friried applied
1 sciences

Article

Geochemical Association Rules of Elements Mined Using
Clustered Events of Spatial Autocorrelation: A Case Study in
the Chahanwusu River Area, Qinghai Province, China

Baoyi Zhang 12, Zhengwen Jiang 2, Yiru Chen 2, Nanwei Cheng 2, Umair Khan ? and Jiqiu Deng 12*

Citation: Zhang, B.; Jiang, Z.;

Chen, Y.; Cheng, N.; Khan, U,;
Deng, J. Geochemical Association
Rules of Elements Mined Using
Clustered Events of Spatial
Autocorrelation: A Case Study in the
Chahanwusu River Area, Qinghai
Province, China. Appl. Sci. 2022, 12,
2247. https://doi.org/10.3390/
app12042247

Academic Editor:

Stawomir Nowaczyk

Received: 20 January 2022
Accepted: 19 February 2022
Published: 21 February 2022

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional
claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the authors. Li-
censee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and con-
ditions of the Creative Commons At-
tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

1 Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring
(Ministry of Education), Central South University, Changsha 410083, China; zhangbaoyi@csu.edu.cn

2 School of Geosciences and Info-Physics, Central South University, Changsha 410083, China;
jlangzhengwen@csu.edu.cn (Z.].); 195011096@csu.edu.cn (Y.C.); 215011050@csu.edu.cn (N.C.);
umair77@csu.edu.cn (U.K.)

* Correspondence: csugis@csu.edu.cn; Tel.: +86-731-88877676

Abstract: The spatial distribution of elements can be regarded as a numerical field of concentration
values with a continuous spatial coverage. An active area of research is to discover geologically
meaningful relationships among elements from their spatial distribution. To solve this problem, we
proposed an association rule mining method based on clustered events of spatial autocorrelation
and applied it to the polymetallic deposits of the Chahanwusu River area, Qinghai Province, China.
The elemental data for stream sediments were first clustered into HH (high-high), LL (low-low),
HL (high-low), and LH (low-high) groups by using local Moran’s I clustering map (LMIC). Then,
the Apriori algorithm was used to mine the association rules among different elements in these
clusters. More than 86% of the mined rule points are located within 1000 m of faults and near known
ore occurrences and occur in the upper reaches of the stream and catchment areas. In addition, we
found that the Middle Triassic granodiorite is enriched in sulfophile elements, e.g., Zn, Ag, and Cd,
and the Early Permian granite quartz diorite (P1ydo) coexists with Cu and associated elements.
Therefore, the proposed algorithm is an effective method for mining coexistence patterns of ele-
ments and provides an insight into their enrichment mechanisms.

Keywords: concentration field; spatial autocorrelation; association rules; Apriori algorithm;
element co-occurrence

1. Introduction

Spatial autocorrelation analysis focuses on the similarity of attributes, as well as spa-
tial similarity between one geological entity and adjacent entities. The spatial distribution
of concentrations of elements can be regarded as a numerical field with a continued spa-
tial coverage, which can be characterized by using spatial autocorrelation among different
elements. Korobova and Romanov (2009) stressed that the nonrandom characteristics and
spatial structure of geochemical data depend on the concentration field [1]. Analysis of
the concentration field includes comparison of samples to recognize anomalies and using
the spatial correlation among elements to explain geochemical processes. Geological in-
teractions between elements result in mutual influence and restriction. Therefore, it is nec-
essary to consider spatial auto- and cross correlation in geochemical studies. The concen-
trations and spatial association of different elements are usually related to parent
lithostrata. Therefore, it is of great significance to study the distribution, enrichment, and
relationships among different elements to understand regional magmatism and ore-form-
ing process [2].
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Tobler (1970) proposed the first law of geography: everything is related to everything
else, but near things are more related than distant things [3]. The measurement of spatial
autocorrelation includes global and local indicators. Global indicators reveal the spatial
pattern of the whole region and reflect global characteristics. In contrast, local indicators
measure the relationship between each location and its neighbors to reveal more detailed
local spatial patterns. Global metrics include Moran’s I [4] and Geary’s C [5]. Improve-
ments in spatial theory and statistical tests have made Moran’s I and Geary’s C the most
widely used global indicators [6-8]. Based on Moran’s I, Cliff and Ord (1981) also pro-
posed a simple spatiotemporal autocorrelation indicator form, Is [8]. Getis and Ord (1992,
1995) proposed global G statistic and local G* statistic [9,10]. Anselin (1995) developed
local indicators of spatial association (LISA), including local Moran’s I and local Geary’s
C [11]. Boots and Okabe (2007) proposed the concept of local spatial statistical analysis
(LoSSA) both as an integrative structure for existing methods and as a framework that
facilitates the development of new local and global statistics [12]. Anselin (2019) extended
the application of the local Geary’s C statistic to a multivariate context. According to the
characteristics of experimental data, each local autocorrelation indicator has its ad-
vantages and disadvantages [13]. Spatial autocorrelation indicators have been used in the
fields of environmental science, regional economy, identification of diseases and mortal-
ity, and detection of geochemical anomalies [14-18].

The spatial pattern of the concentration field is caused by different geological pro-
cesses [19]. The concentration field reflects the migration and spatiotemporal distribution
of various elements. Therefore, both the spatial characteristics of a single element and the
spatial relationship among multiple elements need to be considered.

For a long time, the identification and evaluation of geochemical anomalies has been
a key issue in the field of geochemical exploration [20-22]. A geochemical anomaly is the
enrichment or dilution of elements. The enriched area often has high mineral resource
potential [23,24]. Geologists use the spatial pattern to distinguish an anomaly from the
background. For many years, various statistical methods, such as mean * 2 x standard
deviations [25], probability graphs [26], univariate analysis [27], multivariate analysis
[28,29], logistic regression [30,31], weights of evidence [32-34], fractal/multifractal models
[35-37], and geostatistics [38,39], have been used to identify geochemical anomalies. In
recent years, machine learning methods have been used in geological prospecting. These
methods include support vector machines [40,41], random forests [42,43], Bayesian net-
works [44-46], and deep autoencoder networks [47].

Some small ore deposits or occurrences are overlooked in actual mineral prospecting
if the association rules among elements are not considered [19]. How to efficiently delin-
eate the metallogenic target area has become one of the main objectives of geochemical
exploration. Nguyen et al. (2014) found that local Moran's I could better detect the spatial
clustering of elements in stream sediments on a small spatial scale than classical statistics,
and local G* is suitable for detecting high clusters on a large scale [48]. Wang et al. (2015)
used geostatistics, as well as fractal and spatial autocorrelation methods, to study the spa-
tial characteristics of geochemical data for stream sediments in southwest Fujian and con-
cluded that the spatial autocorrelation method delineates the geochemical anomaly [49].
Ji et al. (2017) used local Moran’s I to analyze the spatial clustering and outliers of ele-
mental concentrations and extracted geochemical anomalies [50]. Yu et al. (2021) proposed
a local correlation coefficient based on spatial neighborhoods to characterize the global
distribution of elements [16].

The mutual influence and interaction among different elements produce a spatial
pattern [51,52]. The effects of regional geological and geochemical processes can be in-
ferred from the spatial patterns in the concentration field. Therefore, exploring the associ-
ation rules among different elements is of great significance for understanding geological
processes. Association rule mining is one of the branch fields of data mining. The Apriori
algorithm can uncover Boolean association rules between itemsets and has been widely
used in spatial data mining [53-56]. The Apriori algorithm was proposed by Agrawal et
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al. (1993), who used it to mine association rules of sales data obtained from a large retailing
company [57]. Liu and Zhou (2019) used the Apriori algorithm to derive the anomalies of
elements for metallogenic prediction [58].

In this paper, we propose an association rule mining method to study the cross cor-
relation of concentration fields based on clustered events of spatial autocorrelation. This
method can be used to comprehensively understand the spatial distribution of geochem-
ical concentrations and co-existing of elements. Moreover, we compared the advantages
and limitations of bivariate spatial autocorrelation and association rule mining results and
finally explored the relationship of specific geological features with the results of associa-
tion rule mining.

