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Abstract: In this paper, a hybrid genetic algorithm implemented in a grid environment to solve hard 
instances of the flexible flow shop scheduling problem with sequence-dependent setup times is 
introduced. The genetic algorithm takes advantage of the distributed computing power on the grid 
to apply a hybrid local search to each individual in the population and reach a near optimal solution 
in a reduced number of generations. Ant colony systems and simulated annealing are used to apply 
a combination of iterative and cooperative local searches, respectively. This algorithm is 
implemented using a master–slave scheme, where the master process distributes the population on 
the slave process and coordinates the communication on the computational grid elements. The 
experimental results point out that the proposed scheme obtains the upper bound in a broad set of 
test instances. Also, an efficiency analysis of the proposed algorithm indicates its competitive use 
of the computational resources of the grid. 
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1. Introduction 
A scheduling problem (SP) involves the efficient assignment of disposable resources 

(processors or machines) to complete one or several related tasks (jobs) over time [1]. SP 
is a relevant topic in science and engineering with a wide range of applications in diverse 
areas such as telecommunications [2], industry [3,4], health [5,6], agriculture [7], and 
education [8]. Due to its importance and impact on all aspects of human activity, SP is a 
well-studied problem in the scientific community. Many techniques and procedures have 
been proposed to solve its diverse variants. Almost any SP variant is NP-hard [9,10]. Its 
study is essential to provide better solutions, take advantage of technological 
development, and implement more efficient solution procedures. 

A job shop SP (JSSP) is where a set of jobs, each composed of several operations, is 
processed on several machines without violating the precedence relations between the 
operations of all the jobs [11]. Two well-known JSSP variants are the flow shop SP (FSP) 
and the open shop SP (OSP). In a JSSP, jobs are processed on machines in identical order, 
visiting all or some of them. OSP has no precedence relations. Furthermore, an FSP is 
named as flexible FSP when a job uses only one machine available of those arranged in 
parallel in each stage of its processing sequence. These variants can be subject to several 
constraints derived from real problem conditions, such as (1) blocking constraints, if there 
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is no intermediate storage (buffer) between consecutive machines, and the current 
machine processing the job is blocked until the next one is available [12]; (2) no-wait 
constraints, if all the operations of one job need to be processed without any interruption 
[13]; and (3) sequence-dependent setup time constraints, when the machines need to be 
adjusted (setup time) before processing their following jobs [14]. In particular, an SP with 
sequence-dependent setup times is among the most challenging classes of scheduling 
problems [15]. 

With the implementation of flexible manufacturing systems (FMS) [16] and the 
increased use of information technologies in Industry 4.0, flexibility on production lines 
has become crucial for achieving a companies’ objectives. Flexibility in FSP allows for the 
increasing of a factory’s capacities and also a reduction in the bottleneck impact on 
conflicting stages [17]. Therefore, the flexible FSP (FFSP) has been used to model real-
world cases, like that described by Ramezanian et al. [18] for one tile factory with four 
stages (pressing, glazing, furnace, and sorting and packing) using four identical machines 
in each one. Also, Peng et al. [19] model an FFSP for the steelmaking process of an iron 
and steel complex in China which has three consecutive stages (steelmaking, refining, and 
continuous casting). Here, seven jobs were processed using several identical machines in 
each stage. 

As with other scheduling problem variants, branch-and-bound-based techniques, 
heuristics, and metaheuristics have been used to solve FFSP instances. Only sequential 
and parallel algorithms have been implemented in all of them, and the use of distributed 
algorithms in grid environments has been scarcely documented in the existing literature. 
Furthermore, few manuscripts address the FFSP with sequence-dependent setup times, 
and they are restricted to particular cases as no-wait or permutation schedules. For 
example, Sankaran [20] describes a particle swarm optimization (PSO) algorithm used to 
solve several FFSP instances. This approach uses a random key scheme to transform the 
real-valued agents used by the PSO into valid schedules. The authors evaluate this 
proposal with several instances using several combinations of 30 and 100 jobs, two, four, 
and eight stages, and two, four, and ten parallel machines. Furthermore, Amiri [21] uses 
the same FFSP instances to evaluate several PSO-based versions such as standard PSO, 
passive congregation PSO, attraction repulsion PSO, discrete PSO, and hybrid discrete 
PSO with a local search (DPSO-LS). 

In this paper, a relaxed FFSP with sequence-dependent setup time constraints is 
described as one 0–1 integer programming problem and then solved using an ensemble 
of three metaheuristics, including genetic algorithms (GAs), ant colony systems (ACO), 
and simulated annealing (SA). This ensemble runs in a grid-based environment using two 
clusters, where the candidate solutions are distributed in the grid cores.  

The main contributions of this proposal are the following: (1) the implementation of 
a cooperative hybrid GA combining GA global search skills with both iterative and 
cooperative local search properties provided by SA and ACO to solve RFFSP instances; 
(2) that the binary representation of candidate solutions efficiently exploits the 
characteristics of the search approaches, unlike the known proposals where there is a 
mapping between the continuous and the discrete space, which is not guaranteed to 
maintain the properties of the search heuristic; (3) the use of an island model with a star-
type connection to run the ensemble of heuristics in a grid-based environment. 
Furthermore, with a master-slave scheme, the evolutionary process is conducted in a 
master process. The local search is carried out in a set of slave processes distributed in a 
grid environment. Also, the master process distributes the population on the slave 
processes and coordinates the communication on the computational grid elements. The 
communication occurs in both directions using point-to-point communication. Finally, 
since, to the best of our knowledge, there are no instances in the existing literature for the 
optimization model under study, four instances (small, medium, and large) are designed 
to test the proposed ensemble.  
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The rest of this document is organized as follows: Section 2 describes the relaxed 
flexible flow shop problem with sequence-dependent setup times and presents a novel 
mathematical model to solve this problem. Section 3 introduces the grid-based algorithm 
used in this paper, the hybrid genetic algorithm in the grid environment, and the 
experimental results are discussed in Section 4. Finally, Section 5 contains the conclusions 
and future work of this proposal. 

2. The Relaxed Flexible Flow Shop Problem Model with Sequence-Dependent Setup 
Times (RFFSP) Methods 

The relaxed flexible flow shop problem (RFFSP) with sequence-dependent setup 
times consists of a set N = {1, 2, ..., n} of n jobs that are processed by a set M = {1, 2, ..., m} 
of m stages in serial. Each k-th stage, k ∈ M, has a set Mk = {m1, m2, ..., mk} of mk identical 
parallel machines, where each j-th job, j ∈ N, in k-th stage, k ∈ M, can be processed in any 
i-th machine, i ∈ mk. Each job requires m operations to be completed. One operation oijk of 
the j-th job is processed in the k-th stage using the i-th machine, taken from the set Mk of 
parallel machines, where each machine can only process one job at a time. Also, an 
operation being processed cannot be interrupted until it is finished. Each of the n jobs is 
first processed in stage 1, then in stage 2, and so on, indicating that a precedence order to 
process the job’s operations in each stage exists. The processing time of the j-th job in the 
k-th stage is defined as pjk. Furthermore, each machine needs one setup time, that is, a time 
to be ready after processing one operation and starting the next. If the l-th and the j-th jobs 
are sequentially processed in the k-th stage by the i-th machine, this machine’s setup time 
is defined as STiljk. If the machines in one stage are identical, the setup time is defined as 
STljk. In particular, if j is the first job assigned to the i-th machine in the k-th stage, its initial 
setup time is ST0jk, and if l is its last job assigned, its setup time is STl0k. 

One example of an RFFSP is described in [22] for a labeling company. The jobs are 
processed in seven stages (printing, labeling, lamination, die-cut, inject, and scan EPC). 
Each stage has several identical machines to execute its operations, and the job must be 
processed in sequence, starting with the printing stage. When a machine finishes 
processing a job, it needs to be cleaned, adjusted, and revised to verify if it has enough 
supplies to perform the next job. 

2.1. Mathematical Model 
The mathematical model introduced by [23] is used and adapted to the problem 

presented in this work. This adapted model uses inter-stage infinite buffers, which serve 
as temporary storage to place completed operations from an earlier stage, as machines 
cannot be blocked if other machines in later stages have not finished processing a job. The 
machine blocking constraint presented in [23] does not apply in this model. 

