example, while most GAEs utilize link reconstruction as an objective
to promote topological proximity among neighbors, they may perform poorly on node
and graph classification tasks. Additionally, feature reconstruction without corruption
may not be robust enough [4]. For GAEs utilizing feature reconstruction, most use plain
architectures, which can lead to the risk of learning trivial solutions [13]. We believe that
this is because previous GAEs have only sampled within a single latent space, making
models prone to overfitting.

To address this issue, we propose colaGAE, which involves training multiple encoders.
Although training a single encoder is easy for neural networks, training multiple encoders
becomes challenging. The outputs of these encoders are mutually isomorphic and can
be used as a preprocessing task to train the encoder. We conduct extensive empirical
experiments on eight benchmark datasets, demonstrating that colaGAE outperforms several
state-of-the-art models on node classification tasks.

The main contribution of this paper is to propose a pretext task for GAEs using graph
isomorphism. As an unsupervised learning model, GAEs have been widely applied in vari-
ous fields such as computer vision, natural language processing, recommendation systems,
bioinformatics, and clustering analysis. Graph contrastive learning has significant applica-
tion value in different domains, where it can assist researchers in better understanding and
processing various types of graph data. Our proposed model achieves four state-of-the-art
results out of eight datasets without the addition of any other techniques or tricks while
using a regular GCN as the base model. This demonstrates that using graph isomorphism
as a proxy task for GAEs is effective in improving model performance. This enables models
to learn better node representations, resulting in better downstream task performance.

The present work first introduces the concept and algorithm of a GNN based on SSL
(see Section 2), followed by the introduction of related background knowledge in Section 3.
Building on the above sections, colaGAE is proposed in Section 4, and experimental results,
including ablation studies (see Section 7), are presented in Section 5. Finally, in Section 8,
the advantages and limitations of colaGAE are thoroughly discussed, and a summary and
future outlook are provided.

2. Related Work

This section provides a brief introduction to the fundamental concepts and principles
of SSL-based graph neural networks in order to help readers gain a rapid understanding of
how graph neural networks operate.

Appl. Sci. 2023, 13, 6491 3 of 14

2.1. Graph Neural Networks

The objective of a GNN is to utilize the graph structures and node features to learn
representations of the nodes. To achieve this, GNNs typically follow a two-step processing
approach consisting of aggregation and feature transformation. In the first step, the repre-
sentations of a selected node and its neighboring nodes are combined through aggregation.
In the second step, these aggregated representations are mapped into a new feature space
via a shared linear transformation, followed by an update operation [21,22]. However,
using a complete graph as input is often necessary to achieve this, which, due to hardware
resource constraints, limits the applicability of these methods to large-scale graph data.
To address this issue, GraphSAGE [23] iteratively samples subgraphs for aggregation and
updating. Nonetheless, most existing methods [24] rely on external guidance, such as
annotated labels, which restricts their applicability.

2.2. Graph Contrastive Learning

The primary objective of Graph Contrastive Learning (GCL) is to learn embeddings
that bring positive samples closer to one another while simultaneously separating them
from negative samples. GCL has been adapted from various domains, such as computer
vision and natural language processing. For instance, DGI [17] uses mutual information
maximization as a pretext task [25] to train models, while MVGRL [15] is based on graph
diffusion [26] and extends CMC [27] to graphs. GCC [8] integrates InfoNCE [28] and
MoCo [29] for large-scale Graph Neural Network (GNN) pretraining. Other GCL ap-
proaches, such as SimCLR [30], GRACE [4], GCA [10], and GraphCL [20], directly consider
other nodes/graphs as negative samples to learn node/graph representations. BGRL [9],
inspired by BYOL [31], adopts a negative-sample-free pretext task with complex asymmet-
ric architectures. Additionally, MERIT [32] uses self-distillation and performs contrastive
learning, while AFGRL [33] treats nodes as positive samples by considering their context
without augmentation or negative sampling.

2.3. Graph AutoEncoders

GAEs are a common component of GNNs, and typically consist of an encoder and a
decoder. The encoder maps nodes to low-dimensional representations, while the decoder
reconstructs the original graph. Recent approaches have demonstrated the effectiveness of
GAEs in modeling node relationships and learning robust representations from graphs by
following the autoencoding philosophy [14]. For instance, VGAE [11] uses missing edge
prediction as its pretext task, while GraphMAE and MaskGAE [12,13] focus on masking and
recovering node and edge features. GPT-GNN [34] proposes an autoregressive framework
to perform iterative node and edge reconstruction, while ARVGA [14] focuses primarily on
link prediction and graph clustering objectives. Moreover, MVGRL [15] seeks global-level
information over graphs with persistence.

3. Preliminaries

A graph with N nodes and M edges can be represented as G = {V , E}, where V is the
node set {vi}N

i=1 and E is the edge set {ei}M
i=1. Let A ∈ {0, 1}N×N be the adjacency matrix

of graph G; Aij = 1 if and only if (vi, vj) ∈ E , where (vi, vj) represents the existence of an
edge between node vi and node vj. To prevent isolated nodes during training, Ã stands for
the adjacency matrix for a graph with added self-loops I; each node vi ∈ V is associated
with a d-dimensional feature vector xi ∈ Rd. Hence, for simplicity, an attributed graph
can be described as G = (X, A). Graph G is isomorphic to graph G ′, and we use G ∼ G ′ to
represent this relation. What is more, the isomorphism is transitive; if G1 ∼ G2 and G2 ∼ G3,
then according to transitivity, G1 ∼ G3. GAEs learn a parametric mapping function fθ that
transfers the node feature matrix X into low-dimensional latent representations Z; formally,
fθ(G) = Z ∈ RN×d.