2. Study Area and Data
2.1. Geological Background

The Chahanwusu River area (98°15' E-98°45" E, 35°50" N-36°00" N) covers approxi-
mately 893 km? in the eastern part of the East Kunlun tectonic belt in Dulan County in
central Qinghai Province. The area is a polymetallic belt where one gold deposit, three
copper deposits, one lead-zinc deposit two magnetite deposits, and one gemstone deposit
have been found [59]. Figure 1 shows a geological map of the study area [43].

The main faults in the study area are EW-, NW-, and NE-trending and constitute the
structural framework of the area. NW-trending faults are the most developed and control
the distribution of strata and magmatic rocks. The sedimentary strata in the study area
are undeveloped and dispersed. The outcropping strata, from old to new, are the Paleo-
proterozoic Baishahe Formation (Ptib), the Late Triassic Elashan Formation (Tse), the Ne-
ogene Guide Group (NG), and Quaternary sediments (Q). Outcrops of intrusive rocks are
widespread in the study area and are dominated by the Early Permian and the Middle
Triassic intrusives.

Normal fault

Reverse fault

Unknown feature fault
magmatic alteration zone
Ductile sheer zone
@ Inferred caldera

River

Intermediate acidic dyke

Measured and inferred geological boundary Intermediate mafic dyke lIl Lead-zinc ore occurrence Middle Triassic monzogranite

Ferritization alteration Gold ore occurrence T,mny| Middle Triassic porphyritic monzogranite
Pyritization alteration E] Quaternary - Early Permian granodiorite

Volcanic breccia [E Neogene Guide Group - Early Permian quartz diorite

Skarn alteration Late Triassic Elashan Formation - Early Permian monzogranite

Hornfelsic alternation - Proterozoic Baishahe Formation - Early Permian quartz monzodiorite

[®@ ] Magnetite ore occurrence [JJBll Early Jurassic granite quartz porphyry [BI¥B8] Early Permian granite quartz diorite
|I| Copper ore occurrence - Early Jurassic alkalifeldspar granite - Late Ordovician granite quartz diorite
|I| Crystal ore occurrence T.Y3| Middle Triassic granodiorite

Figure 1. Geological map of the study area, modified from [43].
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2.2. Geochemical Data

The datasets used in this study were geochemical analyses of 4959 stream sediment
samples taken at a density of 5.55 points per 1 km? by the Geological Survey Institute of
Qinghai Province (Figure 2). The concentrations of 15 elements (Au, Sn, Ag, As, Sb, Bi, Co,
Cu, La, Pb, Zn, W, Mo, Nb, and Cd) were measured in each sample. The samples were
obtained through multi-pit combination sampling and were mainly collected from the de-
bris materials of the bedrock composition in the catchment area, as well as medium- and
coarse-grained sand in the stream sediments. The methods used to analyze the concentra-
tion of heavy metals include atomic emission spectrometry (AES) for Au, Ag, and Sn;
atomic fluorescence spectrometry (AFS) for As, Sb, and Bi; atomic absorption spectrome-
try (AAS) for Cu, Pb, Zn, Co, and Ni; and polarography (POL) for W and Mo.

The elemental concentrations are summarized in Table 1. The coefficient of variation
(CV) is expressed as the ratio of the standard deviation to the mean and is an important
parameter that reflects the homogenization of element distribution. The elements with CV
>1, from largest to smallest, are Bi, W, Sb, As, Ag, Sn, Au, Cu, Pb, and Mo. Larger CV
represents more inhomogeneous elemental concentrations. The higher the coefficient of
variation, the greater the level of dispersion around the mean. We performed a logarith-
mic transformation on the 15 elements and plotted the log-frequency distribution histo-
gram in the study area (Figure 3); therefore, we found that most elements tend to be
lognormally distributed.

In addition, we compared the average concentrations of seven mineralized elements
in the widely distributed bedrocks with those in the corresponding overlaying stream
sediments (Figure 4). The element concentrations in the bedrocks and their corresponding
overlaying stream sediments are very close; in particular, the two kinds of concentrations
in the upper Triassic Elashan Formation almost coincide. The element concentrations
show strong correlations between the bedrocks and their corresponding overlying stream
sediments.

Table 1. Main statistical results of the stream-sediment elements in the study area.

Element Mean Median Star’lda.rd Skewness Kurtosis Coeffl.cu?nt of
Deviation Variation
Au 1.42 1.20 1.81 25.07 793.15 1.27
Sn 2.31 1.70 3.21 10.35 134.68 1.39
Ag 76.31 41.00 117.35 6.77 67.02 1.54
As 13.07 8.10 21.89 13.21 303.48 1.68
Sb 0.82 0.47 1.45 14.56 372.59 1.88
Bi 0.37 0.17 1.00 13.68 256.65 2.50
Co 7.07 6.40 3.44 3.07 24.09 0.48
Cu 16.05 12.10 20.44 15.15 330.62 1.27
La 13.73 12.00 8.30 8.99 192.65 0.61
Pb 17.00 12.80 21.29 13.35 314.69 1.25
7n 48.29 40.40 32.06 4.27 27.61 0.66
W 2.74 1.70 5.99 18.99 528.95 2.22
Mo 1.20 0.96 1.36 9.31 117.22 1.17
Nb 3.93 3.30 2.26 4.53 37.90 0.59
Cd 0.15 0.10 0.18 5.28 49.30 0.85

Au, Ag: 107, others: 10°°.
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Figure 2. Map of stream sediment geochemical sampling points.
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Figure 3. Log-frequency distribution histogram of the 15 elements in the study area: (a) Au, (b) Sn,
(c) Ag, (d) As, (e) Sb, (f) Bi, (g) Co, (h) Cu, (i) La, (j) Pb, (k) Zn, (1) W, (m) Mo, (n) Nb, and (o) Cd.
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Figure 4. Average concentrations of main mineralization elements in bedrock, e.g., (a) the Baishahe
Formation, (b) the Elashan Formation, (c¢) monzogranite, (d) alkali feldspar granite, (e) monzogran-
ite porphyry, (f) granodiorite, (g) quartz granodiorite, and (h) quartz diorite and their correspond-
ing overlaying stream sediments, modified from [43].

3. Methods
3.1. Spatial Autocorrelation
3.1.1. Univariate Spatial Autocorrelation

Spatial autocorrelation indicates the extent to which one attribute of a feature is re-
lated to nearby features [60]. Spatial autocorrelation indicators are the sum of the cross
product of a similarity matrix, c;;, and a spatial similarity matrix, w;;, and include global
(Equation (1)) and local (Equation (2)) metric indicators [11]. In general form, they are
written as:
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n n
Iy = Z Z CijWij ey
=1 j=1
n
r@ = Z CijWij 2)
=1

where n is the total number of observations, c;; is the self-similarity matrix, and w;; is
the spatially weighted matrix.

Global indicators give the degree of spatial association for a single value, and local
indicators assess the extent to which observations of similar and dissimilar values are
clustered for each location [11]. Different measures of similarity yield different indices for
spatial association [11]. For example, using c;; = (x; — ) (xj - J?) yields a Moran-like in-
dicator, setting ¢;; = (x; — x]-)z yields a Geary-like indicator, and setting ¢;; = x;x; yields
a Getis-Ord-like indicator. The corresponding spatial autocorrelation indicators are
global Moran’s I [4,6-8], Geary’s C [5,6,8], and Getis-Ord’s G [9], respectively. A global
spatial autocorrelation indicator can only reflect the overall spatial trend and autocorrela-
tion of the geographical entity or phenomenon. However, local spatial autocorrelation in-
dicators measure the correlation among various locations and their neighbors to reveal
more detailed local spatial patterns. These indicators include local Moran’s I [11], Geary’s
C[11], and Getis—Ord’s G [9]. The calculation method of univariate global and local spatial
autocorrelation statistics is shown in Table 2.

