A Fuzzy-Based Method for Objects Selection in Blockchain-Enabled Edge-IoT Platforms Using a Hybrid Multi-Criteria Decision-Making Model
Abstract
:1. Introduction
- Proposing a secure framework for integrating edge and blockchain technologies into IoT networks to ensure data protection and energy efficiency.
- Providing a platform for node selection for various IoT-edge frameworks.
- Utilizing an edge platform to increase performance, decrease latency, and increase system efficiency.
- Introducing a novel fuzzy-based method using a hybrid MCDM model.
- Improving parameters such as INFBS, INRE, and INDE.
2. Related Works
3. Proposed Method
- System architecture
Algorithm 1. Proposed method | |
Step 0 | Determine the measures (INFBS, INRE, and INDE) and options (27) for the analysis. |
Step 1 | Accept inputs or assignment ratings for three criteria and alternatives from the user |
Step 2 | Formulate criteria and alternatives decision matrix showcasing the magnitudes of assignment ratings for INFBS, INRE, and INDE and 27 options. |
Step 3 | Formulate the ‘fuzzy normalized decision matrix’ for the benefit and cost criteria using Equations (2) and (3), respectively. |
Step 4 | Develop the ‘fuzzy weighted normalized matrix’ using step 4 of the methodology, which considers the influence of the node selection possibility. |
Step 5 | Compute the FPIS and FNIS using Equations (5) and (6), respectively. |
Step 6 | Determine the distance from every option to the FPIS and FNIS employing Equations (7) and (8), respectively. |
Step 7 | Determine CCi for each option employing Equation (9). The Cci weights help in identifying the ranks of the alternatives. |
Step 8 | Determine the rank of alternatives based on the magnitude of the Cci. |
Step 9 | Check if other options with high positions are feasible. If ‘No’ GOTO Step 3. If ‘Yes’ GOTO Step 10. |
Step 10 | Print-Optimal node selection as output |
Step 11 | STOP |
- Suggested method
- Identify the measures and options for carrying out the analysis.
- Assign ratings to the measures based on which alternatives would be ranked.
- Formulate “R”.where R = [rij], for the ‘benefit criteria’
- Compute “V”, where vij = rij * weight of the criteria (wj).
- 2.
- Using the following equations, calculate the Fuzzy Positive and Negative Ideal Solution (FPIS and FNIS).
- 1.
- Calculate the distance of every option from ‘FPIS’ and ‘FNIS’ employing Equations (7) and (8).
- 2.
- Compute for each option based on Equation (9).
- 3.
- Grade the options using the values. The higher the intensity, the better the alternative.
4. Results
5. Conclusions, Limitations, and Future Directions of Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, K.; Ke, F.; Huang, X.; Yu, R.; Lin, F.; Wu, Y.; Ng, D.W.K. DeepBAN: A temporal convolution-based communication framework for dynamic WBANs. IEEE Trans. Commun. 2021, 69, 6675–6690. [Google Scholar] [CrossRef]
- Heidari, A.; Navimipour, N.J.; Unal, M.; Toumaj, S. Machine learning applications for COVID-19 outbreak management. Neural Comput. Appl. 2022, 34, 15313–15348. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Zhang, H.; Yuan, Q.; Li, J.; Wang, F.Y. ESTNet: Embedded Spatial-Temporal Network for Modeling Traffic Flow Dynamics. IEEE Trans. Intell. Transp. Syst. 2022, 1–12. [Google Scholar] [CrossRef]
- Kong, H.; Lu, L.; Yu, J.; Chen, Y.; Tang, F. Continuous authentication through finger gesture interaction for smart homes using WiFi. IEEE Trans. Mob. Comput. 2020, 20, 3148–3162. [Google Scholar] [CrossRef]
- Heidari, A.; Jamali, M.A.J.; Navimipour, N.J.; Akbarpour, S. Deep Q-Learning Technique for Offloading Offline/Online Computation in Blockchain-Enabled Green IoT-Edge Scenarios. Appl. Sci. 2022, 12, 8232. [Google Scholar] [CrossRef]
- Cao, B.; Zhang, Y.; Zhao, J.; Liu, X.; Skonieczny, Ł.; Lv, Z. Recommendation Based on Large-Scale Many-Objective Optimization for the Intelligent Internet of Things System. IEEE Internet Things J. 2022, 9, 15030–15038. [Google Scholar] [CrossRef]
- Cao, B.; Sun, Z.; Zhang, J.; Gu, Y. Resource allocation in 5G IoV architecture based on SDN and fog-cloud computing. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3832–3840. [Google Scholar] [CrossRef]
- Cao, B.; Gu, Y.; Lv, Z.; Yang, S.; Zhao, J.; Li, Y. RFID Reader Anticollision Based on Distributed Parallel Particle Swarm Optimization. IEEE Internet Things J. 2021, 8, 3099–3107. [Google Scholar] [CrossRef]
- Cao, K.; Ding, H.; Wang, B.; Lv, L.; Tian, J.; Wei, Q.; Gong, F. Enhancing Physical Layer Security for IoT with Non-Orthogonal Multiple Access Assisted Semi-Grant-Free Transmission. IEEE Internet Things J. 2022, 1–13. [Google Scholar] [CrossRef]
- Lv, Z.; Qiao, L.; You, I. 6G-enabled network in box for internet of connected vehicles. IEEE Trans. Intell. Transp. Syst. 2020, 22, 5275–5282. [Google Scholar] [CrossRef]
- Cao, B.; Fan, S.; Zhao, J.; Tian, S.; Zheng, Z.; Yan, Y.; Yang, P. Large-scale many-objective deployment optimization of edge servers. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3841–3849. [Google Scholar] [CrossRef]
- Heidari, A.; Navimipour, N.J.; Unal, M. The History of Computing in Iran (Persia)—Since the Achaemenid Empire. Technologies 2022, 10, 94. [Google Scholar] [CrossRef]
- Lv, Z.; Li, Y.; Feng, H.; Lv, H. Deep learning for security in digital twins of cooperative intelligent transportation systems. IEEE Trans. Intell. Transp. Syst. 2021, 1–10. [Google Scholar] [CrossRef]
- Heidari, A.; Toumaj, S.; Navimipour, N.J.; Unal, M. A privacy-aware method for COVID-19 detection in chest CT images using lightweight deep conventional neural network and blockchain. Comput. Biol. Med. 2022, 145, 105461. [Google Scholar] [CrossRef]
- Wang, H.; Gao, Q.; Li, H.; Wang, H.; Yan, L.; Liu, G. A Structural Evolution-Based Anomaly Detection Method for Generalized Evolving Social Networks. Comput. J. 2022, 65, 1189–1199. [Google Scholar] [CrossRef]
- Yang, W.; Chen, X.; Xiong, Z.; Xu, Z.; Liu, G.; Zhang, X. A privacy-preserving aggregation scheme based on negative survey for vehicle fuel consumption data. Inf. Sci. 2021, 570, 526–544. [Google Scholar] [CrossRef]
- Chen, H.; