Straightened Segmentation in 4D Cardiac CT: A Practical Method for Multiparametric Characterization of the Landing Zone for Transcatheter Pulmonary Valve Replacement
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Scan Protocol and 4D Cardiac CT Processing
2.2. Four-Dimensional Cardiac CT Analysis in 3D Slicer
2.2.1. Segmentations
2.2.2. Multiparametric Measurements of the Landing Zone
2.3. TPVR Protocol
2.4. Statistical Analysis
3. Results
3.1. Four-Dimensional Cardiac CT Segmentation
3.2. Correlations between Anatomical Model and Straightened Model
3.3. Dynamic Variation of Landing Zone
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonhoeffer, P.; Boudjemline, Y.; Saliba, Z.; Merckx, J.; Aggoun, Y.; Bonnet, D.; Acar, P.; Le Bidois, J.; Sidi, D.; Kachaner, J. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet 2000, 356, 1403–1405. [Google Scholar] [CrossRef]
- Georgiev, S.; Ewert, P.; Eicken, A.; Hager, A.; Hörer, J.; Cleuziou, J.; Meierhofer, C.; Tanase, D. Munich Comparative Study: Prospective Long-Term Outcome of the Transcatheter Melody Valve Versus Surgical Pulmonary Bioprosthesis With Up to 12 Years of Follow-Up. Circ. Cardiovasc. Interv. 2020, 13, e008963. [Google Scholar] [CrossRef] [PubMed]
- McElhinney, D.B.; Zhang, Y.; Aboulhosn, J.A.; Morray, B.H.; Biernacka, E.K.; Qureshi, A.M.; Torres, A.J.; Shahanavaz, S.; Goldstein, B.H.; Cabalka, A.K.; et al. Multicenter Study of Endocarditis After Transcatheter Pulmonary Valve Replacement. J. Am. Coll. Cardiol. 2021, 78, 575–589. [Google Scholar] [CrossRef] [PubMed]
- McElhinney, D.B.; Zhang, Y.; Levi, D.S.; Georgiev, S.; Biernacka, E.K.; Goldstein, B.H.; Shahanavaz, S.; Qureshi, A.M.; Cabalka, A.K.; Bauser-Heaton, H.; et al. Reintervention and Survival After Transcatheter Pulmonary Valve Replacement. J. Am. Coll. Cardiol. 2022, 79, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Bajaj, N.S.; McMahon, W.S.; Cribbs, M.G.; White, J.S.; Mukherjee, A.; Law, M.A. Transcatheter Pulmonary Valve Implantation: A Comprehensive Systematic Review and Meta-Analyses of Observational Studies. J. Am. Heart Assoc. 2017, 6, e006432. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, E.; Sadeghi, S.; Rajpal, S.; Boe, B.A.; Daniels, C.; Cheatham, J.; Sinha, S.; Levi, D.S.; Aboulhosn, J. Utility of CT Angiography for the Prediction of Coronary Artery Compression in Patients Undergoing Transcatheter Pulmonary Valve Replacement. World J. Pediatr. Congenit. Heart Surg. 2020, 11, 295–303. [Google Scholar] [CrossRef]
- Elattar, M.A.; Vink, L.W.; van Mourik, M.S.; Baan, J., Jr.; vanBavel, E.T.; Planken, R.N.; Marquering, H.A. Dynamics of the aortic annulus in 4D CT angiography for transcatheter aortic valve implantation patients. PLoS ONE 2017, 12, e0184133. [Google Scholar] [CrossRef] [Green Version]