Table 2. Spatial autocorrelation statistics.

Spatial Autocorrelation
Statistics

Calculation Formula Remarks References

global Moran’s I

The range of I is [-1,1], I <0indi-
_ _ t ti tial aut la-
n 3wy (x; — %) (xj _ x) (.:a es nega' IV? spatia ag.ocorre ?
I = (Zn S )Z" ( =X tion, I >0 indicates positive spatial [4,6-8]
02 Wiy) L X = X autocorrelation, and I tends to 0 indi-

cates spatial random distribution.

global Geary’s C

The range of C is [0, 2], C >1 indi-
2 cates negative spatial autocorrela-
n—1) X" w;(x; — x;
= ( ) 10 5 wi (i el ) tion, C <1 indicates positive spatial [5,6,8]
(2xr x7 wij) Xr(x; — %)?

autocorrelation, and C tendsto 1 in-
dicates spatial random distribution.

global Getis—Ord’s G

G <mathematical expectation (ME)
indicates low value clustered, G > ME
indicates high value clustered, and G [9]
tends to ME indicates spatial random
distribution.

C = Xt Z? WijXiXj
DUDNEES

local Moran’s I

(= %) n Z(I(1)) <0indicates negative spatial
I1(i) = IS—ZZ wij (xj — JZ) autocorrelation, Z(I(i)) >0 indicates
j positive spatial autocorrelation, and [9]
§2 — 2 (x; — x)* Z(I(1)) tends to 0 indicates spatial
n random distribution.

local Geary’s C

1 & Z(C(i)) <0indicates negative spatial
C@)= S_ZZ Wi; (xl- - xj)2 autocorrelation, Z(C(i)) >0 indicates
J positive spatial autocorrelation, and [11]
§2 = Ii —%)? Z(C(i)) tends to 0 indicates spatial
n random distribution.
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local Getis—Ord’s G

Z(G(i)) <0 indicates negative spatial
n n autocorrelation, Z(G(i)) >0 indicates
G = (2 w;ix;)/ Z Xj positive spatial autocorrelation, and [9]
J J Z(G(i)) tends to 0 indicates spatial
random distribution.

Cab (l)

x; and x; are the observed value at positions i and j, respectively; x; is x; position’s neighbor
point at a certain distance; n is the total number of observations; X is the mean value of the obser-
vations; w;; is the spatial weight matrix; Z(I') = (I' — E(I'))/y/VAR(I'), T is a spatial statistic; E(I')
is the mathematical expectation of I'; and VAR(I") is the variance of T.

3.1.2. Multivariate Spatial Cross Correlation

Spatial cross correlation indicates the extent to which the multiple attributes of a fea-
ture are related to nearby features. The exploration of multivariate spatial cross correlation
is a core functionality of current exploratory data analysis (EDA), knowledge discovery,
and data mining tools [61]. Anselin et al. (2002) proposed bivariate global (Equation (3))
and local (Equation (4)) Moran’s I to quantify bivariate spatial cross correlation [62]. They
are calculated from:

n )i X wii(a; — a)(b; — b)

Loy = - ,
’ (XX wy;) X (a; — @)? 3)

n
na,—a —

lap (@) = ﬁZw(@- ~b) )

j
where a; and b; are the observed values of variables a and b at positions i and j, re-
spectively; n is the total number of observations; @ and b are the mean values of the

observations of variables a and b, respectively; and w;; is the spatial weighted matrix.

Anselin (2019) proposed using the univariate local Geary’s C to measure the squared
distance in attribute space (i.e., along a line for the univariate case) between the values at
a geographic location and its neighboring locations, which is summarized in the form of
a weighted sum [13]. This indicator can be readily extended to a multivariate context. For
example, consider two variables, p and gq. The squared distance, d7;, in two-dimensional
attribute space between the values at observation i and its geographic neighbor, j, is:

di; = (0 —p))* + (a4 — q))* ®)

The bivariate local Geary’s C can be defined as:

1 1
= EZ wydf; = Ez wii[(i — p)? + (@ — q;)7]
j j
1 1 (6)
= E[Z wi;(pi — pj)z + Z wij(q; — qj)z] = E(C“(i) + (D)
j j

where p; and p; are the observed values of variable a at positions i and j, respec-
tively; q; and g; are the observed values of variable b at positions i and j, respec-
tively; and w;; is the spatial weighted matrix.

Following standard practice in multivariate clustering analysis, these variables have
been standardized such that the mean of the transformed variable is zero and its variance
is one. Moreover, the concept of a local Geary” C is additive in the attribute dimension.
Therefore, a multivariate local Geary’s C can be defined as:

k
@)=Y )/ )
v=1

where k represents k-dimensional attribute space, and c,(i) represents the univariate lo-
cal Geary’s C of variable v.
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3.2. Association Rule Mining and Apriori Algorithm

Association rule mining is used to reveal the association among items in a dataset.
We assume that D = {t;,t,, ..., ty} is the event dataset, t, = {i;,i,,..,ix} represents an
event corresponding to a geochemical sample, and i, represents an item belonging to an
aggregated event, tj.Itemset I = {i, i, ...,iy} isaspecificitem combination that contains
M different items. For a subset, X in I, if X € t;, then the event, t;, contains X. The goal
of association rule mining is to find an implicit form of X = Y, where XS 1, YES I, and
XNY = @. If the rule X=Y exists, there are two key coefficients: the support degree, S,
and confidence, C. The support degree, S(X = Y) = P(X U Y), represents the probability of
co-occurrence of itemsets X and Y. The confidence, C(X = Y) = P(Y|X) = P(XUY)/P(X),
represents conditional probability of occurrence of itemset Y, given that itemset X has
occurred. The itemsets that satisfy the minimum threshold (Smin) of support degree are so-
called frequent itemsets, and those that satisfy both Smin and a minimum threshold of con-
fidence (Cmin) are strong association rules.

The Apriori algorithm [57] can be decomposed into two main steps. The basic intui-
tion is that any subset of a frequent itemset must be frequent. The first step is to generate
frequent itemsets, as shown in Figure 5. The second step is to extract strong association
rules based on frequent itemsets, as shown in Figure 6. The Apriori algorithm generates
the candidate itemsets to be counted in a pass by using only the frequent itemsets in the
previous pass. To improve the efficiency of frequent itemset extraction, the method uti-
lizes a pruning strategy in order to compress the search space, that is, all non-empty sub-
sets of frequent itemsets must also be frequent, and all parent sets of nonfrequent itemsets
are nonfrequent.

Pruning and
. removing the
Dataset D ‘ Cycle until not repeated- candidate
itemset

kI 1 Yes
Generating Selecting a o Adding Cy to
candidate candidate 1.Containing nonfrequent No—»| frequentk-
> & subsets? Or A
itemset Cy itemset from Cy 2.6<S.. 2 order itemset Ly

No, k=k+1 T—Cycle until not ted |

P

Ending, the Ending, the
maximum maximum
frequent item-sets [Yes Yes» frequent item-sets
is Lk is L1

] v

Connecting, 3 .
joining to Ci1 | Only k-1 items of two Selecting two | Generating

after e frequent item-sets are s £ 'telt“— N / itam-sets L
connecting the same? sets from Ly item-sets Ly

I—Cycle until not ted T

P

Figure 5. Algorithm for generating frequent itemsets.