Appl. Sci. 2023, 13, 6491 4 of 14

4. Present Work: colaGAE
4.1. Motivation

The pretext task is a crucial aspect of graph SSL. In this section, we explain why mutual
isomorphism represents a novel approach to the pretext task.

GNNs are designed to extract valuable information from raw data and create repre-
sentations that are generalizable, transferable, and robust. However, aggregating node
features using a single latent space may not be enough. This perspective is supported by
the attention mechanism, demonstrated in the work of Vaswani et al. [35]. The attention
mechanism is a way of expressing the same entity in different latent spaces. Each attentional
head in the model represents a unique latent space. For instance, in BERT [36], each of the
twelve attention heads produces a 64-dimensional vector, which are concatenated into a
final 768-dimensional vector.

The node representations are then used to reconstruct the graph structure A. A recent
study shows that simple MLPs distilled from trained GNN teachers perform comparably
to advanced GNNs on node classification [37]. This suggests that the graph’s topological
structure can be effectively integrated into node-level features as prior information. In
other words, promising node representations can accurately recover the graph’s topologi-
cal structure.

In summary, node representations are obtained by synthesizing multiple continuous
latent spaces and can recover the graph’s structure. To achieve node-level representations
from different latent spaces, we propose a series-encoder to generate various outputs. The
series-encoder consists of a series of encoders, where each output is isomorphic to the
adjacency matrix under the same graph. Because of the transductive nature of isomorphism,
all outputs are mutually isomorphic. Therefore, mutual isomorphism is an inherent natural
property of the series-encoder, and can serve as the pretext task.

4.2. Encoder

The colaGAE method we propose employs a series-encoder that produces a sequence
of outputs, denoted as Z1, Z2, · · · , Zn, where each encoder is trained with a distinct map-
ping function fi, as illustrated in Equation (1).

Zi = fi(X) (1)

The low-dimensional latent representations, denoted by Z, are subsequently inputted
into the decoder to reconstruct the original graph, as described in Equation (2).

Ĝi = Dec(Zi) (2)

In this research, we discovered that the decoder’s design plays a critical role in learning
expressive and informative node representations. Because the goal of feature reconstruction
is to learn such representations, rather than simply matching the encoded embeddings to
the input node features, we opted for an MLP decoder. This type of decoder is more likely
to reconstruct a node’s original feature from its encoded embedding.

The encoder in colaGAE consists of five different feature extractors, including GCN,
which are widely used in GNN research and have demonstrated effectiveness in various
graph-related tasks. Additionally, we included four linear mapping layers that produce
node representations of the same shape. Although our framework can accommodate
different encoder architectures, such as GraphSAGE and GAT, we chose GCN because of its
simplicity, efficiency, and ability to address the scalability issue in pretraining large GNNs.

4.3. Decoder

The decoding process in our proposed colaGAE method involves combining pairwise
node embeddings into a representation of the links in the graph. The type of decoder used
is determined by the approach used for aggregation, such as the inner product decoder
and linear mapping decoder. To simplify our method and highlight the impact of mutual-

Appl. Sci. 2023, 13, 6491 5 of 14

isomorphism, we chose a decoder that does not require parameters. Thus, we define the
decoder in the following way:

Dec(Z) = 〈Z, ZT〉 = ZTZ (3)

Here, 〈Z, ZT〉 represents the inner product of Z, which indicates the cosine similarity
between nodes. Theoretically, all of the decoder’s outputs are isomorphic to the adjacency
matrix A. Formally, Dec(Zn) ∼ Dec(Zn−1) ∼ · · · ∼ Dec(Z0) ∼ A.

4.4. Learning Objective

The measurements used to represent nodes in our proposed colaGAE method have
two components, namely, distribution and Euclidean distance. We assume that the outputs
from each encoder are isomorphic to one another, ensuring consistency in distribution and
noticeable clustering in Euclidean distance. To reflect these properties, we propose two
learning objectives.

4.5. Reconstruction Loss

The reconstruction loss, denoted as LRE, measures how well the model can reconstruct
the original graph structure in terms of edges. To calculate this loss, we use a graph
autoencoder, which has an encoder that maps input features X to hidden representations
Z , and a decoder, which maps it back to reconstruct the adjacency matrix A of the graph.
We calculate the reconstruction error using the mean squared error (MSE), denoted as MSE,
as shown in Equation (4).

MSE =
1
n2 ∑

i,j
(Dec(Zi,j)− Ai,j)

2 (4)

Using the MSE can lead to near-zero values, which is not desirable, as the concept
of “lengths of edges” is not a topology-based concept. As a solution, we use the binary
cross-entropy (BCE), which determines whether there is an edge or not between two nodes,
instead. The BCE is used to calculate the reconstruction error; thus, the reconstruction loss
is a combination of both MSE and BCE, as shown in Equation (6).