The objective of the mathematical model, represented by the Equation (1), minimizes 
the maximum completion time (makespan, cmax) found in the sequence of jobs generated 
by the system in study. The makespan cjm of the j-th job in the last stage m, is when it 
finishes its processing in the system ( ௝ܿ௠ୀ௦ೕ೘ ା ௌ்೗ೕ೘ ା ௣ೕ೘) and its value is the sum of its 
start time sjm, its processing time pjm, and its setup time STljm. Constraints in (2) indicate 
that for each j there is only one job l that immediately precedes j ሺ݈ ≺ ݆ሻ which is only 
assigned to a single machine i in stage k. Constraints in (3) point out all jobs are processed 
in a well-defined sequence by each machine in each stage. These complement the 
restrictions in (2), guaranteeing that jobs are executed in a well-defined sequence on each 
machine at each stage. It is only allowed to process the j-th job once in one machine for 
each stage. ܿ݊݅ܯ௠௔௫൫ݏ௝௠, ,௝௠݌ ܵ ௟ܶ௝௠൯ = ൫ݔܽ݉ൣ݊݅ܯ ௝ܿ௠൯൧  (1) 

s.t.   
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෍ ෍ ௜௟௝௞ݔ = 1௡
௟ ୀ ଴,௟ஷ௝

௠ೖ
௜ ୀ ଵ            ∀݇, ݆ (2) 

෍ ௜௟௝௞ݔ = ෍ ௜௝௤௞௡ݔ
௤ ୀ ଴,௤ ஷ ௝

௡
௟ ୀ ଴,௟ ஷ ௝           ∀݇, ݅, ݆ (3) 

௝ܿ௞ ≥ ௝௞݌+௝௞ݏ + ෍ ௜௟௝௞ܵݔ ௟ܶ௝௞௠ೖ
௜ ୀ ଵ           ∀݆, ݈, ݇ (4) 

௝ܿ௞  −  ௝ܿሺ௞ିଵሻ ≥ ௝௞݌ + ෍ ෍ ௜௟௝௞ܵݔ ௟ܶ௝௞௡
௟ ୀ ଴

௠ೖ
௜ ୀ ଵ                   ∀݇ > 1, ݆ (5) 

ܿ௠௔௫ ≥ ܿ௝௠                          ∀݆ (6) ݔ௜௟௝௞ ∈ ሼ0,1ሽ                               ∀݅, ݆, ݈, ݇ (7) 

Constraints in (4) indicate that if a slack time between l-th and j-th jobs processed on 
the i-th machine of the k-th stage occurs, the makespan cjk of the j-th job of the k-th stage 
can be increased [24]. The start time sjk of the j-th job is taken when it begins your setup 
time. Constraints in (5) define the precedence restrictions of each j-th job’s operations and 
guarantee that each job is processed in all stages. Constraints in (6) indicate that each job 
has a makespan less than or equal to the maximum makespan. Finally, relations in (7) 
restrict the xiljk to be binary variables only: xiljk = 1, if job j is assigned to machine i in stage 
k where job l is its predecessor job, otherwise xiljk = 0. 

2.2. Disjunctive Graph Model 
Figure 1 shows a disjunctive graph G modeling the RFFSP for an example of two jobs 

(N = 2) processed in three stages (M = 3), each stage with two identical machines (Mk = 2). 
G is composed of three sets representing the conjunctive arcs A, the disjunctive arcs E, and 
the graph nodes Oi,j,k. These nodes identify the jobs’ operations. Set A includes three arcs 
subsets, each by one job. For example, the subset of arcs joining O{1|2}11, O{1|2}12, and O{1|2}13 
operations correspond to job 1. Also, the conjunctive arcs define the precedence relation 
between operation pairs. For example, O{1|2}11 must be processed before O{1|2}12, and O{1|2}12 

before O{1|2}13. Each node in G is depicted using a blue circle with a dashed line, and inside 
it, two gray circles with continuous lines represent the parallel machines used in this stage. 
The processing time pjk of each operation is also depicted in the blue circle, p11 = 7 for O{1|2}11 
in Figure 1, for example. Furthermore, G uses two fictitious operations, labeled as input 
and output, to specify the start and end of each job’s processing time. 

 



Appl. Sci. 2022, 12, 607 5 of 27 
 

 

Figure 1. A disjunctive graph representing a RFFSP with three jobs, three stages, and two machines 
by stage. 

The operations processed in the same stage define a clique, since they are joined using 
disjunctive arcs. For example, O{1|2}11, O{1|2}21, and O{1|2}31 are processed in stage one. It is 
necessary to find the operations processing sequence at each stage, selecting one of the 
parallel machines for each operation. Once this sequence is found, the disjunctive arches 
will become conjunctive arcs. Table 1 shows the setup times for each operation of the 
example shown in Figure 1. 

Table 1. Setup times for the RFFSP shown in Figure 1. 

STljk j = 1 j = 2 j = 3 0 (Cleaning) 
Stage 1 (STljk) 

0(start) ST011 = 2 ST021 = 1 ST031 = 3 ST001 = 0 
l = 1 ST111 = 0 ST121 = 2 ST131 = 1 ST101 = 0 
l = 2 ST211 = 1 ST221 = 0 ST231 = 1 ST201 = 0 
l = 3 ST311 = 2 ST321 = 3 ST331 = 0 ST301 = 0 

Stage 2 (STljk) 
0(start) ST012 = 1 ST022 = 2 ST032 = 3 ST002 = 0 

l = 1 ST112 = 0 ST122 = 3 ST132 = 2 ST102 = 0 
l = 2 ST212 = 1 ST222 = 0 ST232 = 1 ST202 = 0 
l = 3 ST312 = 3 ST322 = 3 ST332 = 0 ST302 = 0 

Stage 3 (STljk) 
0(start) ST013 = 3 ST023 = 3 ST033 = 1 ST003 = 0 

l = 1 ST113 = 0 ST123 = 2 ST133 = 1 ST103 = 0 
l = 2 ST213 = 2 ST223 = 0 ST233 = 1 ST203 = 0 
l = 3 ST313 = 3 ST323 = 2 ST333 = 0 ST303 = 0 

Figure 2 shows a solution to the example previously described. It can be seen that the 
sequence of the operations in each stage is defined, disjunctive arcs are now conjunctive, 
and only one machine has been assigned to each operation. Furthermore, the processing 
and setup times are depicted in each arc with black and red numbers, respectively. 

 
Figure 2. One solution for the RFFSP with three jobs, three stages, and two machines by stage. 
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A Gantt diagram of the scheduling of the solution described previously is shown in 
Figure 3, where the job’s operations are outlined using the same color. In this diagram, 
the solution fulfills the precedence constraints between pairs of operations of the same 
job, and each operation starts its processing until the machine setup time is accomplished. 
The solution of any RFFSP instance can be reached using the mathematical model 
described in the previous section.  

 
Figure 3. Gantt diagram for the solution of the RFFSP. 

The following section describes the grid-based hybrid genetic approach to solve the 
relaxed flexible flow shop with sequence-dependent setup times expressed using the 
mathematical model previously detailed. 

3. Hybrid Genetic Algorithm in Grid Environment (HGAG) to the Relaxed Flexible 
Flow Shop with Sequence-Dependent Setup Times 

The cooperative hybrid genetic algorithm in a grid environment, called HGAG, 
combines the global search skills of a genetic algorithm (GA) with an iterative local-search, 
provided by a simulated annealing algorithm (SA), and the cooperative local-search 
implemented by an ant colony system (ACS) to solve RFFSP instances. HGAG is 
implemented using the Grid Morelos infrastructure (Figure 4). This scheme increases the 
solution refinement by combining the two local-search procedures. 
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Figure 4. The HGAG in a grid environment using two clusters. 

3.1. Hybrid Genetic Algorithm in Grid Environment (HGAG) 
The HGAG designed and developed in this work used to solve the RFFSP is 

presented in Algorithm 1, the steps of which are detailed in the following paragraphs. 
Also, the main elements of the GA are described. Multiple instances of the HGAG run in 
the computational grid. The algorithm automatically assigns identifiers unequivocally for 
each running process. These identifiers are used to select the HGAG code segment to be 
run: if it is zero, the code segment chosen is for the master process. Otherwise, the code 
segment selected is for the slave processes. 

