Biogeochemical State of Salinized Irrigated Soils of Central Fergana (Uzbekistan, Central Asia)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ivanov, I.D.; Aleksandrovskiy, A.L.; Makeev, A.O.; Bulgakov, D.S.; Abakumov, E.V.; Arkchangelskaya, T.A.; Belobrov, V.P.; Borisov, A.V.; Borisova, O.K.; Vasyenov, I.I.; et al. Evolution of Soils and Soil Cover. Theory, Diversity of Natural Evolution and Anthropogenic Transformations of Soils; Geos: Moscow, Russia, 2015; 925p. [Google Scholar]
- Smith, D.R. Salinization in Uzbekistan. Post-Sov. Geogr. Econ. 1992, 33, 21–33. [Google Scholar] [CrossRef]
- Anderson, C.R.; Maughan, C.; Pimbert, M.P. Transformative agroecology learning in Europe: Building consciousness, skills and collective capacity for food sovereignty. Agric. Hum. Values 2019, 36, 531–547. [Google Scholar] [CrossRef]
- Abakumov, E.; Yuldashev, G.; Mirzayev, U.; Isagaliev, M.; Sotiboldieva, G.; Makhramhujaev, S.; Mamajonov, I.; Azimov, Z.; Sulaymonov, O.; Askarov, K.; et al. The Current State of Irrigated Soils in the Central Fergana Desert under the Effect of Anthropogenic Factors. Geosciences 2023, 13, 90. [Google Scholar] [CrossRef]
- Abakumov, E.; Yuldashev, G.; Darmonov, D.; Turdaliev, A.; Askarov, K.; Khaydarov, M.; Mirzayev, U.; Nizamutdinov, T.; Davronov, K. Influence of Mineralized Water Sources on the Properties of Calcisol and Yield of Wheat (Triticum aestivum L.). Plants 2022, 11, 3291. [Google Scholar] [CrossRef]
- Isagaliev, M.; Abakumov, E.; Turdaliev, A.; Obidov, M.; Khaydarov, M.; Abdukhakimova, K.; Shermatov, T.; Musaev, I. Capparis spinosa L. Cenopopulation and Biogeochemistry in South Uzbekistan. Plants 2022, 11, 1628. [Google Scholar] [CrossRef]
- Imangulov, L.R.; Kuksin, Y.K. The Regional Dimension of Socio-Cultural Modernization of the Population: Results of Expeditionary Research in Uzbekistan and Southern Kyrgyzstan. Her. St. Petersburg Univ. Earth Sci. 2023; 68, in print. [Google Scholar]
- Khitrov, N.; Rukhovivh, D.I.; Kalinina, N.V.; Novikova, A.F.; Pankova, E.I.; Chernousenko, G.I. Estimation of the areas of salt-affected soils in the European part of Russia on the basis of a digital map of soil salinization on a scale of 1: 2.5 M. Eurasian Soil Sci. 2009, 42, 581–590. [Google Scholar] [CrossRef]
- Khitrov, N.B.; Chernikov, E.A.; Popova, V.P.; Fomenko, T.G. Factors and mechanisms of soil salinization under vineyards of southern Taman. Eurasian Soil Sci. 2016, 49, 1228–1240. [Google Scholar] [CrossRef]
- Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A. Satellite Thermography for Soil Salinity Assessment of Cropped Areas in Uzbekistan. Land Degrad. Develop. 2017, 28, 870–877. [Google Scholar] [CrossRef]
- Kulmatov, R.; Mirzaev, J.; Abuduwaili, J.; Karimov, B. Challenges for the sustainable use of water and land resources under a changing climate and increasing salinization in the Jizzakh irrigation zone of Uzbekistan. J. Arid Land. 2020, 12, 90–103. [Google Scholar] [CrossRef]
- Egamberdiyeva, D.; Garfurova, I.; Islam, K.R. Salinity effects on irrigated soil chemical and biological properties in the Aral Sea basin of Uzbekistan. In Climate Change and Terrestrial Carbon Sequestration in Central Asia; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar] [CrossRef]