BCE =
−1
N2 ∑ A · log Dec(Z) + (1− A) · (1− log Dec(Z)) (5)

Using the BCE loss is a way to measure the model’s ability in order to predict whether
or not there is an edge between two nodes in the graph. This loss treats each entry in the
adjacency matrix as a binary classification problem, and encourages the model to learn
to predict the correct label for each edge in the graph instead of merely minimizing the
difference between predicted and actual edge weights. By combining the MSE and BCE
losses, it is possible to train a model that captures the structure of the graph while ensuring
the correct presence or absence of edges.

LRE = MSE(Dec(Z), A) + BCE(Dec(Z), A) (6)

4.6. Relative Distance Loss

The way nodes in a graph are arranged is often reflected by the tendency of nodes
to cluster together. This clustering tendency is commonly measured using the Euclidean
distance, where nodes that are close to each other are considered neighbors. However,
using the mean square error (MSE) as a measure may not be appropriate for graph data,
which often have low density and a degree distribution that follows a power law. This can
lead to high-degree and low-degree nodes coexisting, making the assumption of Euclidean
spaces invalid and the optimization process ineffective.

To address this issue, we propose a new loss function that takes distance as a relative
concept. Unlike deep clustering methods, which require maximizing mutual information

Appl. Sci. 2023, 13, 6491 6 of 14

or manually selecting cluster centers, our approach aims to bring neighboring nodes closer
while pushing non-neighboring nodes farther apart. Specifically, we introduce the Relative
Distance (RD) loss function, which is defined as follows:

LRD = − log
∑(i,j)∈E Dec(Zi, Zj)

∑(i,j)/∈E Dec(Zi, Zj)
(7)

In (7), the set E represents the edges in the graph, while Dec(Zi, Zj) denotes the dis-
tance between two nodes i and j, computed by the decoding function Dec. The numerator
and denominator in the RD loss function correspond to the respective sums of the distances
between neighboring and non-neighboring nodes. Minimizing the numerator and maxi-
mizing the denominator results in neighboring nodes being pulled closer together while
non-neighboring nodes are pushed further apart. This is achieved without the need for
mutual information maximization or cluster center selection, making the RD loss function
an effective way to model the clustering tendency of graph data.

4.7. Training and Evaluating Setups

The task of node classification involves predicting labels for unknown nodes. We
evaluated the performance of our proposed colaGAE on eight standard benchmarks,
including Cora, Citeseer, PubMed, and Ogbn-arxiv. These benchmarks are citation networks
in which nodes represent documents and edges represent citations. The overall training
process is summarized in Figure 1.

Figure 1. The overall framework of colaGAE for SSL on graphs.

The framework consists of a series of encoders, denoted as f0 to fn, where f0 is a
GCN encoder and f1 to fn are MLP encoders. The first encoder, f0, has a significant
impact on performance, and we refer to it as “the first encoder” in subsequent sections for
convenience. These encoders continuously encode node representations from one latent
space into another, which can be viewed as a continuous sampling from different semantic
spaces. Overall, colaGAE is a simple and effective framework for self-supervised graph
autoencoder learning.

First, we feed the entire graph G = (X, A) into the series-encoder to generate different
representations.

In order to evaluate the effectiveness of the node representations learned by our model
in reconstructing the adjacency matrix A, we utilize both the reconstruction loss and relative
distance loss, as outlined in Algorithm 1. The hyperparameters α and β are used to adjust
the weighting of these criteria in the overall performance of the model.

Appl. Sci. 2023, 13, 6491 7 of 14

Algorithm 1: Pseudocode of colaGAE in Pytorch-like style.

A: adjacency matrix
alpha: coefficient of reconstruction loss
beta: coefficient of relative distance loss
model: GCN + mlp layers

class encoder():
def__init__(self, n_layers = 1):

super(encoder, self).__init__()
basic_block = [

Linear(), Sigmoid(), BatchNorm1d()
]
basic_block *= n_layers
self.proj = nn.Sequential(*basic_block)

def forward(self, x):
x = self.proj(x)
return x

def reconstruction_loss(z,A):
zz = z@z.T
loss = F.mse_loss(zz,A)
loss += F.binary_cross_entropy_with_logits(zz,A)
return loss

def relative_distance_loss(z,A):
distance = z@z.T
loss = (distance*A).sum() / (distance*(1-A)).sum()
return -torch.log(loss)

to deal with large graphs, we need to sample their subGraphs
for subGraph in Graph:

transfer subGraphs into low-dimensional representation
z0 = GCN(subGraph)
z1 = encoder(z0) ; z2 = encoder(z1)
z3 = encoder(z2) ; z4 = encoder(z3)
z5 = encoder(z4) ; z6 = encoder(z5)
z7 = encoder(z6) ; z8 = encoder(z7)

loss = 0
for z in [z0,z1,z2,z3,z4]:

A_sub is the adjacency graph of the subGraph
re_loss = reconstruction_loss(z,A_sub)
rd_loss = relative_distance_loss(z,A_sub)

add losses
loss += alpha*re_loss + beta*rd_loss

Adam optimizer
loss.backward()
update(model.params)

with torch.no_grad():
evaluation(model)

Graph data are typically sparse, with a density defined as 2E
N(N−1) , where E is the

number of edges and N(N − 1) is the maximum number of edges in a graph with N
nodes. In contrast to text data, which often contain dense information, the densities of the
Cora, Citeseer, and Pubmed datasets (see Table 1) are only 0.288%, 0.167%, and 0.046%,
respectively. Due to this sparsity, the concatenated node-level representations from the
series-encoder as output do not provide satisfactory results. Errors accumulate from Z0
to Zn during training, with Dec(Zn) ∼ A ⇒ Dec(Z0) ∼ A. However, the reverse is not
necessarily true, indicating that Z0 is more robust than Zn. Hence, we use only Z0 for
evaluations and downstream tasks, especially for the node classification task in this paper.