Algorithm 1. Hybrid Genetic Algorithm in Grid Environment (HGAG). 
1.  Note: blocking routines are used for sending and receiving messages 
2.  Function HGAG ← (Processid, idmax) 
3.  if (Processid == ProcSlave) then 
4.   ܵ௔௡௧ ← ሼ∅ሽ 
௠௔௫ሺܵ஻௘௦௧௅௢௖௔௟ሻܥ   .5 ← 999999 
6.  end if 
7.  Repeat 
8.   if (Processid == ProcMaster) then 

9.    
ReceiveF(Processi, population[individuali], blocking), ݅ =1,2, ⋯ , ݅݀௠௔௫ 

10.    population ← selectionF(rouleteOp, population) 
11.    population←crossoverF(crossoverR,circularOp, population) 
12.    SendF(Processi, population [individuali]), ݅ = 1,2, ⋯ , ݅݀௠௔௫ 
13.   Else 
14.    ܵ௔௡௧ᇱ ← ,ሺ݄ܵܥܣ ,ߙ ,ߚ ,ߛ ,ߜ ,݌ ,ݍ ,ܤܷ ܵ௔௡௧ሻ 
15.    ܵ௠௘௧௔௟ ← ሺܵ௔௡௧ᇱ  ሻܣ݂ܵ→
16.    ܵ௠௘௧௔௟ᇱ ← ,௢ݐ൫ܣܵ ݉, ,ߤ ,௙ݐ ܵ௠௘௧௔௟൯ 
17.    ௜ܵ௡ௗ௜௩௜ௗ௨௔௟ ← ሺܵ௠௘௧௔௟ᇱ  ሻ݈ܽݑ݀݅ݒ݂݅݀݊݅→
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18.    ܵ஻௘௦௧௅௢௖௔௟ = ݉݅݊൫ܥ௠௔௫ሺܵ஻௘௦௧௅௢௖௔௟, ܵ௔௡௧, ܵ௔௡௧ᇱ , ܵ௠௘௧௔௟ᇱ ሻ൯ →  ݈ܽݑ݀݅ݒ݅݀݊݅
,ݎ݁ݐݏܽܯܿ݋ݎሺܲܨ݀݊݁ܵ    .19 ௜ܵ௡ௗ௜௩௜ௗ௨௔௟ሻ 
,ݎ݁ݐݏܽܯܿ݋ݎሺܲܨ݁ݒܴ݅݁ܿ݁    .20 ௜ܵ௡ௗ௜௩௜ௗ௨௔௟ᇱ ,  ሻ݃݊݅݇ܿ݋݈ܾ
21.    ܵ௔௡௧ ← ሺ ௜ܵ௡ௗ௜௩௜ௗ௨௔௟ᇱ  ሻܵܥܣ݂→
22.   end if  
23.  until (number of generations) 
24.  if (Processid == ProcMaster) then 
25.   ReceiveF (Processi, population [individual i], ݅ = 1,2, ⋯ , ݅݀௠௔௫ 
26.   SBestGlobal ← min(Cmax(population[individuali])),݅ = 1,2, ⋯ , ݅݀௠௔௫ 
27.   return (SBestGlobal) 
28.  Else 
29.   SendF (ProcMaster, SBestLocal) 
30.  end if 
31.  end Function HGAG 

Initialization stage 
Line 2: The algorithm receives the process identifier (Processid) and the number of 

the available process (idmax) as input parameters.  
Lines 3–6:  If the Processid corresponds to one slave process, the Ant Colony System 

and the corresponding makespan are initialized (Sant = Ø, Cmax(SBestLocal) = 999999). 
Evolutionary stage 

Lines 7–23: This is the main procedure with regard to the HGAG finding the best 
solutions for the RFFSP. If Processid corresponds to a master process, lines 9–12 are carried 
out; otherwise, lines 14–21 are run. This procedure is run until a stop condition is reached. 
Master process 

Line 9: The master process waits until the slave processes have sent their candidate 
solutions. With these solutions, it builds the initial population as a vector of individuals. 
The population size is defined by the variable idmax = Pmax − 1, where Pmax is the number of 
processing cores. The population is initialized with the messages sent by the slave 
processes (Process1 to Processidmax). Each message sent is one individual encoding the best 
solution found by SA (Algorithm 4) and ACS (Algorithm 2). In particular, the receiveF 
function has a blocking behavior; that is, while the master process waits to receive 
messages, it is kept blocked until all of them are received. 

Line 10: A new population is generated by applying the selection operator using the 
roulette method. The aim is to have the best-adapted individuals in the new population.  

Line 11: A new population is generated as a result of applying the circular crossover 
operator. A crossover rate is defined to explore the solutions space of the new population.  

Line 12: The new population is distributed to the slave processes: individual1 is sent 
to Process1, individual2 is sent to Process2, and so on until the entire population is sent. All 
the slave processes wait for an evolved solution and then apply the mutation operator.  
Slave process  

Line 14: The ACS (Algorithm 2) is used to compute an improved solution based on 
that received from the master process. ACS uses a cooperative mutation guided by the 
pheromone traces based on the initial solution and returns S’ant as the best-found solution. 

Line 15: The Smetal solution is calculated using a transformation function to convert 
the best solution found by ACS(S’ant) to be used as the SA initial solution. Smetal is equivalent 
to S’ant since the transformation function does not alter the scheduling. It only realizes a 
context change on the solution representation. 

Line 16: S’metal is calculated using SA (Algorithm 4). The SA parameters are the 
follows: 
• t0 is the initial temperature. 
• m is the Markov chain length. 
• µ is the frozen coefficient. 
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• tf is the final temperature 
• Smetal is the SA initial solution.  

This routine applies an iterative mutation guided by the initial solution Smetal. SA 
returns S’metal as its best-found solution. 
Line 17: Sindividual is computed using a transformation function to convert the best 

solution found by SA (S’metal) in one GA individual. This transformation enables SA to send 
S’metal to the master process to build a new population. 

Line 18: The best solution between those found by ACS and SA is stored in the 
variable SBestLocal.  

Line 19: The best local solution is sent to the master process. At this point, the master 
process waits to receive all solutions from the slave processes. 

Line 20: Every slave process waits for the master process to send it S’individual. The 
ReceiveF function blocks the slave process until a solution is received. 

Line 21: Sant is computed using a transformation function. This transformation 
prepares the algorithm for the next generation that begins with a cooperative mutation 
with ACS. 
Final stage 

Line 27: Finally, the best global solution found by HGAG is returned (SmBEstGlobat). 
Population Construction 

The HGAG population is distributed in the grid with a 1:1 ratio, i.e., one individual 
for each process p generated in the computational grid. A single process is assigned to 
each core that the processor contains. The master process stores the solutions found by 
the other process in a solutions vector. The master process receives the best solutions 
found by each slave process and assigns these solutions to the vector to build a new 
population in each generation.  

The symbolic representation of a solution encoded as a GA individual is presented 
in Figure 5. This representation consists of a data structure storing the sequence of 
operations in each machine and each stage, and the scheduling obtained using all start 
times sjk for each operation. With the scheduling, the Makespan Cjk of each job is obtained 
for the last stage to compute the maximum Makespan Cmax. In Figure 5, the individual 
encodes the solution depicted in Figure 2. The scheduling of this solution is shown in 
Figure 3. In this case, Cmax = 36. For the sake of simplicity, the individual is represented in 
a sequence of operations for each machine, as follows: ଵܱଵଵ → ଵܱଷଵ → ܱଶଶଵ → ଵܱଶଶ → ܱଶଵଶ → ܱଶଷଶ → ଵܱଶଷ → ଵܱଷଷ → ܱଶଵଷ 