Flz_eg:;:':t / 2| Selecting Eny Support(L)/Support(S) Yes—] Generating strong
itemset L, Subsets Sriﬁ' L >Cmin? association rules S L-S
No

S$-> L-S is not strong
association rules

Figure 6. Algorithm for extracting strong association rules based on frequent itemsets.
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4. Results and Discussion
4.1. Spatial Autocorrelation of Elements
4.1.1. Univariate Spatial Autocorrelation of Individual Elements

We calculated the spatial autocorrelation and cross-correlation indicators of each el-
ement using open-source software packages Geoda (http://geodacenter.github.io, ac-
cessed on 28 May 2021) and spdep (https://github.com/r-spatial/spdep, accessed on 4
April 2021). Then, we applied the Z-score to test the significance of spatial autocorrelation
and cross-correlation statistics. Because the global Moran’s I can be tested by normal or
permutation tests [8], the Z-score was calculated by Monte Carlo simulation by randomly
sampling 999 permutations. The global Moran’s I, global Geary’s C, and global Getis—
Ord’s G for 15 elements passed the statistical significance test and were consistent with
each other (Table 3). The global Moran’s I and Geary’s C are both suitable for characteriz-
ing the overall spatial pattern of an element; however, the global Getis—-Ord’s G only in-
dicates whether an element’s concentration exhibits a positive correlation (LL-clustered
or HH-clustered) or is randomly distributed. It cannot be used to ascertain a negative cor-
relation or compare the correlation between elements.

Table 3. Univariate global spatial autocorrelation indicators for 15 elements in the study area.

Variable Global Moran’s I Global Geary’s C Global Getis-Ord’s G
I p-Value (x10-16) C p-Value (x10-16) G p-Value (x10-1%)  E(G) (x10-9)

log10(Au) 0.059 <22 0.949 <2.2 0.009 <22 5.1
log10(Sn) 0.439 <22 0.563 <22 0.014 <22 6.7
log10(Ag) 0.430 <22 0.570 <22 0.013 <22 9.0
log10(As) 0.451 <2.2 0.551 <2.2 0.012 <2.2 11.0
log10(Sb) 0.608 <22 0.394 <22 0.014 <22 13.0
log10(Bi) 0.438 <22 0.564 <22 0.019 <2.2 52.0
log10(Co) 0.423 <22 0.578 <22 0.009 <22 0.6
logl0(Cu)  0.468 <2.2 0.535 2.2 0.012 <2.2 5.3
log10(La) 0.259 <2.2 0.740 <2.2 0.009 <2.2 0.9
log10(Pb) 0.500 <22 0.500 <22 0.011 <22 5.1
log10(Zn) 0.530 <22 0.468 <22 0.010 <22 1.1
log10(W) 0.365 <22 0.638 <22 0.015 <22 24.0
logl0(Mo)  0.430 <2.2 0.572 <2.2 0.012 <2.2 4.0
log10(NDb) 0.181 <22 0.817 <2.2 0.009 <22 0.8
log10(Cd) 0.459 <2.2 0.539 <2.2 0.012 <2.2 4.0

p-value < 0.05 means that the indicator passes the statistical significance test.

The global Getis—Ord’s G shows that all 15 elements have a positive correlation in the
study area. The global Moran’s I and Geary’s C show that Au is randomly distributed,
and the other 14 elements are positively correlated. The elements, ordered from high to
low correlation, are Sb, Zn, Pb, Cu, Cd, As, Sn, Bi, Ag, Mo, Co, W, La, and Nb (Table 3).
Except for Au, the global Moran’s I and Geary’s C are consistent with Getis—-Ord’s G. Ac-
cording to the geological survey report, an Au deposit was found in the study area [59].
However, because of the low concentrations of Au in most sampling points of the study
area, it would be easy to overlook the local clustering in the global spatial autocorrelation
analysis.

We calculated the local Moran’s I of major elements in the study area and visualized
the results via a Voronoi diagram (Figure 7). Anselin (1995) proposed a local indicator of
spatial association (LISA) statistic that satisfies the following two requirements: (a) the
LISA for each observation gives an indication of the extent of significant spatial clustering
of similar values around that observation; and (b) the sum of LISAs for all observations is



Appl. Sci. 2022, 12, 2247

12 of 31

proportional to a global indicator of spatial association [11]. By calculating the local Mo-
ran’s I, I1(i), in each quadrant, this divides the concentrations of elements into five cate-
gories: insignificant, high-high (HH), low-low (LL), low-high (LH), or high-low (HL)
clustering [11]. A local Moran’s I clustering map (LMIC) represents different types of as-
sociation between the value at a given location and its spatial lag, i.e., the weighted aver-
age of the values in the surrounding locations. The LISA significance map is shown in
Figure 8, in which we set p = 0.05. The local Moran’s I clustering map is shown in Figure
9. These results are consistent with the Moran’s I clustering results, which show that the
HH and LL clustering in LMIC can reflect the spatial pattern of elements’ concentrations
with a certain statistical significance. In addition, maps of local Moran’s I have natural
transitions from strong to weak, which capture the local details and are consistent with
the distributions of elements in nature.

Moreover, we also calculated indicators of the local Geary’s C and the local Getis—
Ord’s G of all the elements in the study area. The HH- and LL-clustered values of the local
Moran’s I and the local Geary’s C are similar; however, the local Getis—Ord’s G covers a
broader space, especially for Sb, As, Cu, and Co. Compared with local Geary’s C and local
Getis—Ord’s G, we can identify points with HH, LL, LH, and HL clustering with a precise
meaning for each category from the local Moran’s I. Therefore, we chose the LMIC results
to mine the association rules of various elements.
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Figure 7. Voronoi diagrams of local Moran’s I indicators for major elements: (a) Ag, (b) As, (c) Sb,
(d) Bi, (e) Co, (f) Cu, (g) La, (h) Zn, and (i) Cd.
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4.1.2. Bivariate Spatial Cross Correlation between Two Elements

The bivariate global Moran’s I for 15 elements in the study area are shown in Table
4, and all the calculated results passed the statistical significance test. We quantified the
strength of spatial cross correlation between all element pairs, as shown in Table 4, the
diagonal values of which are consistent with the univariate global Moran’s I. The elements
with strong positive correlations include Pb and Cd, Pb and Zn, Cu and Bi, and Zn and
Cd, and those with negative correlations include La and Co, and La and Cu (Tables 5 and
6).

Table 4. Bivariate global Moran’s I for 15 elements in the study area.

Element/

Sn Ag As Sb Bi Co Cu La Pb Zn A% Mo Nb Cd
log10()

Au 006 0.3 003 003 003 001 -003 000 001 002 -002 001 -002 -0.01 0.02
Sn 0.03 044 028 027 020 030 015 029 -0.03 029 015 019 0.08 -0.03 0.30
Ag 003 028 043 031 026 025 015 026 001 036 030 022 014 0.02 034
As 0.03 027 031 045 035 022 019 022 -002 034 026 016 009 0.02 0.33
Sb 0.03 020 026 035 061 015 011 010 004 032 026 012 -0.01 0.00 0.30
Bi 001 030 025 022 015 044 018 036 -0.06 028 021 027 023 003 024
Co 003 015 015 019 011 018 042 031 -015 020 022 015 015 001 0.16
Cu 000 029 026 022 010 036 031 047 -013 026 022 029 027 004 023
La 0.01 -0.03 0.01 -0.02 0.04 -006 -015 -0.13 026 006 0.06 -0.02 -0.01 0.07 0.04
Pb 0.02 029 036 034 032 028 020 026 006 050 042 023 016 005 043
Zn -0.02 015 030 026 026 021 022 022 006 042 053 022 021 022 036
w 001 019 022 016 012 027 015 029 -0.02 023 022 037 032 007 0.19
Mo -0.02 0.08 0.14 009 -0.01 023 015 027 -001 016 021 032 043 010 0.11
Nb  -0.01 -0.03 0.2 0.02 000 003 0.1 004 007 005 022 007 010 018 0.03
Cd 002 030 034 033 030 024 016 023 004 043 036 019 011 0.03 046

Table 5. Bivariate global Moran’s I for elements with positive correlations.

) Positive Correlation
I =043 Pb-Cd
I, =042 Pb-Zn
I, =0.36 Ag-Pb, Cu-Bi, Zn-Cd
I, =0.35 As-Sb
I, =0.34 Ag-Cd, Pb-As
I =033 As-Cd
I, =0.32 Pb-Sb, Mo-W
I, =0.31 Ag-As, Cu-Co
I, =0.30 Sn-Bi, Sn-Cd, Ag-Zn, Sb-Cd

Table 6. Bivariate global Moran’s I for elements with negative correlations.