- Shurigin, V.; Egamberdieva, D.; Li, L.; Davranov, K.; Panosyan, H.; Birkeland, N.-K.; Wirth, S.; Bellingrath-Kimura, S.D. Endophytic bacteria associated with halophyte Seidlitzia rosmarinus Ehrenb. ex Boiss. from saline soil of Uzbekistan and their plant beneficial traits. J. Arid Land. 2020, 12, 730–740. [Google Scholar] [CrossRef]
- Taira, H.; Baba, J.; Togashi, S.; Berdiyar, J.; Yashima, M.; Inubushi, K. Chemical characteristics of degraded soils in Uzbekistan and remediation by cyanobacteria. Nutr. Cycl. Agroecosyst. 2021, 120, 193–203. [Google Scholar] [CrossRef]
- Khasanov, S.; Kulmatov, R.; Li, F.; Amstel, A.; Bartholomeus, H.; Aslanov, I.; Sultonov, K.; Kholov, N.; Liu, H.; Chen, G. Impact assessment of soil salinity on crop production in Uzbekistan and its global significance. Agric. Ecos. Envirt. 2023, 342, 108262. [Google Scholar] [CrossRef]
- Zang, M.; Nascimento, P.C.D.; Bayer, C.; Anghinoni, I.; de Toni, C.; Silva, E.R.; Vodzik, G.; Martínez, C. Soil quality in hydromorphic ecosystems decrease with intensification of pre-germinated rice production, even under ecologically based production system. Geoderma Reg. 2022, 31, e00582. [Google Scholar] [CrossRef]
- Aksenova, Y.V. Influence of irrigation on the humus state of black earth soils of the Irtysh region of Omsk. Ph.D. Thesis, Tyumen State Agrarian University, Tyumen, Russia, 2005. 17p. [Google Scholar]
- Isakov, V.Y.; Mirzaev, U.B.; Yusupova, M.A. Peculiarities of Soil Characteristics of Sandy Massifs of Fergana Valley. Sci. Review. Biol. Sci. 2020, 1, 15–19. [Google Scholar]
- Xayitmurodovich, K.I.; Abbosxonovich, M.A.; Dilmurod Qizi, M.M. Estimation of Irrigated Soils of Fergana Region (on The Example of Dangara District). Am. J. Agric. Biomed. Engin. 2021, 3, 8–12. [Google Scholar] [CrossRef]
- Zhabbarov, A. Physical and geographical features of the Fergana valley. Internl. J. Orange Tech. 2021, 3, 94–97. [Google Scholar]
- FAO. Standard Operating Procedure for Soil Organic Carbon Walkley-Black Method: Titration and Colorimetric Method; FAO: Rome, Italy, 2019; p. 27. [Google Scholar]
- Arinushkina, E.V. Guidance on Chemical Analysis of Soils; Moscow State University: Moscow, Russia, 1970; p. 489. [Google Scholar]
- Shein, E.V. Field and Laboratory Methods for Studying Physical Soil Physical Properties and Regimes; MSU: Moscow, Russia, 2001; p. 200. [Google Scholar]
- Kuziev, R.K.; Sektimentko, V.E. Soils if Uzbekistan; Extremum Press Publishing House: Tashkent, Uzbekistan, 2009; 351p. [Google Scholar]
- Kuziev, R.K.; Yuldashev, G.Y.; Akramov, I.A. Bonitization of Soils; The Way of Science Publishing House: Teberda, Russia, 2004; 127p. [Google Scholar]
- Orlov, D.S. Chemistry of Soils; Moscow State University Press: Moscow, Russia, 1985; p. 376. [Google Scholar]
- Menci, A.A.; Klavdienko, K.M. Soils of Central Fergana (Yaz-Yavan-Boston-Sharikhan Massive); Nauka: Tashkent, Uzbekistan, 1931. [Google Scholar]
- Umarov, M.U. Soils of Uzbekistan; Fan: Tashkent, Uzbekistan, 1975. [Google Scholar]
- Russian Soil Taxonomy; Oykumena: Moscow, Russia, 2004; 342p.
- Classification and Diagnosis of Soils of the USSR; Kolos: Moscow, Russia, 1977; 223p.