 
Figure 5. Symbolic representation for an HGAG individual. 
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Selection Operator 
A roulette-based selection operator [25] is used in the HGAG, where the fittest 

individuals are more likely to be selected. As the fitness function (Equation 1) minimizes 
the makespan, the fittest individuals have the lowest cost. The cost inverse is computed 
making the fittest individuals correspond to those more likely to be selected. This 
procedure is used in line 10 of Algorithm 1. The steps used by this operator are as follows: 
1. The probability probi to select the individuali is proportional to its relative adaptation, 

which is calculated as follows: ܾ݋ݎ݌௜ = ∑௜ሻିଵ݈ܽݑ݀݅ݒ௠௔௫ሺ݅݊݀݅ܥ ܽݑ݀݅ݒ௠௔௫൫݅݊݀݅ܥ ௝݈൯ିଵ௜ௗ೘ೌೣ௝ୀଵ  (8) 

where ܥ௠௔௫ሺ݈݅݊݀݅ܽݑ݀݅ݒ௜ሻିଵ  is the cost inverse for individuali, and ∑ ܽݑ݀݅ݒ௠௔௫൫݅݊݀݅ܥ ௝݈൯ିଵ௜ௗ೘ೌೣ௝ୀଵ  is the total fitness of the population. 
2. Cumulative probabilities are calculated for each individuali, as follows: ܽܿ݉ݑ௜ = ଵܾ݋ݎ݌ + ⋯ +  ௜ (9)ܾ݋ݎ݌

3. The selection criterion consists of generating a random number r uniformly distrib-
uted over an interval [0, 1]. 

4. The individual selected is located in the population as follows:  ݈݁ݏ௜ = ௜ ି ଵ݉ݑܿܽ < ݎ <  ௜ (10)݉ݑܿܽ

Steps one and two are applied once, and the remaining are used each time an 
individual needs to be selected based on their fitness value. 
Crossover operator 

The crossover operator exchanges the chromosomes of two parents to create two new 
offspring [26]. This crossover operator uses a roulette procedure and a crossover rate ∈ 
(0,1], and, by taking two parents (parenti, parenti + 1) with i = 1, 2, ..., idmax, produces two 
offspring (childi, childi + 1). 

An example is shown in Figure 6, where parent1 = {1, 2, 3, 4, 5, 6, 7, 8} and parent2 = {A, 
B, C, D, E, F, G, H} with length 8, and the crossing point and crossing length of the parent1 
are p(7) and l(4), respectively, resulting in two children, child1 = {1, 2, C, D, E, F, 7, 8} and 
child2 = {A, B, 3, 4, 5, 6, G, H}. This procedure is applied in line 11 of Algorithm 1. 

 
Figure 6. Roulette-based crossover operator. 

For example, if the solution shown in Figure 5 is used as one parent: 
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Parent 1: ଵܱଵଵ → ଵܱଷଵ → ܱଶଶଵ → ଵܱଶଶ → ܱଶଵଶ → ܱଶଷଶ → ଵܱଶଷ → ଵܱଷଷ → ܱଶଵଷ 

and, in conjunction with other parent solution: 

Parent 2: ଵܱଶଵ → ܱଶଵଵ → ܱଶଷଵ → ଵܱଶଶ → ଵܱଷଶ → ܱଶଵଶ → ଵܱଵଷ → ଵܱଷଷ → ܱଶଶଷ 

are used with the crossover operator, the next offspring are created:  

Offspring 1: ଵܱଵଵ → ଵܱଷଵ → ܱଶଶଵ → ଵܱଶଶ → ଵܱଷଶ → ܱଶଵଶ → ଵܱଶଷ → ଵܱଷଷ → ܱଶଵଷ 
Offspring 2: ଵܱଶଵ → ܱଶଵଵ → ܱଶଷଵ → ଵܱଶଶ → ܱଶଵଶ → ܱଶଷଶ → ଵܱଵଷ → ଵܱଷଷ → ܱଶଶଷ 

The main characteristic of this crossover operator is that it preserves the sequence 
order from stages 1 to n so that a circular crossover at a single point only exchanges the 
order of the jobs between stages, not the order of the stages, to avoid infeasible solutions. 

HGAG works with distributed processing. The distribution, communication, 
synchronization, and cooperation of the processes generated to execute the algorithm are 
explained below. 

HGAG uses MPI to execute processes on the Grid integrated by the Cuexcomate and 
the Texcal clusters (Figure 4). Each process is assigned to a single core through a uniform 
distribution when executing 5, 10, 15, 30, and 60 processes in a single cluster. If 120 
processes are running, two clusters are used. Furthermore, it is possible to allocate more 
than one process per core, known as overhead [27], when 240 processes are executed, 
which can double the grid capacity. The architecture used is master/slave, where the 
master process collects and distributes the GA population, and the slave processes send 
and receive new solutions. 

As shown in Figure 4, the selection and crossover operators are conducted by the 
master process, and the mutation operations are running on the slave processes through 
the ACO and SA algorithms described in Sections 3.2 and 3.3, respectively. 

The distribution of both HGAG and the instances is performed using the Grid 
Morelos distributed file system. Before executing the algorithm, copies of code and 
instances are first sent to the master nodes of both clusters (Cuexcomate and Texcal). Then, 
the distributed file system sends the input data to all the slave nodes in the Grid. 

Communication between the master and slave processes is implemented using MPI 
functions and the TCP/IP protocol. Additionally, communication between geographically 
distant clusters is implemented using a VPN network, which groups them under the same 
network segment, allowing transparent communication. 

As shown in Figure 7, the processes generated by HGAG communicate between the 
master process and the slave processes at specific times. The algorithm begins by reading 
the benchmark file of the Distributed File System (DFS), then the slave processes generate 
the first solutions applying ACS and refining with SA. The solutions found are sent to the 
master process in a many-to-one relationship to build the initial population of the GA. 
Selection and crossover are applied below to explore the solutions space. Subsequently, 
the master process distributes individuals of a one-to-many relationship to the slave 
processes that in turn transform the solution to apply ACS and SA for the exploitation of 
the solutions space. This process is repeated until the number of generations is complete. 
Finally, the slave processes send the best found solution to the master process, which 
receives them and selects the best global solution of the HGAG algorithm. 
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Figure 7. Hybrid genetic algorithm in grid environment (HGAG). 

The information exchange uses a message-passing mechanism where one sends and 
the other receives, working as follows: 
• The mechanism has a blocking behavior, i.e., while a process waits to receive mes-

sages, it keeps waiting (blocked) until it gets them. 
• The slave process sending a message is blocked while depositing it in the master pro-

cess queue (buffer), continuing its processing once the message has been delivered.  
• The master process blocks while reading the messages from its buffer. 
• If the receiving process reads a message before it is ready, it blocks until the message 

is completed. 
• When the master process receives messages, it must wait for each slave process in 

sequential order. 
• When the slave processes receive a message, they must wait for the master process 

to distribute the results in sequential order and then wait their turn. 
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3.2. Ant Colony System Algorithm 
Algorithm 2 generates the cooperative-local search by applying an ant colony system 

(ACS) [28]. The ACS is used by HGAG, as is shown in line 14 of Algorithm 1. 

Algorithm 2. ACS (Ant Colony System). 
1.  Function ACS(h, α, β, γ, δ, p, q, UB, Sant) 
2.   τ0 ← (n.m.k.UB)−1 
3.   τr,s ← τ0, ∀arc ∈ G(V, A) 
4.   τr,s ← [Cmax(Sant)]−1,∀arc ∈ Sant 
5.   Cmax(SBestLocal) ← 999999 
6.   Repeat 
7.    while ∀ (antk), con k = 1, 2, ..., h  
8.     S[antk] =BuildSolution(α, β, γ, q, τr,s, antk) 
9.    end while 
10.    SBestLocal ← min(Cmax(SBestLocal), Cmax(S[antk])), k = 1, 2, ..., h 
11.    for (antk), k = 1,…,h 
12.     for (arc(r, s)) ∈ S[ antk] 
13.       if arcr,s ∈ SBestLocal then 
14.       τr,s ← (1 − δ). τr,s+ δ.Δτr,s 
15.       Else 
16.       τr,s ← τr,s 
17.      end if 
18.      end for 
19.    end for 
20.   until(p) 
21.   return (SBestLocal) 
22.  end Function LCS 

The ACS elements are described as follows: 
Line 1: ACS receives the following parameters: 

● h is the number of ants. 
● α is the importance coefficient alpha. 
● β is the importance coefficient beta. 
● γ is the evaporation coefficient for the local transition. 
● δ is the evaporation coefficient for the global transition. 
● q is the coefficient to divide the exploration and exploitation rates. 
● p is the stop criterion of the algorithm. 
● UB is the best-known quote in the literature. 
● Sant is the ACS initial solution. 