I, Negative Correlation
I, = —0.13 La-Co
Iap = —0.15 La-Cu

The clustering map of bivariate local Moran’s I divides the sampling points into five
categories, i.e., insignificant, high-high (HH), low-low (LL), low-high (LH), and high-
low (HL) clustered. However, their meanings are different from categories in a univariate
clustering map. In the clustering map of bivariate local Moran’s I, I,,(i) indicates the spa-
tial pattern of the related element, b, around the main element, a. From this, we plotted
Icucor Icocw Icusir and Iassp, as shown in Figure 10. In the Icyc, and Igocy, the sampling
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points with high-high (HH) and low—low (LL) clustering are consistent with the univari-
ate I, and I¢,. Therefore, Icyco, and Igocy show that the spatial distributions of Cu and
Co in the study area are similar and positively cross-correlated. Due to the differences in
the spatial distribution of Cu and Co, there are some differences in I¢yc, and Icocy after
exchanging the main variable and related variable. The high-high (HH) clustering in I¢,p;
and I, also has obvious regionality. Although these element pairs are globally posi-
tively cross-correlated, there are still some local negative cross-correlation (LH/HL) points
beside mainly local positive cross-correlation points. The map for I cy and Ijac, is
shown in Figure 11. There are apparent areas of low-high (LH) and high-low (HL) clus-
tering in Figure 11, which indicate a negative cross correlation of the two elements. Alt-
hough these two element pairs are globally negatively cross-correlated, there are still
some local positive cross-correlation (HH/LL) points. Therefore, the bivariate local Mo-
ran’s I not only effectively reveals whether two elements have a spatial cross correlation
but also helps us to better understand the spatial distribution pattern of coexistence of
elements.
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Figure 11. Clustering map of bivariate local Moran’s I with mainly negative cross correlation: (a)
ILacu and (b) ILaco-

4.2. Association Rules among Multiple Elements
4.2.1. Association Rule Mining

The 4959 geochemical sampling points were each taken as an event in the Apriori
algorithm. Then, we reorganized the geochemical concentration data into the original da-
taset, D, for association rule mining according to clustering by local univariate Moran's I,
as shown in Table 7. Table 8 shows the statistics for the LMIC analysis. Some items fre-
quently appear in events, whereas some items are very sparse. If the support threshold in
the Apriori algorithm is set too low, the efficiency of the mining algorithm is low, and a
large number of meaningless rules may be extracted. If the support threshold is set too
high, the efficiency of the mining algorithm is high, but it may filter out some sparse items.
For this study, we set the support threshold a Smin = 0.05 and the confidence threshold at
Cmin=0.7.

Table 7. Original example dataset for association rule mining.

Ly iy i; i3 iy s ig iz ig iy ST SRR 5P i13 l14 i15
(Point) (Auw) (Sm) (Ag) (As) (Sb) (Bi) (Co) (Cw) (La) (Pb) (Zn) (W) (Mo) (Nb) (Cd)

1 HL HH HH HH HH HH HH HH HH HH

2 LL HH HH HL

3 HH LH HH LH HH

4 HH HH HH HH LH HH

5 LL LL LL LL L[L LL HH LL LL

6 LL LL LL LL LL LL LL LL LL LL LL

4959 HH HH HH HH HH HH HH LH HH HH HH HH HH
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Table 8. Counts of items in local Moran’s I clustering (LMIC) of elements.

Element Insignificant High-High @ Low-Low Low-High High-Low
Au 4023 113 466 163 194
Sn 2584 300 1786 190 99
Ag 1706 560 2286 336 71
As 1931 521 2137 259 111
Sb 1192 867 2509 305 86
Bi 2352 351 1973 194 89
Co 1810 981 1613 327 228
Cu 2036 570 2044 169 140
La 2025 659 1529 417 329
Pb 3740 65 796 315 43
Zn 1662 793 2049 200 255
W 2442 332 1874 193 118
Mo 2289 414 1952 128 176
Nb 2749 478 1132 329 271
Cd 2054 556 1927 303 119

We used the Apriori algorithm to mine out dozens of association rules, of which 15
rules were selected for interpretation (Table 9). The supports for Au and Pb in the Apriori
algorithm are lower than the threshold, so no relevant association rules were mined.
Meanwhile, the relevance of these association rules was judged according to the coexist-
ence of elements and the geological environment in the study area.

Table 9. Mined association rules among elements.

ID Association Rules Support Degree Confidence
a {As (HH)} = {Sb (HH)} 0.076 0.73
b {Cd (HH)} = {Zn (HH)} 0.090 0.81
c {W (HH)} = {Cu (HH)} 0.051 0.76
d {Cu (HH)} = {Co (HH)} 0.089 0.77
e {Bi (HH)} = {Cu (HH)} 0.059 0.83
f {Mo (HH)} = {Sb (LL)} 0.065 0.77
g {Zn (HH), Ag (HH)} = {Cd (HH)} 0.058 0.81
h {Cd (HH), Ag (HH)} = {Zn (HH)} 0.058 0.92
i {Cd (HH), As (HH)} = {Zn (HH)} 0.053 0.93
j {As (HH), Zn (HH)} = {Cd (HH)} 0.053 0.82
k {Zn (HH), Sb (HH)} = {Cd (HH)} 0.055 0.71
1 {Cd (HH), Sb (HH)} = {Zn (HH)} 0.055 0.93
m {Zn (HH), As (HH)} = {Sb (HH)} 0.052 0.82
n {Cu (HH), La (LL)} = {Co (HH)} 0.052 0.76
0 {Co (HH), Sb (LL)} = {La (LL)} 0.056 0.73

HH (high-high clustered), LL (low-low clustered).

4.2.2. Comparison with Bivariate Spatial Cross Correlation

The affinity of elements is the ability of elements to preferentially coexist with each
other. The most abundant anions in the crustal system are oxygen (O) and sulfur (S).
Therefore, according to the geochemical affinities, the 15 elements are divided into the
following three categories: (1) native elements, i.e., Au; (2) sulfides, i.e., Sn, Ag, As, Sb, Bi,
Cu, Co, Pb, Zn, and Cd; and (3) oxides and lithophiles, i.e., Mo, Nb, W, and La.

The mining of association rules shows that there are positive correlations among all

sulfophile elements with HH clustering, that is, {As (HH)} = {Sb (HH)}, {Cd (HH)} =

{Zn
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(HH)}, (Cu (HH)} = (Co (HH)}, {Bi (HH)} = {Cu (HH)), {Zn (HH), Ag (HH)} = (Cd (HH)},
{Cd (HH), Ag (HH)} = {Zn (HH)}, {Cd (HH), As (HH)} = {Zn (HH)}, {As (HH), Zn (HH)}
= {Cd (HH)}, {Zn (HH), Sb (HH)} = {Cd (HH)}, {Cd (HH), Sb (HH)} = {Zn (HH)}, and {Zn
(HH), As (HH)} = {Sb (HH)}. In rules {Mo (HH)} = {Sb (LL)}, {Cu (HH), La (LL)} = {Co
(HH)}, and {Co (HH), Sb (LL)} = {La (LL)}, there are positive correlations between sul-
fophile elements with HH clustering and oxyphile elements with LL clustering.

We next compared the bivariate spatial cross correlations and association rules for
Cu and Co (Figure 12), as well as As and Sb (Figure 13). The distributions of I¢,c, HH
clustering and I,ss5, HH clustering are spatially similar to the association rules {Cu (HH)}
= {Co (HH)} and {As (HH)} = {Sb (HH)}, respectively; however, I¢,c, HH clustering and
Inssp HH clustering cover wider areas. In addition, Icyc, and Iagssp reveal not only high
HH clustering but also LL, LH, and HL clustering, which shows the simultaneous rela-
tionship between two elements but does not scale efficiently to massive data sets. In con-
trast, association rule mining is suitable for revealing the association among items in a
large geochemical dataset.