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 203. [Google Scholar]
- Pankova, E.I. Salinization of soils of Djizak steppe, patterns of its distribution and assessment criteria. Eurasian Soil Sci. 1982, 4, 90–100. [Google Scholar]
- Turdaliev, A.; Yuldashev, G.; Askarov, K.; Abakumov, E. Chemical and biochemical features of desert soils of the Central Ferana. Agriculture 2021, 67, 16–28. [Google Scholar]
- Gulom, Y.; Khaydarov, M.; Isagaliyev, M.; Isomiddinov, M. Agrarian science to agriculture agrochemical characteristics of virgin and irrigated modern sierozems in the North of Fergana. In Proceedings of the XIV International Scientific and Practical Conference; Altai State Agrarian University: Barnaul, Russia, 2019; Volume 1. [Google Scholar]
- Kimberg, N.V. Serozems; Cottonwood: Tashkent, Uzbekistan, 1957; 199p. [Google Scholar]
- Yuldashev, G.; Isagaliev, M. Genesis of Loess and Loess-Like Rocks of Fergana Valley/Agrarian Science to Agriculture. Agriculture: A Collection of Articles: In Three Parts/XI International Scientific-Practical Conference (February 4–5, 2016); Altai State Agrarian University: Barnaul, Russia, 2016; Volume 2, pp. 458–460. [Google Scholar]
- Hasanov, G.N.; Abasov, M.M.; Musaev, M.R.; Abdurachmanov, G.M. EcologicalStatus and Scientific Basis for Improving the Fertility of Saline, Desertification-Prone Soils of the Western Caspian Sea; Nauka: Moscow, Russia, 2006; 264p. [Google Scholar]
- Gagarina, E.I. Lithological Factor of Soil Formation: (On the Example of the North-West of the Russian Plain); Publishing House of Saint-Petersburg State University: Saint-Petersburg, FL, USA, 2004; 257p. [Google Scholar]
- Rabot, E.; Guiresse, M.; Pittatore, Y.; Angelini, M.; Keller, C.; Lagacherie, P. Development and spatialization of a soil potential multifunctionality index for agriculture (Agri-SPMI) at the regional scale. Case study in the Occitanie region (France). Soil Secur. 2022, 6, 100034. [Google Scholar] [CrossRef]
- Khalid, M.; Hussain, S.; Anjum, M.A.; Ahmad, S.; Arif Ali, M.; Ejaz, S.; Morillon, R. Better salinity tolerance in tetraploid vs. diploid volkamer lemon seedlings is associated with robust antioxidant and osmotic adjustment mechanisms. J. Plant Physiol. 2020, 244, 153071. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.F.; Morillon, R.; Anjum, M.A.; Ejaz, S.; Rao, M.J.; Ahmad, S.; Hussain, S. Volkamer Lemon Tetraploid Rootstock Transmits the Salt Tolerance When Grafted with Diploid Kinnow Mandarin by Strong Antioxidant Defense Mechanism and Efficient Osmotic Adjustment. J. Plant Growth Regul. 2022, 41, 1125–1137. [Google Scholar] [CrossRef]
