Recent Advances in Swarm Robotics Coordination: Communication and Memory Challenges
Funding
Conflicts of Interest
References
- Cao, Y.U.; Fukunaga, A.S.; Kahng, A. Cooperative Mobile Robotics: Antecedents and Directions. Auton. Robot. 1997, 4, 7–27. [Google Scholar] [CrossRef]
- Arvin, F.; Samsudin, K.; Ramli, A. Development of ir-based short-range communication techniques for swarm robot applications. Adv. Electr. Comput. Eng. 2010, 10, 61–68. [Google Scholar] [CrossRef]
- Karpov, V.; Karpova, I. Leader election algorithms for static swarms. Biol. Inspired Cogn. Archit. 2015, 12, 54–64. [Google Scholar] [CrossRef]
- Varughese, J.C.; Hornischer, H.; Zahadat, P.; Thenius, R.; Wotawa, F.; Schmickl, T. A swarm design paradigm unifying swarm behaviors using minimalistic communication. Bioinspiration Biomim. 2020, 15, 036005. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, A.; Tuci, E.; Campo, A. Evolution of neuro-controllers for robots’ alignment using local communication. Int. J. Adv. Robot. Syst. 2009, 6, 03. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, T.; Duarte, M.; Oliveira, S.; Christensen, A.L. Beyond onboard sensors in robotic swarms. In Proceedings of the International Conference on Agents and Artificial Intelligence (ICAART 2015), Lisbon Portugal, 10–12 January 2015; SCITEPRESS—Science and Technology Publications, Lda.: Setubal, Portugal, 2015; Volume 2, pp. 111–118. [Google Scholar] [CrossRef]
- Chaudhuri, R.; Fiete, I. Computational principles of memory. Nat. Neurosci. 2016, 19, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Campo, A.; Gutiérrez, Á.; Nouyan, S.; Pinciroli, C.; Longchamp, V.; Garnier, S.; Dorigo, M. Artificial Pheromone for Path Selection by a Foraging Swarm of Robots. Biol. Cybern. 2010, 103, 339–352. [Google Scholar] [CrossRef] [PubMed]
- Melanie, S.; Martina, U.; Micha, S.; Wilfried, E. Swarm Robotic Behaviors and Current Applications. Front. Robot. AI 2020, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Gigliotta, O.; Mirolli, M.; Nolfi, S. Communication based dynamic role allocation in a group of homogeneous robots. Nat. Comput. 2014, 13, 391–402. [Google Scholar] [CrossRef]
- Gutiérrez, Á.; Campo, A.; Monasterio-Huelin, F.; Magdalena, L.; Dorigo, M. Collective Decision Making Based on Social Odometry. Neural Comput. Appl. 2010, 19, 807–823. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.M.; Rossi, L.F.; Luan, H.; Shen, C.-C. The Role of Memory in Stabilizing Swarms. In Proceedings of the 2012 IEEE Sixth International Conference on Self-Adaptive and Self-Organizing Systems, Lyon, France, 10–14 September 2012; pp. 21–28. [Google Scholar] [CrossRef]
- Sendra-Arranz, R.; Gutiérrez, Á. Evolution of Situated and Abstract Communication in Leader Selection and Borderline Identification Swarm Robotics Problems. Appl. Sci. 2021, 11, 3516. [Google Scholar] [CrossRef]
- Schaul, T.; Glasmachers, T.; Schmidhuber, J. High Dimensions and Heavy Tails for Natural Evolution Strategies. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, Dublin, Ireland, 12–16 July 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 845–852. [Google Scholar] [CrossRef] [Green Version]
- Campo, A.; Nicolis, S.C.; Deneubourg, J.-L. Collective Memory: Transposing Pavlov’s Experiment to Robot Swarms. Appl. Sci. 2021, 11, 2632. [Google Scholar] [CrossRef]
- Ahmed, N.; Pawase, C.J.; Chang, K. Distributed 3-D Path Planning for Multi-UAVs with Full Area Surveillance Based on Particle Swarm Optimization. Appl. Sci. 2021, 11, 3417. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN ’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Koopman, P., Jr. Bresenham Line-Drawing Algorithm; Fourth Dimension: North Kingstown, RI, USA, 1987; pp. 12–16. [Google Scholar]
- Coquet, C.; Arnold, A.; Bouvet, P.-J. Control of a Robotic Swarm Formation to Track a Dynamic Target with Communication Constraints: Analysis and Simulation. Appl. Sci. 2021, 11, 3179. [Google Scholar] [CrossRef]
- Albani, D.; Hönig, W.; Nardi, D.; Ayanian, N.; Trianni, V. Hierarchical Task Assignment and Path Finding with Limited Communication for Robot Swarms. Appl. Sci. 2021, 11, 3115. [Google Scholar] [CrossRef]
- Aznar, F.; Pujol, M.; Rizo, R. Learning a Swarm Foraging Behavior with Microscopic Fuzzy Controllers Using Deep Reinforcement Learning. Appl. Sci. 2021, 11, 2856. [Google Scholar] [CrossRef]
- Madridano, Á.; Al-Kaff, A.; Flores, P.; Martín, D.; de la Escalera, A. Software Architecture for Autonomous and Coordinated Navigation of UAV Swarms in Forest and Urban Firefighting. Appl. Sci. 2021, 11, 1258. [Google Scholar] [CrossRef]
- Jia, Y.; Li, Q.; Zhang, Z. Accelerating Emergence of Aerial Swarm. Appl. Sci. 2020, 10, 7986. [Google Scholar] [CrossRef]
- Aznar, F.; Pujol López, M.d.M.; Rizo, R. UAV Deployment Using Two Levels of Stigmergy for Unstructured Environments. Appl. Sci. 2020, 10, 7696. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez, Á. Recent Advances in Swarm Robotics Coordination: Communication and Memory Challenges. Appl. Sci. 2022, 12, 11116. https://doi.org/10.3390/app122111116
Gutiérrez Á. Recent Advances in Swarm Robotics Coordination: Communication and Memory Challenges. Applied Sciences. 2022; 12(21):11116. https://doi.org/10.3390/app122111116
Chicago/Turabian StyleGutiérrez, Álvaro. 2022. "Recent Advances in Swarm Robotics Coordination: Communication and Memory Challenges" Applied Sciences 12, no. 21: 11116. https://doi.org/10.3390/app122111116
APA StyleGutiérrez, Á. (2022). Recent Advances in Swarm Robotics Coordination: Communication and Memory Challenges. Applied Sciences, 12(21), 11116. https://doi.org/10.3390/app122111116