(a) {Cu (HH)} = {Co (HH)}

[ @ |The mined rule points [[© ]Geochemical sampling points

[@ JHH[ @ JLL [ © JLH [_@ JHL [ @ Jinsignificant

Figure 12. (a) Association rule mining result, {Cu (HH)} = {Co (HH)}, and (b) bivariate spatial cross-
correlation indicator, I¢,co, of Cu and Co.
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Figure 13. (a) Association rule mining result, {As (HH)} = {Sb (HH)}, and (b) bivariate spatial cross-
correlation indicator, Issp, of As and Sb.

4.2.3. Controls of Geological Features

Due to the influence of multiple stages of tectonic and magmatic activities, the fault
structures in the study area are relatively well developed. We calculated the Euclidean
distance field for the faults in the study area (Figure 14). Then, the 15 mined association
rules were overlaid with the fault distance field (Figure 15). We found that more than 86%
of the mined rule points are located within 1000 m distance of the fault, especially {Cu
(HH)} = {Co (HH)} (Figure 16) and {Zn (HH), Sb (HH)} = {Cd (HH)} (Figure 17). The rule
{Cu (HH)} = {Co (HH)} is most predominant near the faults in the northwest and south-
east parts of the study area, and three known copper ore occurrences are also near the
faults. The rule {Zn (HH), Sb (HH)} = {Cd (HH)} is most strongly associated with the
faults in the southeastern part of the study area, and a known lead-zinc ore occurrence is
near the faults. That is, the fault structure has an obvious control effect on clustering of
the elements. Figures 16 and 17 show that three copper ore occurrences and one lead-zinc
ore occurrence all appear in areas with high densities of their corresponding association
rule points. In addition, we extracted streams and catchment areas to analyze whether
element co-occurrence is related to stream transport. As shown in Figures 18 and 19, most
{Cu (HH)} = {Co (HH)} and {Zn (HH), Sb (HH)} = {Cd (HH)} events are distributed in the
upper reaches of the streams and catchment areas, so the impact of stream transport on
element association rule mining is weak in the study area.
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Figure 14. Euclidean distance field of faults.
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Figure 16. Rule {Cu (HH)} = {Co (HH)} points within 500 m and 1000 m of faults.
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Figure 17. Rule {Zn (HH), Sb (HH)} = {Cd (HH)} points within 500 m and 1000 m of faults.

Stam|\|\| |\|\l Catchment a |©|g|-|'|-| (A ]
Level 1 Level2 Level3 Level4 Level Level 1 Level2 Level3 Level4 Level5 Coexistence location

iIF%

g % le

S &\ MW)‘

%L« t&“ﬂ@ﬁ
J\\ ?

\ -
Str am|\|\| I\I\I Catchment a |©|-|-|-|-| (A |
Level Level2 Level3 Level4 Level5 Level Level Level Level Level Coexistence location

Q 4/«017‘0

Figure 19. Rule {Zn (HH), Sb (HH)} = {Cd (HH)} points overlayed with streams and catchment
areas.

The mineralogical composition of lithological strata impacts the coexistence of ele-
ments. We overlaid the mined association rules with the geological map and counted the
points and density of each rule in the main lithostrata (Figure 20). A greater density and
number of points of association rules of sulfides and the related elements occurs in the
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Proterozoic Baishahe Formation (Ptib) and the Early Permian granodiorite (P1yd), espe-
cially {As (HH)} = {Sb (HH)}. The Proterozoic Baishahe Formation (Ptib) is the basement
rock series in the study area, which is divided into carbonate rock, schist, and gneiss. Due
to the influence of multiple orogenic events and frequent magmatic activity, the Protero-
zoic Baishahe Formation (Ptib) and various intrusive rocks show good metallogenic con-
ditions and prospects in the study area. The Late Triassic Elashan Formation (Tse) is di-
vided into andesite, dacite, and rhyolite. During this geological period, tectonic move-
ments, volcanic eruptions, and structural fractures were developed, which were good
storage places for later metallogenic materials. However, because the Late Triassic
Elashan Formation is not the main source of metallogenic materials, we found that it is
not strongly related to association rules. Figure 21 shows that rule {As (HH)} = {Sb (HH)}
occurs not only in Ptib but also in the contact zones between intrusive rocks of different
ages and Ptib.
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Figure 20. Total number of points and density of each mined rule in the main lithostrata, e.g., (a)
{As (HH)} = {Sb (HH)}, (b) {Cd (HH)} = {Zn (HH)}, (¢) {(W (HH)} = {Cu (HH)}, (d) {Cu (HH)} = {Co
(HH)}, (e) {Bi (HH)} = {Cu (HH)}, (f) (Mo (HH)} = {Sb (LL)}, (g) {Zn (HH), Ag (HH)} = {Cd (HH)},
(h) {Cd (HH), Ag (HH)} = {Zn (HH)}, (i) {Cd (HH), As (HH)} = {Zn (HH)}, (j) {As (HH), Zn (HH)}
= {Cd (HH)}, (k) {Zn (HH), Sb (HH)} = {Cd (HH)}, (1) {Cd (HH), Sb (HH)} = {Zn (HH)}, (m) {Zn
(HH), As (HH)} = {Sb (HH)}, (n) {Cu (HH), La (LL)} = {Co (HH)}, and (o) {Co (HH), Sb (LL)} = {La
(LL)).
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Proterozoic Baishahe Formation Early Permian granodiorite El Coexistence location
Figure 21. Rule {As (HH)} = {Sb (HH)} overlayed with the main lithostrata.

According to the geological survey data, the enrichment of Cu, Pb, Zn, Ag, Bi, and
other elements in the Proterozoic Baishahe Formation (Ptib) provides the main ore-form-
ing materials in the study area. The locations of rules {As (HH)} = {Sb (HH)}, {Zn (HH),
Ag (HH)} = {Cd (HH)}, and {Cu (HH)} = {Co (HH)} are related to Ptib, as shown in Fig-
ures 21-23. The association rules of sulfophile elements, e.g., {As (HH)} = {Sb (HH)}, {Cd
(HH)} = {Zn (HH)}, {Zn (HH), Ag (HH)} = {Cd (HH)}, {Cd (HH), Ag (HH)} = {Zn (HH)},
{Cd (HH), As (HH)} = {Zn (HH)}, {Cd (HH), As (HH)} = {Zn (HH)}, {Zn (HH), Sb (HH)}
= {Cd (HH)}, {Cd (HH), Sb (HH)} = {Zn (HH)}, and {Zn (HH), As (HH)} = {Sb (HH)}, are
mainly distributed in the Proterozoic Baishahe Formation (Ptib), the Late Triassic Elashan
Formation (Tse), and the Middle Triassic granodiorite (T2yd). The Middle Triassic mag-
matism resulted in the intrusion of the middle Triassic Kekesai Sequence granite and the
Late Triassic Zamari Sequence granite, which provided conditions for enrichment of
many sulfophile elements in the study area, especially represented by the rule {Zn (HH),
Ag (HH)} = {Cd (HH)} (Figure 22). Therefore, the Middle Triassic magmatism provided
a heat and material source to enrich elements and is an important geological unit for ag-
gregating sulfophile elements. Cu mineralization often occurs in the contact between the
Early Permian magmatic rocks and surrounding rocks, such as the Proterozoic Baishahe
Formation (Ptib), forming the Keregou East copper occurrence and the Hariza copper de-
posit. The rules of {W (HH)} = {Cu (HH)}, {Cu (HH)} = {Co (HH)}, {Bi (HH)} = {Cu (HH)},
{Cu (HH), La (LL)} = {Co (HH)}, and {Co (HH), Sb (LL)} = {La (LL)} related to Cu HH
and Co HH clustering also have high density in the Early Permian granite quartz diorite
(Prydo), especially {Cu (HH)} = {Co (HH)} (Figure 23). Therefore, we may infer that a
coexisting relationship between Cu and other elements developed in the Early Permian
granite quartz diorite.
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[IPtB] Proterozoic Baishahe Formation Middle Triassic granodiorite Coexistence location
Late Triassic Elashan Formation
Figure 22. Rule {Zn (HH), Ag (HH)} = {Cd (HH)} overlayed with the main lithostrata.