- Ooms, J.F.; Wang, D.D.; Rajani, R.; Redwood, S.; Little, S.H.; Chuang, M.L.; Popma, J.J.; Dahle, G.; Pfeiffer, M.; Kanda, B.; et al. Computed Tomography-Derived 3D Modeling to Guide Sizing and Planning of Transcatheter Mitral Valve Interventions. JACC Cardiovasc. Imaging 2021, 14, 1644–1658. [Google Scholar] [CrossRef]
- Pluchinotta, F.R.; Sturla, F.; Caimi, A.; Giugno, L.; Chessa, M.; Giamberti, A.; Votta, E.; Redaelli, A.; Carminati, M. 3-Dimensional personalized planning for transcatheter pulmonary valve implantation in a dysfunctional right ventricular outflow tract. Int. J. Cardiol. 2020, 309, 33–39. [Google Scholar] [CrossRef]
- Chung, R.; Taylor, A.M. Imaging for preintervention planning: Transcatheter pulmonary valve therapy. Circ. Cardiovasc. Imaging 2014, 7, 182–189. [Google Scholar] [CrossRef]
- Curran, L.; Agrawal, H.; Kallianos, K.; Kheiwa, A.; Lin, S.; Ordovas, K.; Mahadevan, V.S. Computed tomography guided sizing for transcatheter pulmonary valve replacement. Int. J. Cardiol. Heart Vasc. 2020, 29, 100523. [Google Scholar] [CrossRef] [PubMed]
- Schievano, S.; Capelli, C.; Young, C.; Lurz, P.; Nordmeyer, J.; Owens, C.; Bonhoeffer, P.; Taylor, A.M. Four-dimensional computed tomography: A method of assessing right ventricular outflow tract and pulmonary artery deformations throughout the cardiac cycle. Eur. Radiol. 2011, 21, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, M.J.; Benson, L.N.; Bergersen, L.; Bacha, E.A.; Cheatham, S.L.; Crean, A.M.; Eicken, A.; Ewert, P.; Geva, T.; Hellenbrand, W.E.; et al. Patient Selection Process for the Harmony Transcatheter Pulmonary Valve Early Feasibility Study. Am. J. Cardiol. 2017, 120, 1387–1392. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Hao, Y.; Sebastian Kiekenap, J.F.; Emeis, J.; Steitz, M.; Breitenstein-Attach, A.; Berger, F.; Schmitt, B. Four-Dimensional Computed Tomography-Guided Valve Sizing for Transcatheter Pulmonary Valve Replacement. Thorac. Cardiovasc. Surg. 2022, 70, S67–S103. [Google Scholar] [CrossRef]
- Hao, Y.; Sun, X.; Kiekenap, J.F.S.; Emeis, J.; Steitz, M.; Breitenstein-Attach, A.; Berger, F.; Schmitt, B. Transcatheter Pulmonary Valve Replacement from Autologous Pericardium with a Self-Expandable Nitinol Stent in an Adult Sheep Model. J. Vis. Exp. 2022. [Google Scholar] [CrossRef]
- Kang, S.L.; Benson, L. Recent advances in cardiac catheterization for congenital heart disease. F1000Res 2018, 7, 370. [Google Scholar] [CrossRef]
- Kovács, A. 3D Echocardiography: Toward a Better Understanding of Cardiac Anatomy and Function. J. Vis. Exp. 2021. [Google Scholar] [CrossRef]
- Krishnaswamy, A.; Tuzcu, E.M.; Kapadia, S.R. Integration of MDCT and fluoroscopy using C-arm computed tomography to guide structural cardiac interventions in the cardiac catheterization laboratory. Catheter. Cardiovasc. Interv. 2015, 85, 139–147. [Google Scholar] [CrossRef]