After training, all encoders in the series-encoder except for the first can be discarded.
This approach enables colaGAE to be used with any other graph SSL methods. Additionally,
by replacing the encoder in the first layer of the series-encoder (e.g., replacing GCN with
GraphSAGE), our colaGAE can be used with large graphs.

In conclusion, our proposed colaGAE is a straightforward and scalable self-supervised
graph learning framework. Algorithm 1 provides the pseudocode for the model algorithm.

Appl. Sci. 2023, 13, 6491 8 of 14

Table 1. Statistics of benchmark datasets.

Dataset Nodes Edges Classes Features Density

Cora 2708 10,556 7 1433 0.288%
Citeseer 3327 9228 6 3703 0.167%
Pubmed 19,717 88,651 3 500 0.046%

CS 18,333 327,576 15 6805 0.195%
Computer 13,752 574,418 10 767 0.608%

Photo 7650 287,326 8 745 0.982%
Arxiv 169,343 1,166,243 40 128 0.008%
MAG 1,939,743 21,111,007 349 128 0.001%

5. Experiments
5.1. Datasets

• Cora, Citeseer, and Pubmed: [21]: three standard citation networks in which nodes
are documents and edges indicate citation relations. In the experiments, they are
employed for node classification (transductive) and clustering tasks.

• Computer and Photo: Amazon Computers and Amazon Photo are segments of the
Amazon co-purchase graph, where nodes represent goods, edges indicate that two
goods are frequently purchased together, node features are bag-of-words encoded
product reviews, and class labels are provided by the product category.

• Coauthor CS: Coauthor CS is co-authorship graph based on the Microsoft Academic
Graph from the KDD Cup 2016 challenge. Here, nodes are authors, which are con-
nected by an edge if they co-authored a paper, node features represent paper keywords
for each author’s papers, and class labels indicate the most active fields of study for
each author.

• arxiv and MAG: The obgn-arxiv and ogbn-mag datasets are two large datasets from
Open Graph Benchmark [38]. The datasets are collected from real-world networks
belonging to different domains. Each node is associated with a 128-dimensional
word2vec feature vector, and all the other types of entities are not associated with
input node features.

The datasets used in the experiments are detailed in Table 1.

5.2. Compared Methods

To demonstrate the effectiveness of our proposed approach, we conducted experiments
to compare it with eight other state-of-the-art self-supervised graph learning methods,
namely, DGI [17], MVGRL [15], GMI [39], GRACE [4], SUGRL [40], GraphMAE [12],
and MaskGAE [13]. As our paper focuses on the node classification downstream task,
we included five representative supervised node classification methods as baselines for
evaluation as well, namely, MLP, GCN, and GAT.

5.3. Training and Evaluating Setups

The objective of the node classification task is to predict labels for unknown nodes in a
given network. In this study, we evaluated the performance of colaGAE on eight standard
benchmarks that cover both transductive and inductive scenarios. These benchmarks
include Cora, Citeseer, PubMed, and Ogbn-arxiv, which are citation networks in which
nodes represent documents and edges represent citations.

The network architecture of colaGAE comprises a series-encoder with the same struc-
ture as illustrated in Figure 1. The first layer of the series-encoder is GCN, followed
by [1, 2, 3, 4, 5] layers of linear mappings, each equipped with batch normalization [41]
and a sigmoid activation function. We used different numbers of hidden units for each
dataset. The dropout rate between each layer was carefully tuned within the range of
[0, 0.1, 0.2, 0.3, 0.4].

For each dataset, we used Adam as the optimizer for 500 fixed training iterations. In
addition, we performed a hyperparameter search for the learning rate within the range

Appl. Sci. 2023, 13, 6491 9 of 14

of [0.001, 0.01, 0.05, 0.1] and a weight decay within the range of [5 × 10−4, 5 × 10−3]. We
employed an early stopping strategy with a patience of 50, i.e., we stopped training when
the validation metric did not improve for 50 epochs.

To ensure consistency with previous research in the field [9,15,18,22], we followed
standard evaluation protocols in our experiments. We used publicly available data splits
for the Cora, Citeseer, PubMed, Arxiv, and MAG datasets. For the remaining three datasets,
we used a 1:1:8 training, validation, and testing split. We trained a linear classifier based on
the best-performing model as determined by the validation results and kept the classifier
parameters fixed while generating embeddings for all nodes. Finally, we report the average
test node accuracy over 20 random initializations.

5.4. Software and Hardware Infrastructures

Our framework is built upon PyTorch and Deep Graph Library, which are open-source
software. All datasets used throughout the experiments are publicly available and do not
have licenses. All experiments were performed on a single GeForce RTX 2080Ti GPU with
11 GB memory.

5.5. Results

We compared our colaGAE approach with several SOTA graph SSL models; as pre-
sented in Table 2, the results demonstrate that our approach achieves either the best or
competitive performance compared to existing models. Our approach outperforms the
previous best SOTA on four out of eight datasets by a small margin, with an average
improvement of approximately 0.4%. Specifically, on the first three datasets, we observe an
average relative improvement of 0.2% over the previous SOTA.