[Pt Proterozoic Baishahe Formation [JBlJ80)] Early Permian granite quartz diorite [ A | Coexistence location

Figure 23. Rule {Cu (HH)} = {Co (HH)} overlayed with the main lithostrata.

5. Conclusions

Our case study of association rule mining in the Chahanwusu River area yielded the
following conclusions.

(1) According to the global autocorrelation indicators, Au shows a random distribu-
tion in the study area, and 14 other elements have positive correlations, ranked from large
to small: Sb, Zn, Pb, Cu, Cd, As, 5n, Bi, Ag, Mo, Co, W, La, and Nb. Compared with local
Geary’s C and local Getis—Ord’s G, local Moran’s I can identify points of HH, LL, LH, and
HL clustering with a precise meaning for each category, which makes it a better local au-
tocorrelation indicator for association rule mining.

(2) Based on the univariate LMIC results, the proposed method successfully mined
15 association rules among various elements in the study area. Bivariate spatial cross cor-
relation can also detect distribution-pattern details of the co-occurrence of pair elements
compared with association rule mining. However, it cannot be used to efficiently explore
massive geochemical datasets. In contrast, association rule mining can reveal the associa-
tion among items in a large geochemical dataset.

(3) Overlying the mining results of association rules on the faults, ore occurrences,
and catchment areas, we found that more than 86% of the mined rule points are located
within 1000 m of faults and near known ore occurrences, and the impact of stream
transport on element co-occurrences is weak. Greater densities and numbers of points of
association rules were found in the Proterozoic Baishahe Formation (Ptib) and the Early
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Permian granodiorite (P1yd). Therefore, the association rules are closely related to specific
geological features.

The association rules mined in this paper are mainly high-value element co-occur-
rence. Where these combinations appear, higher concentrations of the element are more
likely, which can improve the prediction of unknown ore deposits or occurrences. How-
ever, the mining efficiency of low-value element co-occurrence is low, and the local dilu-
tion of elements in the study area cannot be effectively detected. In the future, we will
build an element-association rule database to find combinations of anomalies for known
metallogenic elements and to map the probability of unknown mineralization in the study
area.

Author Contributions: Conceptualization, B.Z. and ].D.; methodology, Y.C.; software, Z.]. and N.C.;
validation, B.Z., Z.J. and Y.C,; data curation, Y.C.; writing —original draft preparation, B.Z. and Z.].;
writing—review and editing, B.Z. and U.K,; funding acquisition, B.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was supported by grants from the National Natural Science Foundation of
China (Grant Nos. 42072326 and 41772348), China Geological Survey Project (Grant No.
DD20190156), and the National Key Research and Development Program of China (Grant No.
2019YFC1805905).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset of the current study is not publicly available due to a data
privacy agreement we signed with The 8th Team of Qinghai Provincial Bureau of Nonferrous Met-
als and Geological Exploration but are available from the corresponding author on reasonable re-
quest.

Acknowledgments: The authors would like to thank the Co-Construction MapGIS Library by En-
gineering Research Center for Geographic Information System of China and Central South Univer-
sity for providing MapGIS® software (Wuhan Zondy Cyber-Tech Co., Ltd., Wuhan, China). We also
thank senior engineering Professor ZHANG Shao-ning (The 8th Team of Qinghai Provincial Bureau
of Nonferrous Metals and Geological Exploration) and Professor LAI Jian-qing (Central South Uni-
versity) for their kind assistance with data collection and Professor Jeffrey Dick (Central South Uni-
versity) for revising scientific English writing of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Korobova, E.M.; Romanov, S.L. A Chernobyl 137Cs contamination study as an example for the spatial structure of geochemical
fields and modeling of the geochemical field structure. Chemom. Intell. Lab. Syst. 2009, 99, 1-8.

Zhang, B.; Chen, Y.; Huang, A.; Lu, H.; Cheng, Q. Geochemical field and its roles on the 3D prediction of concealed ore-bodies.
Acta Petrol. Sin. 2018, 34, 352-362.

Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234-240.

Moran, P.A. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17-23.

Geary, R.C. The Contiguity Ratio and Statistical Mapping. Inc. Stat. 1954, 5, 115-146.

Cliff, A.D.; Ord, J.K. The Problem of Spatial Autocorrelation. Reg. Sci. 1969, 1, 26-55.

Cliff, A.D.; Ord, J.K. Evaluating the percentage points of a spatial autocorrelation coefficient. Geogr. Anal. 1971, 3, 51-62.

Cliff, A.D.; Ord, J.K. Spatial Processes: Models & Applications; Taylor & Francis: Oxford, UK, 1981.

Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics; Springer: Berlin/Heidelberg, Germany, 2010; pp.

127-145.

Ord, J.K.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286—

306.

Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93-115.

Boots, B.; Okabe, A. Local statistical spatial analysis: Inventory and prospect. Int. |. Geogr. Inf. Sci. 2007, 21, 355-375.

Anselin, L. A local indicator of multivariate spatial association: Extending Geary’s C. Geogr. Anal. 2019, 51, 133-150.
Goovaerts, P.; Jacquez, G.M. Accounting for regional background and population size in the detection of spatial clusters and
outliers using geostatistical filtering and spatial neutral models: The case of lung cancer in Long Island, New York. Int. . Health

Geogr. 2004, 3, 14.



Appl. Sci. 2022, 12, 2247 30 of 31

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.
26.
27.
28.
29.

30.
31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.
45.

46.
47.

McLaughlin, C.C.; Boscoe, F.P. Effects of randomization methods on statistical inference in disease cluster detection. Health Place
2007, 13, 152-163.

Yu, X;; Wang, S.; Wang, H,; Liang, Y.; Chen, S.; Wu, K; Yang, Z.; Li, C; Chang, Y.; Zhan, Y. Detection of Geochemical Element
Assemblage Anomalies Using a Local Correlation Approach. J. Earth Sci. 2021, 32, 408-414.

Xiao, G.; Hu, Y.; Li, N.; Yang, D. Spatial autocorrelation analysis of monitoring data of heavy metals in rice in China. Food Control
2018, 89, 32-37.

Bivand, R.S.; Wong, D.W. Comparing implementations of global and local indicators of spatial association. Test 2018, 27, 716—
748.

Cheng, Q. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting
undiscovered mineral deposits in covered areas. J. Geochem. Explor. 2012, 122, 55-70.

Carranza, E.J.M. Geochemical Anomaly and Mineral Prospectivity Mapping in GIS; Elsevier: Amsterdam, The Netherlands, 2008.
Zuo, R; Xiong, Y. Geodata science and geochemical mapping. J. Geochem. Explor. 2019, 209, 106431.

Wang, J.; Zhou, Y.; Xiao, F. Identification of multi-element geochemical anomalies using unsupervised machine learning algo-
rithms: A case study from Ag-Pb—Zn deposits in north-western Zhejiang, China. Appl. Geochem. 2020, 120, 104679.

Taylor, R.; Steven, T. Definition of mineral resource potential. Econ. Geol. 1983, 78, 1268-1270.

Wang, L.; Wu, X,; Zhang, B.; Li, X.; Huang, A.; Meng, F.; Dai, P. Recognition of Significant Surface Soil Geochemical Anomalies
Via Weighted 3D Shortest-Distance Field of Subsurface Orebodies: A Case Study in the Hongtoushan Copper Mine, NE China.
Nat. Resour. Res. 2019, 28, 587-607.

Hawkes, H.E.; Webb, ]J.S. Geochemistry in mineral exploration. Soil Sci. 1963, 95, 283.