- Kidoh, M.; Utsunomiya, D.; Funama, Y.; Ashikaga, H.; Nakaura, T.; Oda, S.; Yuki, H.; Hirata, K.; Iyama, Y.; Nagayama, Y.; et al. Vectors through a cross-sectional image (VCI): A visualization method for four-dimensional motion analysis for cardiac computed tomography. J. Cardiovasc. Comput. Tomogr. 2017, 11, 468–473. [Google Scholar] [CrossRef]
- Kucukseymen, S.; Arafati, A.; Al-Otaibi, T.; El-Rewaidy, H.; Fahmy, A.S.; Ngo, L.H.; Nezafat, R. Noncontrast Cardiac Magnetic Resonance Imaging Predictors of Heart Failure Hospitalization in Heart Failure With Preserved Ejection Fraction. J. Magn. Reson. Imaging 2022, 55, 1812–1825. [Google Scholar] [CrossRef]
- Ostvik, A.; Salte, I.M.; Smistad, E.; Nguyen, T.M.; Melichova, D.; Brunvand, H.; Haugaa, K.; Edvardsen, T.; Grenne, B.; Lovstakken, L. Myocardial Function Imaging in Echocardiography Using Deep Learning. IEEE Trans. Med. Imaging 2021, 40, 1340–1351. [Google Scholar] [CrossRef] [PubMed]
- Condado, J.F.; Corrigan, F.E., 3rd; Lerakis, S.; Parastatidis, I.; Stillman, A.E.; Binongo, J.N.; Stewart, J.; Mavromatis, K.; Devireddy, C.; Leshnower, B.; et al. Anatomical risk models for paravalvular leak and landing zone complications for balloon-expandable transcatheter aortic valve replacement. Catheter. Cardiovasc. Interv. 2017, 90, 690–700. [Google Scholar] [CrossRef] [PubMed]
- De Ponti, E.; Morzenti, S.; Crivellaro, C.; Elisei, F.; Crespi, A.; Guerra, L. Motion Management in PET/CT: Technological Solutions. Curr. Radiopharm. 2018, 11, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wingert, A.; Wang, J.; Zhang, J.; Wang, X.; Sun, J.; Chen, F.; Khalid, S.G.; Jiang, J.; Zheng, D. Extraction of Coronary Atherosclerotic Plaques From Computed Tomography Imaging: A Review of Recent Methods. Front. Cardiovasc. Med. 2021, 8, 597568. [Google Scholar] [CrossRef]
Pre-CT | Pearson Correlation (r) | Bland–Altman Analysis | |||
---|---|---|---|---|---|
Mean Difference | Upper LOA | Lower LOA | |||
RVOT | CSA (mm2) | 0.96 * | −7.43 | 95.24 | −110.10 |
C (mm) | 0.95 * | −0.23 | 10.05 | −10.51 | |
Minimum diameter (mm) | 0.94 * | −0.49 | 2.32 | −3.31 | |
Maximum diameter (mm) | 0.94 * | −0.54 | 4.05 | −5.13 | |
BPV | CSA (mm2) | 0.87 * | −4.89 | 117.60 | −127.40 |
C (mm) | 0.84 * | −0.89 | 12.23 | −14.01 | |
Minimum diameter (mm) | 0.88 * | −0.49 | 2.94 | −3.92 | |
Maximum diameter (mm) | 0.77 * | −0.18 | 6.03 | −6.40 | |
Sinus | CSA (mm2) | 0.93 * | −5.00 | 54.53 | −64.53 |
C (mm) | 0.94 * | −0.87 | 4.03 | −5.76 | |
Minimum diameter (mm) | 0.92 * | −0.34 | 1.29 | −1.98 | |
Maximum diameter (mm) | 0.90 * | −0.13 | 1.79 | −2.04 | |
STJ | CSA (mm2) | 0.97 * | −14.30 | 30.54 | −59.14 |
C (mm) | 0.97 * | −1.02 | 2.68 | −4.72 | |
Minimum diameter (mm) | 0.93 * | −0.61 | 1.15 | −0.61 | |
Maximum diameter (mm) | 0.94 * | −0.35 | 1.49 | −2.18 | |
PA | CSA (mm2) | 0.97 * | −20.94 | 29.80 | −71.68 |
C (mm) | 0.97 * | −1.67 | 2.24 | −5.57 | |
Minimum diameter (mm) | 0.95 * | −0.48 | 1.29 | −2.25 | |
Maximum diameter (mm) | 0.92 * | −0.73 | 1.71 | −3.17 | |