Line 2: The minimum pheromone value τ0 used in each arc of the solution depicted 
in Figure 2 is defined. τ0 is computed using the problem values (n, m, k) and its best upper 
bound known. 

Line 3: The τ0 value is assigned to each graph arc in Figure 2.  
Line 4: Extra pheromone is deposited on the arcs of the initial solution received (Sant), 

which is computed using the inverse of its fitness value. If Sant is an empty solution, no 
extra pheromone is deposited. 

Line 5: The makespan of the initial SBestLocal solution is set using a maximum value.  
Lines 6–20: This is the local search procedure involving the generation of solutions 

for the k ants, the evaporation of pheromone step by step, the updating of the best solution, 
and the adding of pheromone to the best solution in a cycle of p iterations. 
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Lines 7–9: The Sant solutions are generated for each ant using the BuildSolution 
function with α, β, γ, q, τr,s, and antk as parameters. These solutions are stored in a vector 
S[antk] with k = {1, …, h}. The BestSolution function is described in Algorithm 3. 

Line 10: In each iteration, the best solution with the lowest cost is identified, and its 
path is assigned to the SBestLocal variable. 

Lines 11–19: All solutions in the vector S[antk] are updated by evaporating and 
depositing pheromone only in those arcs that belong to the best solution found, where δ ∈ (0, 1] is an evaporation coefficient. 

Line 21: At the end of the local search procedure, the SbestLocal solution is returned. 
The BuildSolution function is described in Algorithm 3, which is used to create the 

solutions for each antk. Its elements are explained in the following paragraphs: 

Algorithm 3. Local Cooperative Search–BuildSolution() 
1.  Function BuildSolution(α, β, γ, q, τr,s, k) 
2.   r ← input 
3.   Sk ←{r} 
4.   Repeat 
5.    r ← random [0, 1] 
6.    if s ∈ Sk(r) ∧ r ≤ q ∧ s ∉tabuk then 
7.     Sigkr,s ←max s ∉ Sk(r)[ (τr,s) α.(nr,s)β ]  
8.    else if s ∈ Sk(r) ∧ r > q ∧ s ∉tabuk then 
9.     Sigkr,s ← roulette(((τr,s) α.(nr,s)β)/(∑u ∈ Sk(r)((τr,u) α.(nr,u)β) 
10.    Otherwise 
11.     Sigkr,s ← 0 
12.    end if 
13.    Sk = Sk + sigs 
14.    τr,s = (1-γ). τr,s + γ.τ0 
15.    s ← r  
16.   until(r == exitCondition) 
17.   return (Sk) 
18.  end Function BuildSolution 

Line 1: The algorithm receives α, β, γ, q, k as parameters. 
Line 2: The ant k is placed in the initial arch. 
Line 3: The initialization of the solution of ant k (Sk) by adding the first arc r visited. 
Lines 4–16: This is the core section of the algorithm. The ant k traverses the graph, 

node by node, until it reaches the final node. 
• Line 5: A random number r uniformly distributed between 0 and 1 is generated. 
• Lines 6–11: A tabu list [29] is first used to build the set arcr,s with the arcs joining 

the neighborhood of non-visited and reachable nodes of the ant k placed in node 
r s ∈ Nk(r). Then, another uniformly distributed random number q ∈ [0,1] is 
generated and used to determine if exploitation or exploration is conducted. If r 
≤ q, the ants apply their knowledge in terms of the pheromone amount (τr,s) and 
the transition costs (ηr, s). The next best arc with the largest amount of pheromone 
and a lower transition cost is selected. On the other hand, if r > q, a probability 
of choosing the next arc arcr,s is obtained using a roulette-based selection. 

• Line 13: The selected node s is added to the solution Sk. 
• Line 14: As ant k advances from node r to node s, the pheromone is dissipated 

to make it less attractive to the following ants, allowing it to select other arcs not 
yet explored. 

• Line 15: Ant k advances to the selected node s. 
Line 17: The algorithm returns the solution Sk of ant k. 
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3.3. Simulated Annealing Algorithm 
Algorithm 4 implements the iterative local search by applying a simulated annealing 

(SA) algorithm [30]. SA is applied by HGAG, as shown in line 16 of Algorithm 1. In each 
SA iteration, the Metropolis cycle uses the Boltzmann probability function as an 
acceptance criterion, computed using the temperature control parameter T, avoiding local 
optimum since it cannot accept improved solutions. Its elements are described in the 
following paragraphs: 

Algorithm 4. SA (Simulated Annealing) 
1.  Function SA(to, m, µ, tf, Smetal) 
2.   T ← To 
3.   Cmax(SBestLocal) ← 999999 
4.   Srecent ← Smetal 

5.   Repeat 
6.    for i, i = 1, 2, …, m do 
7.      Snew ← N(Srecent)  
8.      if (Cmax Snew) ≤ Cmax(Srecent)) then 
9.      Srecent ←Snew 

10.       if (Cmax(Srecent) ≤ Cmax(SBestLocal)) then 
11.       SBestLocal ← Srecent 
12.       end if 
13.      else if 
14.       Sdif ← Cmax(Snew) − Cmax(Srecent) 
15.       r ← random[0,1] 

16.       if (r ≤ ݁షೄ೏೔೑೅ ) then 
17.        Srecent← Snew 
18.       end if 
19.     end if 
20.    end for 
21.    T ← T. µ 
22.    until (T ≤ Tf) 
23.   return (SBestLocal) 
24.  end Function SA 

Line 1: SA receives the following parameters: 
● t0 is the initial temperature. 
● m is the Markov chain length. 
● µ is the frozen coefficient. 
● tf is the final temperature 

● Smetal is the SA initial solution. This is the solution found by the ACS algorithm. 
Line 2: The temperature T is initialized to a temperature To that will be decreased as 

the search progresses. 
Line 3: The makespan of the initial SBestLocal solution is set using a maximum value. 
Line 4: The Srecent solution is initialized to the Smetal value. 
Lines 5–22: This is the external cycle of the SA algorithm. This cycle updates the 

temperature control parameter and ends when the current temperature T is lower than 
the final temperature Tf. Lines 6–20: This is the Metropolis internal cycle. The Markov 
chain length determines its number of iterations. 
• Line 7: A new solution Snew is created using a local search in the neighborhood of Srecent 

N(Srecent). 
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• Lines 8–12: If the objective function cost, defined in Equation (1), of the solution Snew 
is not greater than those of the Srecent solution, Snew replaces Srecent. Srecent always takes 
the best solution found. Furthermore, the SbestLocal solution is updated with Snew. 

• Lines 13–19: On the other hand, if the objective function cost of the solution Snew is 
greater than those of the Srecent solution, the Boltzmann criterion is used to accept the 
Snew solution as the Srecent solution. This criterion allows escaping from local optimums 
and the continued exploration of the solution space. 
Line 23: The algorithm returns the SbestLocal solution. 

Solution Representation 
The SA candidate solution representation is the same as those used in the HGAG. In 

Figure 5, the sequence of the operations depicted in Figure 5 is: 

ଵܱଵଵ → ଵܱଷଵ → ܱଶଶଵ → ଵܱଶଶ → ܱଶଵଶ → ܱଶଷଶ → ଵܱଶଷ → ଵܱଷଷ → ܱଶଵଷ 

The neighborhood structure used to find new candidate solutions is based on 
exchanging pairs of adjacent operations processed on the same machine or different 
machines. An example of one exchange in the same machine is as follows: 

ଵܱଷଵ → ଵܱଵଵ → ܱଶଶଵ → ଵܱଶଶ → ܱଶଵଶ → ܱଶଷଶ → ଵܱଶଷ → ଵܱଷଷ → ܱଶଵଷ 

On the other hand, an example of an exchange of pairs of operations processed in 
different machines is as follows: ܱଶଶଵ → ଵܱଷଵ → ଵܱଵଵ → ଵܱଶଶ → ܱଶଵଶ → ܱଶଷଶ → ଵܱଶଷ → ଵܱଷଷ → ܱଶଵଷ 

It is necessary to indicate that another machine executes the operation. Once the 
correction is made, the new neighboring solution is available: 

ଵܱଶଵ → ଵܱଷଵ → ܱଶଵଵ → ଵܱଶଶ → ܱଶଵଶ → ܱଶଷଶ → ଵܱଶଷ → ଵܱଷଷ → ܱଶଵଷ 

4. Experimental Results 
In this section are the experimental results of the hybrid genetic algorithm in grid 

environment (HGAG). 