- Yanin, E.P. Scandium in the environment (prevalence, anthropogenic sources, secondary resources). Probl. Environ. Nat. Resour. 2007, 8, 70–90. [Google Scholar]
- Ladonin, D.V. Comparative assessment of adsorption of rare-earth elements in some soil types. Eurasian Soil Sci. 2019, 52, 1175–1182. [Google Scholar] [CrossRef]
- Sosorova, S.B. Chromium in soils and plants of the selenga river delta. Agrochemistry 2008, 12, 56–62. [Google Scholar]
- Sosorova, S.B. Cobalt in soils and plants of the Selenga River Delta. Eurasian Soil Sci. 2009, 42, 750–756. [Google Scholar] [CrossRef]
- Vodyanitskii, Y.N. Heavy Metals and Metalloids in Soils; GNU Soil Institute. V.V. Dokuchaev Russian Academy of Agricultural Sciences: Moscow, Russia, 2008; 86p. [Google Scholar]
- Alekseev, I.I.; Abakumov, E.V.; Shamilishvili, G.A.; Lodygin, E.D. Heavy metals and hydrocarbons content in soils of settlements of the Yamal-Nenets autonomous region. Gig Sanit. 2016, 95, 818–821. [Google Scholar] [CrossRef]
- Perminova, T.A.; Baranovskaya, N.V.; Laratte, B.; Zhornyak, L.V.; Sudyko, A.F. Bromine in the soils of the Tomsk region. Bull. Tomsk. Polytech. Univ. Geo Assets Eng. 2017, 328, 36–45. [Google Scholar]
- Vodyanitskii, Y.N. The role of iron compounds in the fixation of heavy metals and metalloids in soils: A review of publications. Eurasian Soil Sci. 2010, 5, 519–532. [Google Scholar] [CrossRef]
- Vidya, C.S.-N.; Shetty, R.; Vaculíková, M.; Vaculík, M. Antimony toxicity in soils and plants, and mechanisms of its alleviation. Env. Exp. Bot. 2022, 202, 104996. [Google Scholar] [CrossRef]
- Shtangeeva, I. Accumulation of scandium, cerium, europium, hafnium, and tantalum in oats and barley grown in soils that 451 differ in their characteristics and level of contamination. Environ. Sci. Pollut. Res. Int. 2022, 29, 40839–40853. [Google Scholar] [CrossRef] [PubMed]
- Gabbasova, I.M.; Yakupov, I.J.; Asylbaev, I.G.; Yakupova, R.A. Geochemical Ecology in the Southern Urals; The World of Printing: Ufa, Russia, 2010; 256p. [Google Scholar]
- Scheib, A.; Birke, M.; Dinelli, E. GEMAS Project Team Geochemical evidence of aeolian deposits in European soils. Boreas 2014, 43, 175–192. [Google Scholar] [CrossRef]