Sinclair, A. Selection of threshold values in geochemical data using probability graphs. J. Geochem. Explor. 1974, 3, 129-149.
Govett, G.; Goodfellow, W.; Chapman, R.; Chork, C. Exploration geochemistry—distribution of elements and recognition of
anomalies. J. Int. Assoc. Math. Geol. 1975, 7, 415-446.

El-Makky, A.M. Statistical analyses of La, Ce, Nd, Y, Nb, Ti, P, and Zr in bedrocks and their significance in geochemical explo-
ration at the Um Garayat Gold mine area, Eastern Desert, Egypt. Nat. Resour. Res. 2011, 20, 157.

Ravani, P.; Barrett, B.].; Parfrey, P.S. Longitudinal Studies 2: Modeling Data Using Multivariate Analysis. Methods Mol. Biol.
Clifton NJ 2021, 2249, 103-124.

Cox, D.R; Snell, E.J. Analysis of Binary Data; Routledge: London, UK, 2018.

Cioci, A.C,; Cioci, A.L.; Mantero, A.M.; Parreco, J.P.; Yeh, D.D.; Rattan, R. Advanced statistics: Multiple logistic regression, Cox
proportional hazards, and propensity scores. Surg. Infect. 2021, 22, 604-610.

Agterberg, F.P. Computer programs for mineral exploration. Science 1989, 245, 76-81.

Cheng, Q.; Agterberg, F. Fuzzy weights of evidence method and its application in mineral potential mapping. Nat. Resour. Res.
1999, 8, 27-35.

Goyes-Penafiel, P.; Hernandez-Rojas, A. Double landslide susceptibility assessment based on artificial neural networks and
weights of evidence. Bol. Geol. 2021, 43, 173-191.

Cheng, Q.; Agterberg, F.; Ballantyne, S. The separation of geochemical anomalies from background by fractal methods. J. Geo-
chem. Explor. 1994, 51, 109-130.

Cheng, Q.; Xu, Y.; Grunsky, E. Integrated spatial and spectrum method for geochemical anomaly separation. Nat. Resour. Res.
2000, 9, 43-52.

Cheng, Q. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in
Gejiu, Yunnan Province, China. Ore Geol. Rev. 2007, 32, 314-324.

Goovaerts, P. Geostatistical modelling of spatial uncertainty using p-field simulation with conditional probability fields. Int. J.
Geogr. Inf. Sci. 2002, 16, 167-178.

Naik, M.R; Barik, M,; Prasad, K.; Kumar, A.; Verma, A K,; Sahoo, S.K,; Jha, V.; Sahoo, N.K. Hydro-geochemical analysis based
on entropy and geostatistics model for delineation of anthropogenic ground water pollution for health risks assessment of
Dhenkanal district, India. Ecotoxicology 2021, 2, 43-52.

Zuo, R.; Carranza, E.J.M. Support vector machine: A tool for mapping mineral prospectivity. Comput. Geosci. 2011, 37, 1967—
1975.

Xiong, J.; Li, J.; Cheng, W.; Wang, N.; Guo, L. A GIS-based support vector machine model for flash flood vulnerability assess-
ment and mapping in China. ISPRS Int. . Geo-Inf. 2019, 8, 297.

Rodriguez-Galiano, V.; Chica-Olmo, M.; Chica-Rivas, M. Predictive modelling of gold potential with the integration of multi-
source information based on random forest: A case study on the Rodalquilar area, Southern Spain. Int. J. Geogr. Inf. Sci. 2014,
28, 1336-1354.

Zhang, B.; Li, M,; Li, W,; Jiang, Z.; Khan, U.; Wang, L.; Wang, F. Machine learning strategies for lithostratigraphic classification
based on geochemical sampling data: A case study in the area of the Chahanwusu River, Qinghai Province, China. ]. Cent. South
Univ. 2021, 28, 1422-1447.

Porwal, A.; Carranza, E.J.M. Classifiers for Modeling of Mineral Potential; Wiley-Blackwell: Hoboken, NJ, USA, 2008.

Porwal, A.; Carranza, E.J.M.; Hale, M. Bayesian network classifiers for mineral potential mapping. Comput. Geosci. 2006, 32, 1-
16.

Kliippelberg, C.; Krali, M. Estimating an extreme Bayesian network via scalings. |. Multivar. Anal. 2021, 181, 104672.

Xiong, Y.; Zuo, R. Recognition of geochemical anomalies using a deep autoencoder network. Comput. Geosci. 2016, 86, 75-82.



Appl. Sci. 2022, 12, 2247 31 of 31

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.
62.

Nguyen, T.T.; Liu, X.; Ren, Z. A study of geochemical exploration spational cluster identification based on local spatial autocor-
relation. Geophys. Geochem. Explor. 2014, 38, 370-376.

Wang, H.; Cheng, Q.; Zuo, R. Spatial characteristics of geochemical patterns related to Fe mineralization in the southwestern
Fujian province (China). J. Geochem. Explor. 2015, 148, 259-269.

Ji, B.,; Zhou, T.; Yuan, F.; Zhang, D.; Liu, L,; Liu, G. A method for identifying geochemical anomalies based on spatial autocor-
relation. Sci. Surv. Mapp. 2017, 42, 24-27+123.

Sadeghi, M.; Morris, G.A.; Carranza, E.J.M.; Ladenberger, A.; Andersson, M. Rare earth element distribution and mineralization
in Sweden: An application of principal component analysis to FOREGS soil geochemistry. ]. Geochem. Explor. 2013, 133, 160-175.
Wang, J.; Zuo, R. Quantifying the Distribution Characteristics of Geochemical Elements and Identifying Their Associations in
Southwestern Fujian Province, China. Minerals 2020, 10, 183.

Zhang, C.-S.; Li, Y. Extension of local association rules mining algorithm based on apriori algorithm. In Proceedings of the 2014
5th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 27-29 June 2014; pp.
340-343.

Zhang, X. Study of an improved Apriori algorithm for data mining of association rules. In Proceedings of the International
Conference on Applied Science & Engineering Innovation, Jinan, China, 30-31 August 2015.

Xu, T.; Dong, X. Mining frequent patterns with multiple minimum supports using basic Apriori. In Proceedings of the 2013
Ninth International Conference on Natural Computation (ICNC), Shenyang, China, 23-25 July 2013; pp. 957-961.

Wu, X.; Kumar, V.; Quinlan, J.R.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Philip, S.Y. Top 10 algorithms
in data mining. Knowl. Inf. Syst. 2008, 14, 1-37.

Agrawal, R.; Imielinski, T.; Swami, A. Mining association rules between sets of items in large databases. In Proceedings of the
1993 ACM SIGMOD International Conference on Management of Data, Washington, DC, USA, 25-28 May 1993; pp. 207-216.
Liu, X.; Zhou, Y. Application of association rule algorithm in studying abnormal elemental associations in the Pangxidong area
in western Guangdong Province, China. Earth Sci. Front. 2019, 26, 57-71.

Qinghai Geological Survey Institute. Comprehensive Survey Report of 1:50000 Regional Mineral Geology, Stream Sediment Geochem-
istry and High-Precision Magnetic Survey in the Chahanwusu River Area, Dulan County, Qinghai Province; Qinghai Geological Survey
Institute: Xining, China, 2008; pp. 254-273.

Chou, Y.H. Spatial pattern and spatial autocorrelation. In Proceedings of the International Conference on Spatial Information
Theory, Semmering, Austria, 21-23 September 1995; pp. 365-376.

Buja, A.; Cook, D.; Swayne, D.F. Interactive high-dimensional data visualization. |. Comput. Graph. Stat. 1996, 5, 78-99.
Anselin, L.; Syabri, I.; Smirnov, O. Visualizing multivariate spatial correlation with dynamically linked windows. In Proceed-
ings of the Proceedings, CSISS Workshop on New Tools for Spatial Data Analysis, Santa Barbara, CA, USA, 22-26 July 2002.