Table 2. Node classification accuracy (%) on eight benchmark datasets. In each column, the boldfaced
score denotes the best result and the underlined score represents the second-best result.

Cora CiteSeer PubMed Photo Computer arXiv MAG Coauthor-CS

MLP 47.90 ± 0.40 49.30 ± 0.30 69.10 ± 0.20 78.50 ± 0.20 73.80 ± 0.10 56.30 ± 0.30 22.10 ± 0.30 90.37 ± 0.00
GCN 81.50 ± 0.20 70.30 ± 0.40 79.00 ± 0.50 92.42 ± 0.22 86.51 ± 0.54 70.40 ± 0.30 30.10 ± 0.30 90.52 ± 0.21
GAT 83.00 ± 0.70 72.50 ± 0.70 79.00 ± 0.30 92.56 ± 0.35 86.93 ± 0.29 70.60 ± 0.30 30.50 ± 0.30 91.10 ± 0.10

DGI 82.30 ± 0.60 71.80 ± 0.70 76.80 ± 0.60 91.61 ± 0.22 83.95 ± 0.47 65.10 ± 0.40 31.40 ± 0.30 92.15 ± 0.63
GMI 83.00 ± 0.30 72.40 ± 0.10 79.90 ± 0.20 90.68 ± 0.17 82.21 ± 0.31 68.20 ± 0.20 29.50 ± 0.10 -

GRACE 81.90 ± 0.40 71.20 ± 0.50 80.60 ± 0.40 92.15 ± 0.24 86.25 ± 0.25 68.70 ± 0.40 31.50 ± 0.30 90.10 ± 0.80
GCA 81.80 ± 0.20 71.90 ± 0.40 81.00 ± 0.30 92.53 ± 0.16 87.85 ± 0.31 68.20 ± 0.20 31.40 ± 0.30 93.08 ± 0.18

MVGRL 82.90 ± 0.30 72.60 ± 0.40 80.10 ± 0.70 91.70 ± 0.10 86.90 ± 0.10 68.10 ± 0.10 31.60 ± 0.40 92.11 ± 0.12
BGRL 82.86 ± 0.49 71.41 ± 0.92 82.05 ± 0.85 93.17 ± 0.30 90.34 ± 0.19 71.64 ± 0.12 31.11 ± 0.11 93.3 ± 0.11

SUGRL 83.40 ± 0.50 73.00 ± 0.40 81.90 ± 0.30 93.20 ± 0.40 88.90 ± 0.20 69.30 ± 0.20 32.40 ± 0.10 92.20 ± 0.50
CCA-SSG 83.59 ± 0.73 73.36 ± 0.72 80.81 ± 0.38 93.14 ± 0.14 88.74 ± 0.28 52.55 ± 0.10 23.39 ± 0.63 93.06 ± 0.03

GAE 74.90 ± 0.40 65.60 ± 0.50 74.20 ± 0.30 91.00 ± 0.10 85.10 ± 0.40 63.60 ± 0.50 27.10 ± 0.30 90.01 ± 0.71
VGAE 76.30 ± 0.20 66.80 ± 0.20 75.80 ± 0.40 91.50 ± 0.20 85.80 ± 0.30 64.80 ± 0.20 27.90 ± 0.20 92.11 ± 0.09
ARGA 77.95 ± 0.70 64.44 ± 1.19 80.44 ± 0.74 91.82 ± 0.08 85.86 ± 0.11 67.34 ± 0.09 28.36 ± 0.12 90.09 ± 0.33

ARVGA 79.50 ± 1.01 66.03 ± 0.65 81.51 ± 1.00 91.51 ± 0.09 86.02 ± 0.11 67.43 ± 0.08 28.32 ± 0.18 91.21 ± 0.57
GraphMAE 84.20 ± 0.40 73.40 ± 0.40 81.10 ± 0.40 92.86 ± 0.17 88.06 ± 0.23 71.75 ± 0.17 31.67 ± 0.34 92.89 ± 0.43
MaskGAE 84.05 ± 0.18 73.49 ± 0.59 83.06 ± 0.22 93.09 ± 0.06 89.51 ± 0.08 70.73 ± 0.30 32.79 ± 0.26 93.00 ± 0.15

colaGAE 84.23 ± 0.07 73.61 ± 0.05 83.33 ± 0.10 93.00 ± 0.11 90.05 ± 0.04 72.21 ± 0.15 31.09 ± 0.12 93.07 ± 0.11

Previous research has suggested that GCLs outperform GAEs due to the limited
available pretext tasks in GAEs. However, the success of our colaGAE model demonstrates
that mutual isomorphism is a promising pretext task for GAEs. The results suggest that
leveraging topological information plays a more crucial role in graph SSL.

We note that CCA-SSG performs poorly on arXiv and MAG, as it is essentially a
dimension reduction method, where the ideal embedding dimension should be smaller
than the input one, as reported in [18].

During evaluation, colaGAE functions as a GCN-encoder while outperforming all
baselines. Notably, colaGAE surpasses supervised GCN by an average of approximately
2.5%, indicating that prior information such as graph topological structure is critical for

Appl. Sci. 2023, 13, 6491 10 of 14

graph SSL. Its downstream performance on the large arXiv and MAG datasets further
verifies the effectiveness of our colaGAE model.