- Nifantov, B.F.; Potapov, V.P.; Mitina, N.V. Geochemistry and Resource Assessment of Rare Earth and Radioactive Elements in Kuznetsk Coals. Processing Prospects; Institute of Coal and Coal Chemistry: Kemerovo, Russia, 2003; 104p. [Google Scholar]
- Filella, M. Tantalum in the environment. Earth-Sci. Rev. 2017, 173, 122–140. [Google Scholar] [CrossRef]
Soil Section No | Depth, cm | pH H2O | CaCO3, % | MgCO3, % | TOC, % | C:N | Bulk Gravimetric Concentrations, % | Available Gravimetric Concentrations, mg kg−1 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | NH4 | P | K | |||||||
1 | 0–29 | 7.01 | 5.60 | 2.10 | 0.66 ± 0.05 | 5.50 | 0.12 | 0.31 | 1.86 | 17.3 | 19.6 | 187 |
29–44 | 7.05 | 7.20 | 2.68 | 0.54 ± 0.02 | 5.40 | 0.10 | 0.23 | 1.77 | 12.1 | 17.8 | 135 | |
12 | 0–28 | 7.10 | 3.24 | 2.21 | 0.69 ± 0.05 | 4.92 | 0.14 | 0.32 | 1.90 | 18.5 | 20.1 | 210 |
28–42 | 7.15 | 4.31 | 2.67 | 0.56 ± 0.05 | 5.09 | 0.11 | 0.25 | 1.81 | 13.2 | 18.5 | 143 | |
20 | 0–30 | 7.30 | 7.50 | 2.30 | 0.48 ± 0.04 | 5.33 | 0.09 | 0.30 | 1.73 | 15.2 | 17.8 | 175 |
30–45 | 7.30 | 7.60 | 2.20 | 0.37 ± 0.03 | 5.28 | 0.07 | 0.22 | 1.65 | 11.0 | 16.2 | 118 | |
24 | 0–30 | 7.10 | 7.20 | 2.56 | 0.44 ± 0.05 | 5.50 | 0.08 | 0.26 | 1.70 | 14.9 | 17.0 | 168 |
30–46 | 7.15 | 7.40 | 2.70 | 0.37 ± 0.05 | 5.28 | 0.07 | 0.21 | 1.61 | 10.6 | 15.7 | 112 | |
28 | 0–35 | 7.10 | 6.78 | 2.80 | 0.81 ± 0.08 | 5.79 | 0.14 | 0.34 | 1.94 | 21.5 | 20.7 | 229 |
35–54 | 7.25 | 6.90 | 2.95 | 0.53 ± 0.06 | 5.30 | 0.10 | 0.32 | 1.85 | 14.7 | 17.2 | 192 | |
35 | 0–30 | 7.20 | 5.90 | 2.35 | 0.55 ± 0.05 | 5.00 | 0.11 | 0.30 | 1.86 | 16.8 | 17.1 | 172 |
30–43 | 7.25 | 6.45 | 2.50 | 0.45 ± 0.08 | 5.62 | 0.08 | 0.25 | 1.75 | 11.2 | 12.0 | 114 |
Soil Section | Depth, cm | Particle Size, mm | <0.01 mm | ||||||
---|---|---|---|---|---|---|---|---|---|
1–0.25 | 0.25–0.1 | 0.1–0.05 | 0.05–0.01 | 0.01–0.005 | 0.005–0.001 | <0.001 | |||
1 | 0–29 | 12.7 | 18.4 | 17.2 | 12.8 | 13.5 | 11.3 | 14.1 | 38.9 |
29–44 | 13.5 | 17.3 | 18.4 | 14.1 | 12.3 | 11.0 | 13.4 | 36.7 | |
44–67 | 15.4 | 21.6 | 17.9 | 13.7 | 11.7 | 10.4 | 9.3 | 31.4 | |
67–102 | 12.1 | 24.9 | 19.2 | 15.7 | 8.5 | 9.4 | 10.2 | 28.1 | |
102–132 | 17.3 | 25.4 | 20.7 | 17.3 | 6.2 | 7.6 | 5.5 | 19.3 | |
12 | 0–28 | 18.1 | 15.6 | 17.0 | 11.9 | 12.9 | 10.7 | 13.8 | 37.4 |
28–42 | 12.6 | 13.9 | 18.5 | 14.3 | 15.2 | 13.3 | 12.2 | 40.7 | |
42–72 | 14.3 | 17.6 | 23.5 | 15.8 | 8.4 | 7.8 | 12.6 | 28.8 | |
72–131 | 17.2 | 25.7 | 18.1 | 19.4 | 6.5 | 5.3 | 7.8 | 19.6 | |
