Characterizing the Grating-like Nanostructures Formed on BaF2 Surfaces Exposed to Extreme Ultraviolet Laser Radiation
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Experimental Results
3.2. Discussion and Outlook
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rocca, J.J. Table-top soft X-ray lasers. Rev. Sci. Instrum. 1999, 70, 3799–3827. [Google Scholar] [CrossRef]
- Nejdl, J.; Howlett, I.D.; Carlton, D.; Anderson, E.H.; Chao, W.; Marconi, M.C.; Rocca, J.J.; Menoni, C.S. Image plane holographic microscopy with a table-top soft X-ray laser. IEEE Photonics J. 2015, 7, 1–8. [Google Scholar] [CrossRef]
- Sandberg, R.L.; Song, C.; Wachulak, P.W.; Raymondson, D.A.; Paul, A.; Amirbekian, B.; Lee, E.; Sakdinawat, A.E.; La-O-Vorakiat, C.; Marconi, M.C.; et al. High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution. Proc. Natl. Acad. Sci. USA 2008, 105, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Juha, L.; Bittner, M.; Chvostova, D.; Krasa, J.; Otcenasek, Z.; Präg, A.G.; Ullschmied, J.; Pientka, Z.; Krzywinski, J.; Pelka, J.B.; et al. Ablation of organic polymers by 46.9-nm laser radiation. Appl. Phys. Lett. 2005, 86, 034109. [Google Scholar] [CrossRef]
- Kolacek, K.; Schmidt, J.; Straus, J.; Frolov, O.; Juha, L.; Chalupsky, J. Interaction of extreme ultraviolet laser radiation with solid surface: Ablation, desorption, nanostructuring. In Proceedings of the SPIE 9255, XX International Symposium on High Power Laser Systems and Applications 2014, Chengdu, China, 3 February 2015; p. 92553U. [Google Scholar]
- Vaschenko, G.; Etxarri, A.G.; Menoni, C.S.; Rocca, J.J. Nanometer-scale ablation with a table-top soft X-ray laser. Opt. Lett. 2006, 31, 3615–3617. [Google Scholar] [CrossRef] [PubMed]
- Kolacek, K.; Schmidt, J.; Straus, J.; Frolov, O.; Prukner, V.; Melich, R.; Psota, P. Spontaneous and artificial direct nanostructuring of solid surface by extreme ultraviolet laser with nanosecond pulses. Laser Part. Beams 2016, 34, 11–22. [Google Scholar] [CrossRef]
- Capeluto, M.G.; Vaschenko, G.; Grisham, M.; Marconi, M.; Luduena, S.; Pietrasanta, L.; Lu, Y.; Parkinson, B.; Menoni, C.; Rocca, J.J. Nanopatterning with interferometric lithography using a compact λ=46.9-nm laser. IEEE Trans. Nanotechnol. 2006, 5, 3–7. [Google Scholar] [CrossRef]
- Wachulak, P.W.; Capeluto, M.G.; Marconi, M.C.; Patel, D.; Menoni, C.S.; Rocca, J.J. Nanoscale patterning in high resolution HSQ photoresist by interferometric lithography with tabletop extreme ultraviolet lasers. J. Vac. Sci. Technol. B 2007, 25, 2094–2097. [Google Scholar] [CrossRef]
- Wachulak, P.; Grisham, M.; Heinbuch, S.; Martz, D.; Rockward, W.; Hill, D.; Rocca, J.J.; Menoni, C.S.; Anderson, E.; Marconi, M. Interferometric lithography with an amplitude division interferometer and a desktop extreme ultraviolet laser. J. Opt. Soc. Am. B 2008, 25, B104–B107. [Google Scholar] [CrossRef]
- Birnbaum, M. Semiconductor surface damage produced by ruby lasers. J. Appl. Phys. 1965, 36, 3688–3689. [Google Scholar] [CrossRef]
- Sipe, J.E.; Young, J.F.; Preston, J.S.; Van Driel, H.M. Laser-induced periodic surface structure. I. Theory. Phys. Rev. B 1983, 27, 1141–1154. [Google Scholar] [CrossRef]
- Tousey, R. XUV—The extreme ultraviolet. J. Opt. Soc. Am. 1962, 52, 1186–1187. [Google Scholar] [CrossRef]
- Bakshi, V. (Ed.) EUV Lithography; SPIE Press-Wiley Interscience: Bellingham, NY, USA, 2009. [Google Scholar]
- Steeg, B.; Juha, L.; Feldhaus, J.; Jacobi, S.; Sobierajski, R.; Michaelsen, C.; Andrejczuk, A.; Krzywinski, J. Total reflection amorphous carbon mirrors for vacuum ultraviolet free electron lasers. Appl. Phys. Lett. 2004, 84, 657–659. [Google Scholar] [CrossRef]