4.1. Platform of Experimentation 
Grid Morelos is one of the first Mexican grids [31]. This grid is a homogenous 

platform constituted by two high-performance computer clusters, geographically distant 
(14.37 km) between them, and placed in the Morelos State. The main elements of the grid 
are the Cuexcomate and Texcal clusters. The Cuexcomate cluster is located at the 
Autonomous University of Morelos State (UAEM) in Cuernavaca Morelos, Mexico. The 
Texcal cluster is located at the Polytechnic University of Morelos State (UPEMOR), in 
Jiutepec, Morelos, Mexico. An open virtual private network integrates the clusters in a 
grid environment. Each cluster has its nodes, but the cluster Cuexcomate and the cluster 
Texcal have similar characteristics. The communication between these clusters is via a 
wireless WAN link between institutions implemented via a point-to-point microwave link 
with ISM frequency bands with 30 Mbps bandwidth. The grid software includes an OS 
Centos Linux 5.5, 64 bits, a gcc 4.1.2 compiler, an OpenMPI 1.8, an MPICH2, an Intel 
compiler MPI 12.0, a Ganglia 3.1.7, NFS-utils 1.0.9, VLAN, and Torque + Maui. The cluster 
communication uses a Switch 3COM 24/10/100/1000, a Switch InfiniBand Mellanox, 18 
ports, 40 Gb/s QDR, and each cluster node uses an InfiniBand card 40 Gb/s. Each cluster 
has a master node with two Intel Xeon, Six-Core 3.06 GHz (12 cores), 12 MB cache, 6 HD 
7200 RPM, 12 TB, 24 GB RAM. Furthermore, each cluster has four slave nodes with a two 
Intel Xeon Six-core 3.06 GHz (12 cores), 12 MB cache, 1 HD 7200 RPM, 500 GB, 24 GB RAM, 
InfiniBand card 40 Gb/s. In summary, the Grid Morelos has ten nodes and 120 cores. 
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4.2. Generation of Test Instances 
When searching the existing literature, no instances were found with which the 

algorithm proposed in this manuscript could be compared. This is because the 
optimization model used in the present work is an adaptation of that defined in [23]. To 
the best of our knowledge, there is no similar algorithmic approach to comparing results. 
The model most similar to the one presented in [23] only analyzes a small-size instance 
that uses restrictions for machine blocking, this set of restrictions does not apply in this 
work in the optimization model that is resolved. Therefore, medium-size and large-size 
instances of the optimization model were generated, which allowed us to evaluate the 
performance of the HGAG in a high-performance computing environment and above 120 
parallel processes. 

According to the number of jobs, the benchmarks used are classified in the literature 
as small, medium, and large instances [32,33]. This work randomly generates benchmarks 
to solve the RFFSP described in Section 2. Based on [33], these benchmarks are also 
randomly generated using a proprietary program codified in the C language. The 
benchmarks are generated with the following characteristics: 
• Five groups of jobs N = {20, 40, 60, 80, 140}; 
• Three groups of stages K = {2, 4, 8}; 
• Four groups of machines M= {2, 3, 4, 5}; 
• Processing times pjk uniformly distributed in the range (1–99); 
• Setup times STljk, uniformly distributed in the ranges (1–25), (1–50), (1–00), and (1–

125). These values correspond to 25%, 50%, 100% and 125% of ratio, according to the 
processing times. 
The nomenclature, defined in this work, to name the benchmarks is the following: 

RFFS_SDST_nxmxk xr _b 

where RFFSP_SDST means relaxed flexible flow shop problem with sequence dependent 
setup times, n is the number of jobs, m is the number of stages, k is the number of parallel 
machines on each stage, r is the ratio of setup time, dependent on the sequence related to 
the processing time, and b is the problem number which can be from 1 to 5. 

Five benchmarks are generated to create sets of five instances, to be solved with the 
HGAG. Table 2 shows these instances. Readers can access the data of the instances that 
are resolved in this work in [34].  

Table 2. Instances for tuning the HGAG. 

INSTANCES SET NAME Description  SIZE 
1.  RFFS_SDST_20 × 4 × 4 × 25 n = 20, m = 4, k = 4, STljk = 25% 

Small 
2.  RFFS_SDST_40 × 4 × 4 × 25 n = 40, m = 4, k = 4, STljk = 25% 
3.  RFFS_SDST_60 × 4 × 4 × 25 n = 60, m = 4, k = 4, STljk = 25% Medium 4.  RFFS_SDST_80 × 4 × 4 × 25 n = 80, m = 4, k = 4, STljk = 25% 
5.  RFFS_SDST_140 × 4 × 4 × 25 n = 140, m = 4, k = 4, STljk = 25% Large 

4.3. HGAG Sensibility Analysis 
The HGAG has different parameters that must be tuned to find the appropriate 

values to get the best algorithm performance. The sensibility analysis is carried out with 
an automatically distributed tuning methodology. Three metaheuristics are used in the 
HGAG: one cooperative genetic algorithm, an ant colony system algorithm (ACS), and a 
simulated annealing algorithm (SA). For each algorithm, its input parameters are tuned. 
First, the GA parameters to be tuned are (1) the population size P, which is directly 
proportional to the number of grid processors, (2) the selection operator S, (3) the 
crossover-rate C, and (4) the number of generations G. Next, the ACS parameters to be 
tuned are: (1) the number of ants h, (2) the importance coefficient α, (3) the importance 
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coefficient β, (4) the evaporation coefficient γ for the local transition, (5) the evaporation 
coefficient δ for a global transition, (6) the ratio between exploration/exploitation q, and 
(7) the stop criterion p. Finally, the SA parameters to be tuned are: (1) the initial 
temperature To, (2) the Markov chain length m, (3) the cooling rate µ, and (4) the final 
temperature Tf. 

The ACS and SA algorithms are independent, and they are tuned simultaneously. 
The CGA algorithm is tuned posteriorly. The sensibility analysis is realized in the 
Cuexcomate cluster. It is carried out for every set of different size instances, as shown in 
Table 2. 

As shown in Table 2, the only parameter modified to create every instance set is the 
number of jobs n; the other parameters are kept constant. The analysis of sensibility is 
realized by tuning the following parameters in the following order: first, the ACS 
parameters h, α, β, γ, δ, p, q, then the SA parameters To, m, µ, Tf, and finally, the HGAG 
parameters S, G, C, P. The following steps are applied to tune the algorithms: 
1. The design, codification, and tuning of the ACS and SA algorithms are carried out. 
2. An analysis of previous works described in the existing literature to find the values 

commonly used for the ACS parameters is conducted. It is found that the α and β 
values fluctuate between 0 and 5. The values for the pheromone evaporation factors, 
γ, δ, and the importance factor p, are in 0 and 1. The h value has a maximum of 200, 
and some researchers set it to with the same value as the number of jobs to the prob-
lem. The q parameter takes values higher than 2000, depending on the available com-
puting resources. In some works, the α parameter value is generally set as one, and 
only the importance factor β is varied [35]. 

3. An analysis of previous works presented in the existing literature to find the estab-
lished values for the SA parameters is also carried out. It is found that the values 
defined for the four parameters of the algorithm, To, m, µ, Tf, are called low, medium, 
and high. 

4. Ranges are established for the HGAG parameters. The ranges of values found in the 
literature [36] consider two selection operators: roulette and tournament. For the 
crossover operator, the researchers commonly use PMX (Partially Mapped Crosso-
ver), OP (One Point order crossover), TP (Two Point order crossover), and OX (Order 
Crossover), among others. The crossover rate is defined in the range [0.1, 0.5]. The 
population size is fixed in the range between 20 and 50. 
Table 3 shows the definition of values for tuning the ACS, SA, and HGAG algorithms. 

Table 3. Values for tuning ACS, SA, and HGAG. 