131–152 | 19.7 | 20.8 | 21.6 | 16.3 | 6.8 | 6.5 | 8.3 | 21.6 | |
152–200 | 16.8 | 21.6 | 19.5 | 15.7 | 9.1 | 7.8 | 9.5 | 26.4 | |
20 | 0–30 | 10.6 | 14.3 | 21.4 | 19.2 | 11.4 | 11.0 | 12.1 | 34.5 |
30–45 | 12.7 | 15.4 | 19.1 | 20.1 | 10.3 | 10.6 | 11.8 | 32.7 | |
45–62 | 10.2 | 17.4 | 12.3 | 11.6 | 14.2 | 18.7 | 15.6 | 48.5 | |
62–97 | 18.4 | 21.7 | 17.6 | 15.5 | 8.6 | 10.3 | 7.9 | 26.8 | |
97–120 | 17.6 | 23.2 | 20.4 | 15.8 | 8.2 | 8.1 | 6.7 | 23.0 | |
24 | 0–30 | 11.2 | 17.5 | 19.2 | 18.4 | 10.7 | 13.2 | 9.8 | 33.7 |
30–46 | 12.7 | 15.4 | 19.1 | 22.1 | 8.9 | 10.6 | 11.2 | 30.7 | |
46–75 | 14.9 | 16.5 | 21.6 | 19.7 | 7.4 | 9.6 | 10.3 | 27.3 | |
75–92 | 21.4 | 18.9 | 19.9 | 15.3 | 8.6 | 7.4 | 8.5 | 24.5 | |
92–109 | 14.5 | 17.2 | 21.4 | 18.7 | 8.7 | 10.2 | 9.3 | 28.2 | |
28 | 0–35 | 10.2 | 14.7 | 16.2 | 11.4 | 13.5 | 15.3 | 18.7 | 47.5 |
35–54 | 9.5 | 16.1 | 17.7 | 10.6 | 12.0 | 16.7 | 17.4 | 46.1 | |
54–72 | 13.1 | 15.3 | 18.4 | 12.6 | 10.5 | 13.9 | 16.2 | 40.6 | |
72–91 | 12.7 | 18.6 | 19.2 | 15.3 | 8.3 | 14.5 | 11.4 | 34.2 | |
91–140 | 10.6 | 13.5 | 15.6 | 12.0 | 15.9 | 14.6 | 17.8 | 48.3 | |
35 | 0–30 | 10.4 | 14.6 | 20.4 | 18.2 | 12.3 | 11.5 | 12.6 | 36.5 |
30–43 | 12.5 | 14.9 | 19.1 | 20.1 | 10.9 | 11.9 | 11.5 | 34.3 | |
44–86 | 15.0 | 17.7 | 21.8 | 21.8 | 9.1 | 7.2 | 7.4 | 23.7 | |
86–129 | 24.7 | 14.6 | 15.7 | 16.4 | 8.6 | 10.3 | 9.7 | 28.6 | |
129–195 | 15.4 | 17.5 | 20.3 | 18.9 | 10.5 | 9.6 | 7.8 | 27.9 |
Soil Section | Depth, cm | Na2CO3 | Ca(HCO3)2 | CaSO4 | MgSO4 | Na2SO4 | NaCl | Bulk Salts Content |
---|---|---|---|---|---|---|---|---|
1 | 0–29 | - | 0.015 | 0.236 | 0.214 | 0.023 | 0.014 | 0.502 |
29–44 | - | 0.029 | 0.294 | 0.255 | 0.027 | 0.012 | 0.617 | |
44–67 | - | 0.016 | 0.296 | 0.235 | 0.021 | 0.012 | 0.580 | |
67–102 | - | 0.017 | 0.301 | 0.245 | 0.027 | 0.014 | 0.604 | |
102–132 | - | 0.020 | 0.408 | 0.245 | 0.027 | 0.019 | 0.719 | |
Ground water, g L−1 | 0.135 | 0.201 | 3.795 | 2.104 | 0.801 | 0.604 | 7.640 | |
12 | 0–28 | - | 0.021 | 0.341 | 0.228 | 0.024 | 0.013 | 0.627 |
28–42 | - | 0.031 | 0.338 | 0.275 | 0.024 | 0.011 | 0.679 | |
42–72 | - | 0.015 | 0.358 | 0.245 | 0.028 | 0.012 | 0.658 | |
72–131 | - | 0.016 | 0.421 | 0.256 | 0.038 | 0.014 | 0.745 | |
131–152 | - | 0.017 | 0.460 | 0.301 | 0.032 | 0.014 | 0.824 | |
152–200 | - | 0.020 | 0.478 | 0.310 | 0.038 | 0.018 | 0.864 | |
Ground water, g L−1 | - | 0.301 | 4.201 | 2.204 | 0.821 | 0.505 | 8.032 | |