- Juha, L.; Bittner, M.; Chvostova, D.; Krasa, J.; Kozlov, M.; Pfeifer, M.; Polan, J.; Präg, A.R.; Rus, B.; Stupka, M.; et al. Short-wavelength ablation of molecular solids: Pulse duration and wavelength effects. J. Microlithogr. Microfabr. Microsyst. 2005, 4, 033007. [Google Scholar] [CrossRef][Green Version]
- Hahn, D. Calcium fluoride and barium fluoride crystals in optics: Multispectral optical materials for a wide spectrum of applications. Opt. Photonik 2014, 9, 45–48. [Google Scholar] [CrossRef]
- Wels, A.F. Structural Inorganic Chemistry, 3rd ed.; Clarendon Press: Oxford, UK, 1962; p. 337. [Google Scholar]
- Zhao, Y.; Cui, H.; Zhang, S.; Zhang, W.; Li, W. Formation of nanostructures induced by capillary-discharge soft X-ray laser on BaF2 surfaces. Appl. Surf. Sci. 2017, 396, 1201–1205. [Google Scholar] [CrossRef]
- Kolacek, K.; Schmidt, J.; Straus, J.; Frolov, O. Calibration of windowless photodiode for extreme ultraviolet pulse energy measurement. Appl. Opt. 2015, 54, 10454–10459. [Google Scholar] [CrossRef]
- Schmidt, J.; Kolacek, K.; Frolov, O.; Straus, J.; Hoffer, P.; Stelmashuk, V.; Tuholukov, A.; Jiricek, P.; Houdkova, J. Long-term changes in Al thin-film extreme ultraviolet filters. Appl. Opt. 2021, 60, 8766. [Google Scholar] [CrossRef]
- Chalupsky, J.; Bohacek, P.; Hajkova, V.; Hau-Riege, S.P.; Heimann, P.A.; Juha, L.; Krzywinski, J.; Messerschmidt, M.; Moeller, S.P.; Nagler, B.; et al. Comparing different approaches to characterization of focused X-ray laser beams. Nucl. Instrum. Methods Phys. Res. A 2011, 631, 130–133. [Google Scholar] [CrossRef]
- Gerasimova, N.; Dziarzhytski, S.; Weigelt, H.; Chalupský, J.; Hájková, V.; Vysin, L.; Juha, L. In situ focus characterization by ablation technique to enable optics alignment at an XUV FEL source. Rev. Sci. Instrum. 2013, 84, 65104. [Google Scholar] [CrossRef]
- Kolacek, K.; Schmidt, J.; Straus, J.; Frolov, O.; Prukner, V.; Melich, R.; Choukourov, A. A new method of determination of ablation threshold contour in the spot of focused XUV laser beam of nanosecond duration. In Proceedings of the SPIE 777, Damage to VUV, EUV, and X-ray Optics IV; and EUV and X-ray Optics: Synergy between Laboratory and Space II, Prague, Czech Republic, 3 May 2013; p. 87770N. [Google Scholar]
- Chalupský, J.; Krzywinski, J.; Juha, L.; Hájková, V.; Cihelka, J.; Burian, T.; Vyšín, L.; Gaudin, J.; Gleeson, A.; Jurek, M.; et al. Spot size characterization of focused non-Gaussian X-ray laser beams. Opt. Express 2010, 18, 27836–27845. [Google Scholar] [CrossRef]
- Lee, H. Picosecond mid-IR laser induced surface damage on gallium phosphate (GaP) and calcium fluoride (CaF2). J. Mech. Sci. Technol. 2007, 21, 1077–1082. [Google Scholar] [CrossRef]
- Costache, F.; Henyk, M.; Reif, J. Modification of dielectric surfaces with ultra-short laser pulses. Appl. Surf. Sci. 2002, 186, 352–357. [Google Scholar] [CrossRef]
- Reif, J.; Costache, F.; Henyk, M.; Pandelov, S.V. Ripples revisited: Non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics. Appl. Surf. Sci. 2002, 197–198, 891–895. [Google Scholar] [CrossRef]
- Costache, F.; Henyk, M.; Reif, J. Surface patterning on insulators upon femtosecond laser ablation. Appl. Surf. Sci. 2003, 208–209, 486–491. [Google Scholar] [CrossRef]
- Sils, J.; Reichling, M.; Matthias, E.; Johansen, H. Laser damage and ablation of differently prepared CaF2(111) surfaces. Czechoslov. J. Phys. 1999, 49, 1737–1742. [Google Scholar] [CrossRef]