ACS Parameters 
Parameter Values Increments (Units) 

h 1–20 1 
α 1 - 
β 0.1–0.9; 1–10 0.1 
γ 0.1–0.9 0.1 
δ 0.1–0.9 0.1 
q 0.1–0.9 0.1 
p 500–2000 250 

SA parameters 

To 
1–110 10 

120–500  20 

m 

1–9  1 
10–30  2 
30–50  4 
50–75  5 
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µ 
0.800–0.982 0.14 
0.984–0.990 0.2 

Tf 

0.8–0.2 −0.2 
0.08–0.02 −0.02 

0.008–0.002 −0.002 
0.0001 - 

1 - 
HGAG parameters 

S Roulette - 
G 10–30 2 
C 0.10–1 0.10 
P 20–70 5 

Sensitivity analysis results 
The tuning process for the instances of five sizes (Table 1) is carried out in the 

Cuexcomate cluster, and Tables 4–6 show the SA, ACS, and HGAG algorithm results 
tuning, respectively. Whereas 30 tests are conducted for each set of instances for the first 
two algorithms, 30 tests are carried out with the instance of 60 jobs for the HGAG. 
Considering one of the worst cases, where the number of generations G is 30, and a 
population size P is 60, perfect distribution of processes is observed since the number of 
cores of the Cuexcomate cluster is equal to the size of the population. By distributing the 
processes on each core, one process is executed per core, so there is no overhead. It is 
recommended that the HGAG execution be one process per core to avoid overload on the 
grid. The main cycle of the HGAG algorithm is given by the number of generations G, 
within which each process applies the tuned mutation hybrid operator using the ACS and 
SA algorithms. 

Table 4. SA tuning results. 

INSTANCE T0 m µ Tf 
RFFS_SDST_20X4X4X25 450 78 0.989 0.0015 
RFFS_SDST_40X4X4X25 425 56 0.890 0.0001 
RFFS_SDST_60X4X4X25 395 71 0.989 0.0001 
RFFS_SDST_80X4X4X25 160 65 0.990 0.0001 

RFFS_SDST_140X4X4X25 40 70 0.990 0.0001 

Table 5. ACS tuning results. 

INSTANCE H α β γ Δ p q 
RFFS_SDST_20X4X4X25 18 1 0.2 0.2 0.3 0.2 1250 
RFFS_SDST_40X4X4X25 20 1 0.2 0.6 0.9 0.2 2000 
RFFS_SDST_60X4X4X25 14 1 0.1 0.1 0.9 0.1 2000 
RFFS_SDST_80X4X4X25 18 1 0.3 0.3 0.9 0.1 1750 

RFFS_SDST_140X4X4X25 16 1 0.4 0.9 0.2 0.2 1500 

Table 6. HGAG tuning results. 

INSTANCE G C P ACS SA 
RFFS_SDST_60X4X4X25 30 0.5 240 ACS SA 

RFFS_SDST_140X4X4X25 5 0.5 120 ACS SA 
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4.4. HGAG Algorithm Convergence 
The HGAG convergence in the Cuexcomate cluster is evaluated using a medium-size 

instance: RFFS_SDST_60 × 4 × 4 × 25. Figure 8 shows the algorithm’s convergence curve 
as a function of the number of generations and the objective function, using a population 
size of 60 and processing one individual by cluster core. The results show constant 
improvement in the objective function value until generation 30, where convergence is 
reached. 

 
Figure 8. HGAG convergence for the RFFS_SDST_SDST_60 × 4 × 4 × 25 instance. 

4.5. Grid Efficacy 
Figure 9 shows the experimental studies results considering different population 

sizes, which evolve with 30 generations. This Figure shows the average of 30 tests for each 
variation in population size, until reaching a size of 70 individuals: 60 in the Cuexcomate 
cluster, and 10 in the Texcal cluster. It is observed that as the size of the population 
increases, the quality of the solution improves. The grid impacts the solutions’ quality by 
using a more significant number of cooperative processes distributed throughout it. 

 
Figure 9. HGAG behavior using different population sizes. 
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Process cooperation in HGAG 
To perform an analysis on the cooperation of the processes in the grid, the following 

elements are used: 5 RFFS_SDST_ {20, 40, 60, 80, 140} test instances, six groups of cores (5, 
10, 15, 30, 60, 120) and eight population sizes (5, 10, 15, 30, 60, 120, 240, 480). 30 tests are 
carried out by each of the following combinations of population sizes and number of cores: 
(5,5), (10,10), (20,20), (30,30), (60,60), (120,120), (240,120), (480,120). Each group of cores is 
distinguished by being closer together in an attempt to avoid bottlenecks in the grid. Two 
populations show core overload (240 and 480) since they must be distributed over 120 
cores. 
Process cooperation in small instances 

Table 7 shows the results for the RFFS_SDST_20 × 4 × 4 × 25 instance. In this table, P 
is the number of processes, N is the number of cores, Np is the number of cores, Cmax is 
the mean of the 30 tests, t is the average time of the tests, and best the best makespan 
obtained. It is observed that the best result is obtained when an overload of processes is 
done and the population increases twice, from 120 to 240 individuals. This behavior is due 
to the algorithm conducting more exploration and exploitation of the solution space. 
However, the algorithm’s execution time practically increases more than double (since the 
processes’ communications increase) when compared to running 120 processes. In the 
other tests presented in Table 7, the number of individuals remains at 120. 

Table 7. RFFS_SDST_20 × 4 × 4 × 25 results. 

RFFS_SDST_20 × 4 × 4 × 25 

P N Np 
Cmax 

Average 
t, s 

Average Best 

5 5 24 481.43 361 478 
10 10 12 479.67 363 472 
15 15 8 479.17 364 476 
30 30 4 477.70 364 473 
60 60 2 476.23 366 473 
120 120 1 475.10 415 471 
240 120 1 473.80 1087 469 

Table 8 presents the results for the RFFS_SDST_40 × 4 × 4 × 25 instance. 30 runs are 
carried out in this test. Again, a similar behavior to the previous example is observed: the 
best result is obtained when an overload of processes is done. The population increases 
from 120 to 240 individuals, but the execution time increases more than double for the 
version with 120 individuals. 

Table 8. RFFS_SDST_40 × 4 × 4 × 25 results. 

RFFS_SDST_20 × 4 × 4 × 25 

P N Np 
Cmax 

Average 
t, s 

Average Best 

5 5 24 1631 1631 664 
10 10 12 1696 1696 659 
15 15 8 1747 1747 656 
30 30 4 660.87 1664 655 
60 60 2 659.30 1708 655 

120 120 1 657.97 1996 654 
240 120 1 656.73 4857 649 
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Process cooperation in medium instances 
Table 9 shows the cooperation results obtained for the RFFS_SDST_60 × 4 × 4 × 25 

instance. This table shows that the best result is obtained when using 240 processes and 
shows that the average of the 30 makespan tests and the best value found improves 
steadily from 15 processes, in the order 15, 30, 60, 120, 240. 

Table 9. RFFS_SDST_60 × 4 × 4 × 25 results. 

RFFS_SDST_60 × 4 × 4 × 25 

P N Np Cmax 
Average 

t, s 
Average 

Best 

5 5 24 943.00 3889 937 
10 10 12 940.27 3890 932 
15 15 8 941.13 3988 934 
30 30 4 939.37 3968 933 
60 60 2 937.53 4047 932 
120 120 1 935.73 4076 930 
240 120 1 934.37 7953 927 

Table 10 shows the cooperation results obtained for the RFFS_SDST_80 × 4 × 4 × 25 
instance. This table shows that the best result is obtained using 240 processes and that the 
makespan average and the best value of the 30 tests constantly improve from five 
processes in the following order: 5, 10, 15, 30, 60, 120, 240. It is also observed that the 
execution time is close to 4 h for the case of 240 processes. 

Table 10. RFFS_SDST_80 × 4 × 4 × 25 results. 