We used t-SNE to visually demonstrate the effectiveness of the node embeddings
learned by our proposed model. To provide a comparative analysis, we generated embed-
dings from the supervised GCN. The results are presented in Figure 2, where each dot
corresponds to the embedding of a node and the color represents its true label. Our analysis
indicates that our proposed model can identify classes more accurately than the supervised
GCN, as the boundaries between different classes are much clearer in the former.

(a) (b) (c) (d)

Figure 2. t-SNE analysis, showing a visualization comparison of the node embeddings on the Cora
and Citeseer datasets. (a) GCN on Cora; (b) colaGAE on Cora; (c) GCN on Citeseer; (d) colaGAE
on Citeseer.

6. Performance Comparison on Link Prediction

Link prediction tasks involve predicting whether an edge exists between two nodes
based on incomplete topological information. To perform these tasks, we followed the
conventional learning-based approach to link prediction [11] and conducted experiments
on three datasets: Cora, CiteSeer, and PubMed. In our experiments, we removed 5%
of edges for validation and 10% for testing. We reported the AUC score and average
precision (AP) and compared our results against other algorithms. As shown in Table 3, our
proposed model outperformed all other compared algorithms, demonstrating its superior
performance in link prediction tasks.

Table 3. Link prediction results (%) on the three citation networks.

Cora CiteSeer PubMed

AUC AP AUC AP AUC AP

GAE 91.09 ± 0.01 92.83 ± 0.03 90.52 ± 0.04 91.68 ± 0.05 96.40 ± 0.01 96.50 ± 0.02
VGAE 91.40 ± 0.01 92.60 ± 0.01 90.80 ± 0.02 92.00 ± 0.02 94.40 ± 0.02 94.70 ± 0.02
ARGA 92.40 ± 0.00 93.23 ± 0.00 91.94 ± 0.00 93.03 ± 0.00 96.81 ± 0.00 97.11 ± 0.00

ARVGA 92.40 ± 0.00 92.60 ± 0.00 92.40 ± 0.00 93.00 ± 0.00 96.50 ± 0.00 96.80 ± 0.00
SAGE 86.33 ± 1.06 88.24 ± 0.87 85.65 ± 2.56 87.90 ± 2.54 89.22 ± 0.87 89.44 ± 0.82
MGAE 95.05 ± 0.76 94.50 ± 0.86 94.85 ± 0.49 94.68 ± 0.34 98.45 ± 0.03 98.22 ± 0.05

colaGAE 96.37 ± 0.51 96.24 ± 0.46 98.01 ± 0.52 97.92 ± 0.30 98.46 ± 0.27 98.19 ± 0.31

7. Ablation Study

In order to gain a deeper insight into the working of our proposed model, we con-
ducted several ablation studies to explore the influence of crucial components, such as the
embedding size, number of layers, and encoder, on the node classification task. We systemati-
cally varied one component at a time while keeping the others fixed at their optimal values,
then evaluated the performance of our proposed model accordingly.

7.1. Effect of Embedding Size

The impact of varying the embedding size on the performance of our proposed model
is illustrated in Figure 3. The embedding size is a critical factor in graph representation
learning, as it reflects the efficacy of information compression. Our results indicate that
our proposed model benefits significantly from a larger embedding dimension, with its
performance generally improving as the embedding size increases in most cases. This is

Appl. Sci. 2023, 13, 6491 11 of 14

consistent with the methods reported in [40], which typically require larger dimensions
(e.g, 512) to achieve their best performance.

(a) (b) (c)

Figure 3. Effect of embedding size. (a) Cora; (b) Citeseer; (c) Pubmed.

For instance, considering the Cora dataset, we observed that our proposed model
achieved its best performance at a 300-dimensional embedding size, whereas DGI and
GIM achieved their best performance at a 512-dimensional embedding size. This sug-
gests that even though 300-dimensional embeddings are relatively small compared to
512-dimensional embeddings, they are nearly as effective. This may indicate that infor-
mation compression plays a crucial role in graph autoencoder models, and that higher
information density leads to higher performance.

7.2. Effect of the Number of Layers

To better understand the practical implementation of mutual isomorphism, we con-
ducted a series of experiments to investigate the impact of the number of layers on the
performance of our colaGAE model. This is important because mutual isomorphism is a
theoretical concept that poses significant challenges in its practical implementation. As
shown in Figure 4, our findings reveal that increasing the number of layers in the series-
encoder leads to consistent improvements in the performance of colaGAE across the three
benchmark datasets used in the experiment. This observation further affirms the validity
of the mutual isomorphism assumption.

(a) (b) (c)

Figure 4. Effect of the number of layers. (a) Cora; (b) Citeseer; (c) Pubmed.

Moreover, it is notable that the performance of colaGAE becomes more stable as the
number of layers increases, while the standard deviation decreases. This suggests that
increasing the number of layers helps to delineate classification boundaries more precisely,
contributing to the model’s enhanced performance.

7.3. Effect of Encoders

We conducted additional experiments to explore whether different encoders could
improve the performance of our proposed model. As shown in Table 4, the results indicate
that the choice of encoder has a significant effect on the model’s performance. Specifically,
using negative samples in GRACE improves the quality of learned representations for
downstream tasks.

Appl. Sci. 2023, 13, 6491 12 of 14

Table 4. Statistics showing the effects of different encoders. The results were produced by replacing
the first encoder of colaGAE model’s series-encoder.