- Reichling, M. Laser ablation in optical components and thin films. Exp. Methods Phys. Sci. 1997, 573–624. [Google Scholar] [CrossRef]
- Moses, L.M.; Farnsworth, P.B. Evaluation of particle size distributions produced during ultra-violet nanosecond laser ablation and their relative contributions to ion densities in the inductively coupled plasma. Spectrochim. Acta B 2015, 113, 54–62. [Google Scholar] [CrossRef]
- Gao, S.; Duan, Y.Z.; Tian, Z.N.; Zhang, Y.L.; Chen, Q.D.; Gao, B.R.; Sun, H.B. Laser-induced color centers in crystals. Opt. Laser Technol. 2022, 146, 107527. [Google Scholar] [CrossRef]
- Saleem, U.; Birowosuto, M.D.; Hou, S.; Maurice, A.; Kang, T.B.; Teo, E.H.T.; Tchernycheva, M.; Gogneau, N.; Wang, H. Light emission from localised point defects induced in GaN crystal by femtosecond-pulsed laser. Opt. Mater. Express 2011, 8, 2703–2712. [Google Scholar] [CrossRef]
- Rix, S.; Natura, U.; Loske, F.; Letz, M.; Felser, C.; Reichling, M. Formation of metallic colloids in CaF2 by intense ultraviolet light. Appl. Phys. Lett. 2011, 99, 261909. [Google Scholar] [CrossRef]
- Cramer, L.P.; Langford, S.C.; Dickinson, J.T. The formation of metallic nanoparticles in single crystal CaF2 under 157 nm excimer laser irradiation. J. Appl. Phys. 2006, 99, 054305. [Google Scholar] [CrossRef]
- Ritucci, A.; Tomassetti, G.; Reale, A.; Arrizza, L.; Zuppella, P.; Reale, L.; Palladino, L.; Flora, F.; Bonfigli, F.; Faenov, A.; et al. Damage and ablation of large bandgap dielectrics induced by a 46.9 nm laser beam. Opt. Lett. 2006, 31, 68–70. [Google Scholar] [CrossRef]
- Watanabe, M.; Azuma, J.; Asaka, S.; Tsujibayashi, T.; Arimoto, O.; Nakanishi, S.; Itoh, H.; Kamada, M. Photostimulated detection of defect formation in BaF2 under irradiation of synchrotron radiation. Phys. Status Solidi (b) 2012, 250, 396–401. [Google Scholar] [CrossRef]
- Bennewitz, R.; Smith, D.; Reichling, M. Bulk and surface processes in low-energy-electron-induced decomposition of CaF2. Phys. Rev. B 1999, 59, 8237–8246. [Google Scholar] [CrossRef]
- Henke, B.L.; Gullikson, E.M.; Davis, J.C. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At. Data Nucl. Data Tables 1993, 54, 181–342. [Google Scholar] [CrossRef]
- X-ray Interactions with Matter. Available online: http://henke.lbl.gov/optical_constants/ (accessed on 15 September 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, H.; Frolov, A.; Schmidt, J.; Straus, J.; Burian, T.; Hajkova, V.; Chalupsky, J.; Zhao, Y.; Kolacek, K.; Juha, L. Characterizing the Grating-like Nanostructures Formed on BaF2 Surfaces Exposed to Extreme Ultraviolet Laser Radiation. Appl. Sci. 2022, 12, 1251. https://doi.org/10.3390/app12031251
Cui H, Frolov A, Schmidt J, Straus J, Burian T, Hajkova V, Chalupsky J, Zhao Y, Kolacek K, Juha L. Characterizing the Grating-like Nanostructures Formed on BaF2 Surfaces Exposed to Extreme Ultraviolet Laser Radiation. Applied Sciences. 2022; 12(3):1251. https://doi.org/10.3390/app12031251
Chicago/Turabian StyleCui, Huaiyu, Alexandr Frolov, Jiri Schmidt, Jaroslav Straus, Tomas Burian, Vera Hajkova, Jaromir Chalupsky, Yongpeng Zhao, Karel Kolacek, and Libor Juha. 2022. "Characterizing the Grating-like Nanostructures Formed on BaF2 Surfaces Exposed to Extreme Ultraviolet Laser Radiation" Applied Sciences 12, no. 3: 1251. https://doi.org/10.3390/app12031251
APA StyleCui, H., Frolov, A., Schmidt, J., Straus, J., Burian, T., Hajkova, V., Chalupsky, J., Zhao, Y., Kolacek, K., & Juha, L. (2022). Characterizing the Grating-like Nanostructures Formed on BaF2 Surfaces Exposed to Extreme Ultraviolet Laser Radiation. Applied Sciences, 12(3), 1251. https://doi.org/10.3390/app12031251