20 | 0–30 | - | 0.035 | 0.381 | 0.238 | 0.028 | 0.015 | 0.697 |
30–45 | - | 0.039 | 0.341 | 0.301 | 0.027 | 0.015 | 0.723 | |
45–62 | - | 0.038 | 0.328 | 0.304 | 0.038 | 0.064 | 0.772 | |
62–97 | - | 0.051 | 0.438 | 0.333 | 0.041 | 0.014 | 0.877 | |
97–120 | - | 0.058 | 0.470 | 0.337 | 0.041 | 0.020 | 0.926 | |
Ground water, g L−1 | 0.100 | 0.585 | 4.308 | 2.308 | 0.841 | 0.644 | 8.786 |
Soil Section | Depth, cm | Sc | Cr | Co | Ni | As | Br | Sb | Cs | Hf | Ta | W | Au |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0–29 | 7.3 | 43.9 | 9.13 | 20 | 16.7 | 4.1 | 1.67 | 6.5 | 3.63 | 0.71 | 4.19 | 0.0055 |
29–44 | 7.3 | 43.2 | 9.13 | 35.4 | 15.9 | 4.6 | 1.6 | 6.7 | 3.42 | 0.81 | 3.2 | 0.006 | |
44–67 | 7.6 | 44.6 | 9.80 | 16 | 19.8 | 3.4 | 1.94 | 7.2 | 3.06 | 0.74 | 2.8 | 0.0076 | |
67–102 | 6.9 | 40.6 | 8.83 | 12.9 | 17.0 | 1.7 | 1.6 | 6.5 | 2.72 | 0.65 | <0.1 | 0.0062 | |
12 | 0–28 | 5.0 | 29.3 | 6.46 | 400 | 11.3 | 5.9 | 2.28 | 3.9 | 2.23 | 0.43 | <1.0 | <0.001 |
28–42 | 7.5 | 49.5 | 8.10 | 25 | 13.0 | 5.5 | 1.26 | 5.3 | 3.62 | 0.62 | <1.0 | 0.0042 | |
42–72 | 6.4 | 36.4 | 8.0 | 15 | 12.5 | 2.3 | 1.39 | 5.5 | 2.94 | 0.63 | <1.0 | 0.0051 | |
72–131 | 5.7 | 32.5 | 8.30 | 14 | 12.7 | 1.5 | 1.37 | 4.8 | 3.32 | 2.7 | <1.0 | 0.0060 | |
131–152 | 9.0 | 53.5 | 8.49 | 13 | 8.3 | 1.9 | 1.40 | 6.7 | 4.31 | 0.76 | <1.0 | 0.0085 | |
152–200 | 7.6 | 45.8 | 7.65 | 14 | 8.3 | 1.1 | 1.62 | 5.5 | 2.97 | 0.62 | <1.0 | 0.0056 | |
20 | 0–30 | 7.5 | 44.7 | 8.83 | 19.9 | 9.5 | 5.9 | 1.4 | 6.1 | 2.86 | 0.59 | <0.1 | 0.0037 |
30–45 | 6.4 | 40.2 | 8.48 | 250 | 26.0 | 3.8 | 1.6 | 6.0 | 1.73 | 0.46 | <0.1 | <0.001 | |
45–62 | 8.8 | 53.3 | 10.9 | 35 | 10.6 | 4.4 | 1.42 | 7.7 | 3.41 | 0.79 | <0.1 | 0.0052 | |
62–90 | 3.9 | 23.7 | 4.0 | 42 | 7.10 | 1.7 | 0.67 | 2.8 | 2.30 | 0.36 | <0.1 | 0.0033 | |
24 | 0–30 | 6.2 | 38.0 | 7.20 | <5.0 | 15.4 | 10 | 1.40 | 4.5 | 3.05 | 0.64 | <1.0 | 0.0064 |
30–46 | 5.6 | 35.7 | 6.55 | 24 | 8.7 | 12 | 1.12 | 3.9 | 2.96 | 0.46 | <1.0 | 0.0048 | |
46–75 | 4.9 | 32.0 | 3.41 | 140 | 7.25 | 5.7 | 1.24 | 3.5 | 2.20 | 0.69 | <1.0 | <0.001 | |
75–92 | 4.6 | 25.7 | 6.60 | 49 | 10.0 | 4.9 | 1.47 | 3.1 | 2.80 | 0.59 | <1.0 | 0.0043 | |
92–109 | 5.7 | 38.6 | 6.76 | 7.3 | 3.9 | 3.0 | 1.48 | 3.9 | 2.98 | 0.51 | <1.0 | 0.0049 | |
109–159 | 6.1 | 36.0 | 6.80 | <5.0 | 2.8 | 0.98 | 1.30 | 4.2 | 2.87 | 0.43 | 2.7 | <0.001 | |
28 | 0–35 | 6.4 | 49.2 | 7.22 | 34.1 | 7.24 | 7.5 | 1.1 | 4.4 | 3.76 | 0.80 | <1.0 | 0.0047 |