Dataset MLP GCN GAT GraphSAGE GRACE

Cora 72.51 84.23 84.43 83.97 85.14
Citeseer 65.41 73.61 72.19 73.81 74.08
Pubmed 80.19 83.33 82.90 82.65 84.11

It is noteworthy that GRACE leverages negative samples, which may explain why it
achieves the best performance on all three datasets as an encoder.

8. Conclusions

In this paper, we discuss the limitations of self-supervised GAEs and attribute their
poor performance to the restrictive pretext tasks they are subjected to. These limitations
result in simplistic structures and easy convergence, ultimately leading to inferior perfor-
mance compared to GCL models. To address this issue, we propose a novel pretext task
for graph semi-supervised learning—mutual isomorphism—which employs a sequence
encoder structure to increase the difficulty of learning node representations from node
features, thereby improving the model’s performance. However, the downside of this
method is the requirement for more memory. One solution to this issue could be to convert
the graph reconstruction problem into an edge existence problem and train the model using
sampling. This aspect of the work will be addressed in future research.

Author Contributions: Conceptualization, Z.L. and H.Y.; methodology, Z.L. and G.Z.; writing—
original draft preparation, Z.L. and H.Y.; writing—review and editing, X.J. and H.N.; supervision,
G.Z. and X.J.; project administration, Z.L.; funding acquisition, G.Z. and X.J. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the First-class Discipline Construction Project of Beijing Elec-
tronic Science and Technology Institute (No: 3201017); and the National Natural Science Foundation
of China (No: 61772047).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.; Bridgland, A.; et al.

Improved protein structure prediction using potentials from deep learning. Nature 2020, 577, 706–710. [CrossRef] [PubMed]
2. Shlomi, J.; Battaglia, P.; Vlimant, J.R. Graph neural networks in particle physics. Mach. Learn. Sci. Technol. 2020, 2, 021001.

[CrossRef]
3. Hamilton, W.L. Graph Representation Learning. Synth. Lect. Artif. Intell. Mach. Learn. 2020, 14, 1–159.
4. Zhu, Y.; Xu, Y.; Yu, F.; Liu, Q.; Wu, S.; Wang, L. Deep graph contrastive representation learning. arXiv 2020, arXiv:2006.04131.
5. Hu, W.; Liu, B.; Gomes, J.; Zitnik, M.; Liang, P.; Pande, V.; Leskovec, J. Strategies for pre-training graph neural networks. arXiv

2019, arXiv:1905.12265.
6. Sun, F.Y.; Hoffman, J.; Verma, V.; Tang, J. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning

via Mutual Information Maximization. In Proceedings of the ICLR, New Orleans, LA, USA, 6–9 May 2019.
7. Velickovic, P.; Fedus, W.; Hamilton, W.L.; Liò, P.; Bengio, Y.; Hjelm, R.D. Deep Graph Infomax. ICLR (Poster) 2019, 2, 4.
8. Qiu, J.; Chen, Q.; Dong, Y.; Zhang, J.; Yang, H.; Ding, M.; Wang, K.; Tang, J. GCC: Graph Contrastive Coding for Graph Neural

Network Pre-Training. In Proceedings of the KDD, Virtual Event, 23–27 August 2020.
9. Thakoor, S.; Tallec, C.; Azar, M.G.; Munos, R.; Veličković, P.; Valko, M. Bootstrapped representation learning on graphs. In

Proceedings of the ICLR 2021 Workshop on Geometrical and Topological Representation Learning, Virtual Event, 3–7 May 2021.
10. Zhu, Y.; Xu, Y.; Yu, F.; Liu, Q.; Wu, S.; Wang, L. Graph contrastive learning with adaptive augmentation. In Proceedings of the

Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; pp. 2069–2080.
11. Kipf, T.N.; Welling, M. Variational graph auto-encoders. arXiv 2016, arXiv:1611.07308.

http://doi.org/10.1038/s41586-019-1923-7
http://www.ncbi.nlm.nih.gov/pubmed/31942072
http://dx.doi.org/10.1088/2632-2153/abbf9a

Appl. Sci. 2023, 13, 6491 13 of 14

12. Hou, Z.; Liu, X.; Dong, Y.; Wang, C.; Tang, J.; Wang, C.; Tang, J. GraphMAE: Self-Supervised Masked Graph Autoencoders. arXiv
2022, arXiv:2205.10803.

13. Li, J.; Wu, R.; Sun, W.; Chen, L.; Tian, S.; Zhu, L.; Meng, C.; Zheng, Z.; Wang, W. MaskGAE: Masked Graph Modeling Meets
Graph Autoencoders. arXiv 2022, arXiv:2205.10053.

14. Pan, S.; Hu, R.; Long, G.; Jiang, J.; Yao, L.; Zhang, C. Adversarially regularized graph autoencoder for graph embedding. arXiv
2018, arXiv:1802.04407.

15. Hassani, K.; Khasahmadi, A.H. Contrastive multi-view representation learning on graphs. In Proceedings of the International
Conference on Machine Learning, PMLR, Virtual Event, 13–18 July 2020; pp. 4116–4126.

16. Wu, L.; Lin, H.; Tan, C.; Gao, Z.; Li, S.Z. Self-supervised learning on graphs: Contrastive, generative, or predictive. arXiv 2021,
arXiv:2105.07342.