RVOT | CSA (mm2) | 0.97 * | −37.39 | 110.10 | −184.90 |
C (mm) | 0.97 * | −2.70 | 7.53 | −12.92 | |
Minimum diameter (mm) | 0.91 * | −0.40 | 4.94 | −5.73 | |
Maximum diameter (mm) | 0.93 * | −1.47 | 3.52 | −6.46 | |
BPS | CSA (mm2) | 0.95 * | 0.96 | 67.47 | −65.55 |
C (mm) | 0.95 * | 0.13 | 5.44 | −5.17 | |
Minimum diameter (mm) | 0.84 * | 0.05 | 2.11 | −2.00 | |
Maximum diameter (mm) | 0.93 * | 0.06 | 2.73 | −2.61 | |
MPS | CSA (mm2) | 0.99 * | −10.36 | 23.76 | −44.47 |
C (mm) | 0.99 * | −0.78 | 1.87 | −3.43 | |
Minimum diameter (mm) | 0.92 * | −0.19 | 1.29 | −1.67 | |
Maximum diameter (mm) | 0.96 * | −0.24 | 1.49 | −1.96 | |
TPS | CSA (mm2) | 0.97 * | −21.57 | 42.77 | −85.91 |
C (mm) | 0.97 * | −1.74 | 3.26 | −6.75 | |
Minimum diameter (mm) | 0.93 * | 0.11 | 1.92 | −1.70 | |
Maximum diameter (mm) | 0.97 * | −0.9 | 1.67 | −3.47 | |
PA | CSA (mm2) | 0.97 * | −7.77 | 66.30 | −81.84 |
C (mm) | 0.97 * | −0.40 | 5.57 | −6.38 | |
Minimum diameter (mm) | 0.92 * | −0.27 | 1.85 | −2.39 | |
Maximum diameter (mm) | 0.94 * | −0.18 | 2.77 | −3.13 |
Ellipticity Index | |||
---|---|---|---|
Pre-CT | Post-CT | ||
RVOT | 0.55 ± 0.08 | RVOT | 0.69 ± 0.10 |
BPV | 0.69 ± 0.12 | BPS | 0.88 ± 0.08 |
Sinus | 0.89 ± 0.06 | MPS | 0.88 ± 0.09 |
STJ | 0.90 ± 0.06 | TPS | 0.84 ± 0.10 |
PA | 0.83 ± 0.06 | PA | 0.86 ± 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Hao, Y.; Steitz, M.; Breitenstein-Attach, A.; Kiekenap, J.F.S.; Emeis, J.; Khan, M.B.; Berger, F.; Schmitt, B. Straightened Segmentation in 4D Cardiac CT: A Practical Method for Multiparametric Characterization of the Landing Zone for Transcatheter Pulmonary Valve Replacement. Appl. Sci. 2022, 12, 12912. https://doi.org/10.3390/app122412912
Sun X, Hao Y, Steitz M, Breitenstein-Attach A, Kiekenap JFS, Emeis J, Khan MB, Berger F, Schmitt B. Straightened Segmentation in 4D Cardiac CT: A Practical Method for Multiparametric Characterization of the Landing Zone for Transcatheter Pulmonary Valve Replacement. Applied Sciences. 2022; 12(24):12912. https://doi.org/10.3390/app122412912
Chicago/Turabian StyleSun, Xiaolin, Yimeng Hao, Marvin Steitz, Alexander Breitenstein-Attach, Jonathan Frederik Sebastian Kiekenap, Jasper Emeis, Mahamuda Badhon Khan, Felix Berger, and Boris Schmitt. 2022. "Straightened Segmentation in 4D Cardiac CT: A Practical Method for Multiparametric Characterization of the Landing Zone for Transcatheter Pulmonary Valve Replacement" Applied Sciences 12, no. 24: 12912. https://doi.org/10.3390/app122412912
APA StyleSun, X., Hao, Y., Steitz, M., Breitenstein-Attach, A., Kiekenap, J. F. S., Emeis, J., Khan, M. B., Berger, F., & Schmitt, B. (2022). Straightened Segmentation in 4D Cardiac CT: A Practical Method for Multiparametric Characterization of the Landing Zone for Transcatheter Pulmonary Valve Replacement. Applied Sciences, 12(24), 12912. https://doi.org/10.3390/app122412912