35–54 | 6.7 | 44.5 | 7.58 | 19 | 9.1 | 5.6 | 1.16 | 5.4 | 3.56 | 0.65 | <1.0 | 0.0045 | |
54–72 | 6.9 | 41.7 | 7.03 | 11.5 | 10.2 | 3.4 | 1.49 | 5.9 | 3.50 | 0.68 | 3.6 | 0.0067 | |
72–91 | 4.3 | 46.0 | 8.48 | 52 | 8.7 | 7.0 | 1.67 | 5.6 | 3.93 | 0.77 | <0.1 | 0.0054 | |
91–140 | 6.4 | 36.9 | 7.6 | 16 | 8.90 | 3.4 | 1.04 | 4.0 | 3.44 | 0.67 | <1.0 | 0.0042 | |
35 | 0–30 | 6.6 | 42.9 | 7.57 | 21.2 | 6.35 | 7.6 | 0.76 | 3.9 | 3.18 | 0.61 | <0.1 | 0.0043 |
30–43 | 6.9 | 43.1 | 7.40 | 18.9 | 7.08 | 1.9 | 0.95 | 4.3 | 3.51 | 0.59 | <0.1 | 0.0042 | |
44–86 | 6.2 | 42.1 | 7.33 | 317 | 6.83 | 6.9 | 0.85 | 3.8 | 2.67 | 0.53 | <1.0 | 0.0031 | |
86–129 | 7.8 | 51.3 | 9.0 | 19.7 | 7.73 | 11.5 | 1.2 | 5.0 | 3.85 | 0.78 | <0.1 | 0.0042 | |
129–195 | 7.0 | 44.2 | 8.28 | 24.0 | 10.0 | 9.0 | 1.1 | 4.6 | 3.23 | 0.65 | <0.1 | 0.0040 | |
Lithosphere clarke | 10 | 83 | 18 | 58 | 1.7 | 2.1 | 0.5 | 3.7 | 1 | 2.5 | 1.3 | 0.0043 | |
Average for meadow-takyr soils | 6.2 | 37.8 | 7.42 | 30.5 | 11.75 | 5.00 | 1.48 | 5.00 | 2.97 | 0.62 | 1.29 | 0.0046 | |
Average for medow-saz soils | 6.6 | 42.5 | 7.84 | 68.1 | 10.07 | 4. 90 | 1.29 | 5.10 | 3.22 | 0.73 | 0.18 | 0.0043 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turdaliev, A.; Askarov, K.; Abakumov, E.; Makhkamov, E.; Rahmatullayev, G.; Mamajonov, G.; Akhmadjonov, A.; Axunov, A. Biogeochemical State of Salinized Irrigated Soils of Central Fergana (Uzbekistan, Central Asia). Appl. Sci. 2023, 13, 6188. https://doi.org/10.3390/app13106188
Turdaliev A, Askarov K, Abakumov E, Makhkamov E, Rahmatullayev G, Mamajonov G, Akhmadjonov A, Axunov A. Biogeochemical State of Salinized Irrigated Soils of Central Fergana (Uzbekistan, Central Asia). Applied Sciences. 2023; 13(10):6188. https://doi.org/10.3390/app13106188
Chicago/Turabian StyleTurdaliev, Avazbek, Kamoliddin Askarov, Evgeny Abakumov, Elyorbek Makhkamov, Gayratbek Rahmatullayev, Gaybullo Mamajonov, Avazbek Akhmadjonov, and Akmal Axunov. 2023. "Biogeochemical State of Salinized Irrigated Soils of Central Fergana (Uzbekistan, Central Asia)" Applied Sciences 13, no. 10: 6188. https://doi.org/10.3390/app13106188
APA StyleTurdaliev, A., Askarov, K., Abakumov, E., Makhkamov, E., Rahmatullayev, G., Mamajonov, G., Akhmadjonov, A., & Axunov, A. (2023). Biogeochemical State of Salinized Irrigated Soils of Central Fergana (Uzbekistan, Central Asia). Applied Sciences, 13(10), 6188. https://doi.org/10.3390/app13106188