17. Veličković, P.; Fedus, W.; Hamilton, W.L.; Liò, P.; Bengio, Y.; Hjelm, R.D. Deep Graph Infomax. In Proceedings of the ICLR, New
Orleans, LA, USA, 6–9 May 2019.

18. Zhang, H.; Wu, Q.; Yan, J.; Wipf, D.; Yu, P.S. From canonical correlation analysis to self-supervised graph neural networks. In
Proceedings of the NeurIPS, Virtual Event, 6–14 December 2021.

19. Liu, Y.; Jin, M.; Pan, S.; Zhou, C.; Zheng, Y.; Xia, F.; Philip, S.Y. Graph self-supervised learning: A survey. IEEE Trans. Knowl. Data
Eng. 2022, 35, 5879–5900. [CrossRef]

20. You, Y.; Chen, T.; Sui, Y.; Chen, T.; Wang, Z.; Shen, Y. Graph contrastive learning with augmentations. In Proceedings of the
NeurIPS, Virtual Event, 6–12 December 2020.

21. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
22. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
23. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 2017, 30,

1–12.
24. Xu, B.; Shen, H.; Cao, Q.; Qiu, Y.; Cheng, X. Graph Wavelet Neural Network. In Proceedings of the ICLR, New Orleans, LA, USA,

6–9 May 2019.
25. Hjelm, R.D.; Fedorov, A.; Lavoie-Marchildon, S.; Grewal, K.; Bachman, P.; Trischler, A.; Bengio, Y. Learning deep representations

by mutual information estimation and maximization. arXiv 2018, arXiv:1808.06670.
26. Klicpera, J.; Weißenberger, S.; Günnemann, S. Diffusion improves graph learning. Adv. Neural Inf. Process. Syst. 2019,

32, 13354–13366.
27. Tian, Y.; Krishnan, D.; Isola, P. Contrastive multiview coding. In Proceedings of the European Conference on Computer Vision,

Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 776–794.
28. Oord, A.v.d.; Li, Y.; Vinyals, O. Representation learning with contrastive predictive coding. arXiv 2018, arXiv:1807.03748.
29. He, K.; Fan, H.; Wu, Y.; Xie, S.; Girshick, R. Momentum contrast for unsupervised visual representation learning. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 9729–9738.
30. Chen, M.; Wei, Z.; Huang, Z.; Ding, B.; Li, Y. Simple and Deep Graph Convolutional Networks. In Proceedings of the International

Conference on Machine Learning, PMLR, Online, 13–18 July 2020; pp. 1725–1735.
31. Grill, J.B.; Strub, F.; Altché, F.; Tallec, C.; Richemond, P.H.; Buchatskaya, E.; Doersch, C.; Pires, B.A.; Guo, Z.D.; Azar, M.G.; et al.

Bootstrap your own latent: A new approach to self-supervised learning. arXiv 2020, arXiv:2006.07733.
32. Jin, M.; Zheng, Y.; Li, Y.F.; Gong, C.; Zhou, C.; Pan, S. Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph

Representation Learning. arXiv 2021, arXiv:2105.05682.
33. Lee, N.; Lee, J.; Park, C. Augmentation-free self-supervised learning on graphs. In Proceedings of the AAAI Conference on

Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2022; Volume 36, pp. 7372–7380.
34. Hu, Z.; Dong, Y.; Wang, K.; Chang, K.W.; Sun, Y. Gpt-gnn: Generative pre-training of graph neural networks. In Proceedings

of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, 6–10 July 2020;
pp. 1857–1867.

35. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you
need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

36. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

37. Zhang, S.; Liu, Y.; Sun, Y.; Shah, N. Graph-less Neural Networks: Teaching Old MLPs New Tricks Via Distillation. In Proceedings
of the ICLR, Virtual Event, 25–29 April 2022.

38. Hu, W.; Fey, M.; Zitnik, M.; Dong, Y.; Ren, H.; Liu, B.; Catasta, M.; Leskovec, J. Open graph benchmark: Datasets for machine
learning on graphs. Adv. Neural Inf. Process. Syst. 2020, 33, 22118–22133.

39. Peng, Z.; Huang, W.; Luo, M.; Zheng, Q.; Rong, Y.; Xu, T.; Huang, J. Graph representation learning via graphical mutual
information maximization. In Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; pp. 259–270.

http://dx.doi.org/10.1109/TKDE.2022.3172903

Appl. Sci. 2023, 13, 6491 14 of 14

40. Mo, Y.; Peng, L.; Xu, J.; Shi, X.; Zhu, X. Simple Unsupervised Graph Representation Learning. In Proceedings of the AAAI,
Vancouver, BC, Canada, 22 February 2022.

41. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In
Proceedings of the JMLR Workshop and Conference Proceedings, Lille, France, 6–11 July 2015; Volume 37, pp. 448–456.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Graph Neural Networks
	Graph Contrastive Learning
	Graph AutoEncoders

	Preliminaries
	Present Work: colaGAE
	Motivation
	Encoder
	Decoder
	Learning Objective
	Reconstruction Loss
	Relative Distance Loss
	Training and Evaluating Setups

	Experiments
	Datasets
	Compared Methods
	Training and Evaluating Setups
	Software and Hardware Infrastructures
	Results

	Performance Comparison on Link Prediction
	Ablation Study
	Effect of Embedding Size
	Effect of the Number of Layers
	Effect of Encoders

	Conclusions
	References