RFFS_SDST_80 × 4 × 4 × 25 

P N Np Cmax 
Average 

t, s 
Average Best 

5 5 24 1282 6521 1273 
10 10 12 1279 6480 1272 
15 15 8 1278 6606 1270 
30 30 4 1275 6618 1269 
60 60 2 1274 6715 1266 

120 120 1 1272 6803 1264 
240 120 1 1271 13,299 1263 

Process cooperation in large instances 
Table 11 shows the cooperation results obtained for the RFFS_SDST_140 × 4 × 4 × 25 

instance. The best result is obtained when using 120 processes, which indicates that if the 
processes are increased for a large problem, the HGAG will begin to show deficiencies in 
its performance. This may be due to the fact that the local search generates repeated 
searches in the solution space. This problem could be avoided if a tabu search is 
implemented in the HGAG. It is observed that the makespan average and the best value 
of the 30 tests constantly improve from 10 processes, in the order of 10, 15, 30, 60, and 120. 
It is also observed that the execution time is close to 6 h for 120 processes. 
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Table 11. RFFS_SDST_80 × 4 × 4 × 25 results. 

RFFS_SDST_140 × 4 × 4 × 25 

P N Np Cmax 
Average 

t, s 
Average 

Best 

5 5 24 2033.3 18,921 2022 
10 10 12 2028.1 19,189 2015 
15 15 8 2028.0 19,621 2016 
30 30 4 2024.9 19,888 2016 
60 60 2 2022.4 20,159 2013 

120 120 1 2010.9 20,382 2013 
240 120 1 2018.6 38,727 2013 

4.6. HGAG Efficiency on the Grid 
Speedup evaluation 
Figure 10 shows the speedup obtained in the evaluation of the RFFS_SDST_80 × 4 × 

4 × 25 problem. The average efficiency of the processors’ usage is 93% when using 10, 30, 
60, and 120 processes. The remaining 7% represents the non-parallelizable HGAG portion 
and the communications overhead. This overhead corresponds to the time used to send 
and receive solutions, leaving out the MPI typical synchronization times, the overload of 
external processes, and the Linux operating system’s communication services. When the 
number of processes increases, it is observed that the real speedup moves away from the 
ideal speedup. This behavior is due to the communications overhead increment since the 
algorithm data usage increases when the number of processes increases. 

 
Figure 10. Average speedup for the HGAG algorithm for RFFS_SDST_80 × 4 × 4 × 25 problem. 

Evaluation of the communications overload on the Grid 
The computational grid overhead is calculated based on the maximum bandwidth 

provided by the communication between clusters, which is 15 Mb/s. The Grid Morelos 
infrastructure allows two-way communication since messages can be sent and received 
simultaneously (upload and download). Therefore, the total bidirectional bandwidth can 
reach 30 Mb/s. The communication overhead is evaluated for the RFFS_SDST_80 × 4 × 4 × 
25 problem, using 120 processes distributed over 120 cores and using the virtual private 
network joining the two clusters. 
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First, experimental tests of sending and returning bit packets between both clusters 
are carried out. The packet sizes range from 64 to 67,108,864 bits in order to evaluate the 
time it takes to send them. For example, the send and return time of a 64-bit packet is 750 
microseconds, which is equivalent to 0.163 Mb/s. The results of these tests are described 
in Table 12. 

Table 12. Round Trip Time (RTT) evaluation in the Morelos Grid. 

[fj@cuexcomate ~]$ mpiexec –ppn 1 –np 2 ./ping 
I am process 0 of 2 running on :cuexcomate 
I am process 1 of 2 running on :texcal 
Smaller posible measurable time ~0.953674 usecs (Microseconds) 

Bits (RTT) Time  
usecs 

Transfer Rate 
Mb/sec 

64 750 0.163 
128 717 0.341 
256 768 0.636 
512 809 1.207 

1024 912 2.142 
2048 1128 3.463 
4096 1574 4.963 
8192 2471 6.323 

16384 3564 8.769 
32768 5917 10.563 
65536 10230 12.219 
131072 18921 13.213 
262144 36294 13.776 
524288 71130 14.059 

1048576 140704 14.214 
2097152 279734 14.299 
4194304 559525 14.298 
8388608 1115870 14.339 

16777216 2354889 13.589 
33554432 4748298 13.479 
67108864 9321278 13.732 

For calculating the overhead that HGAG presents when solving the RFFS_SDST_80 
× 4 × 4 × 25 instance with 120 processes distributed over 120 cores in the Grid, it is 
necessary to determine the number of bits of a solution represented by an individual in 
the algorithm. The instance comprises 80 jobs, which must be executed in series on four 
stages, each with four identical parallel machines. The number of bits of an individual is 
40,960 bits, so the population’s total size is 4,915,200 bits. As the distribution of the 120 
processes in the computational grid is 60 in the Cuexcomate cluster and 60 in the Texcal 
cluster, only half of the population travels from one cluster to another, that is, 2,457,600 
bits. Table 12, shows that, for this size, the value is between the interval (2,097,152–
4,194,304). By performing an interpolation with these values, a total time of 341,689 µsecs 
is obtained for the population size evaluated in one generation. Therefore, the total 
overload time for the 30 generations is 10,250,580 µsecs, that is, approximately 10.3 s. This 
is the time that the algorithm spends sending and receiving the slave processes’ solutions 
during the total algorithm execution time. 

The maximum transfer rate between clusters on the grid is 15 Mbs (15,728,640 bits/s). 
It is understood that the optimal transfer rate to avoid bottlenecks must be less than or 
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equal to 15,728,640 bits/s. Table 12 shows that the highest transfer rate occurs when 
sending packets is 8,388,608 bits (14,339 Mb/sec). Comparing this value with the 2,457,600 
bits that the HGAG uses per packet, it is clear that there is no traffic congestion between 
clusters since the packet size sent by the HGAG only represents 29.3% of the bandwidth 
available to send packages between the grid clusters. 

5. Conclusions 
A hybrid genetic algorithm implemented in a grid environment to solve hard 

instances of the flexible flow shop scheduling problem with sequence-dependent setup 
times is described in this paper. Each offspring generated by the evolutionary operators 
is improved using the combination of an iterative and cooperative local-search. The 
evolutionary process is conducted in a master process, and the local search is performed 
in a set of slave processes distributed in a grid environment. The point-to-point 
communication between the grid nodes is through a message passing mechanism. Since 
the implemented algorithm uses several parameters, and their performance depends on 
the values used for them, a sensibility analysis to determine the more suitable values to 
the parameter setting is conducted. The experimental results are analyzed considering the 
algorithm convergence and the efficacy and efficiency of the Morelos Grid to solve the test 
instances. The HGAG has an efficient convergence rate since it uses almost 30 iterations 
to reach a near-optimal solution. 

Furthermore, the use of a set of distributed nodes impacts the solution quality since 
each node applies a combined local search that increases the algorithm running time if 
implemented in one only process. Finally, the speedup evaluation indicates that 93% of 
the processors’ usage is applied. It is observed that traffic congestion between clusters 
does not exist since the packet size transmitted by the algorithm uses 29.3% of the 
available bandwidth. The above values indicate that (1) the implementation of the GA 
with hybrid local-search in the Morelos grid allows for the finding of better RFFSP 
solutions, and (2) the distribution of the jobs allows for the efficient usage of the 
computational resources, coupled with the effective use of the grid communication. 

The HGAG is an artificial intelligence heuristic algorithm. The convenience of the 
approach used in this work involves the combination of different search forms used to 
more effectively explore and exploit the solutions space, applying different procedures 
such as searches that allow the escape of optimal local solutions (simulated annealing), 
local searches with cooperation between individuals (ant colony), and also the search by 
exploration of the space of solutions that the genetic algorithm applies through the 
selection and crossover operators. Finally, exploration and exploitation in the search space 
is expanded in a reduced time by designing the HGAG algorithm for execution in a 
computational grid, applying the use of more than one computational cluster, where these 
clusters could be geographically distant. 

Future Works 
Future directions of this work are to implement hybrid programming using GPU-

parallel programming in the Morelos Grid, since each grid cluster has GPU cards. This 
programming scheme will implement the hybrid local-search using SA and ACS. The 
genetic evolutionary process will remain in the master process to take advantage of the 
infrastructure’s potential. These changes are intended to improve the HGAG speed up 
efficiency and reduce its total execution time. It is also essential to improve the search in 
the space for solutions by implementing new variable neighborhood structures in SA. 
Finally, using a multi-objective approach of the HGAG in the job shop scheduling problem 
can improve the generation of more compact feature schedules for benchmark problems 
published in the existing literature. 
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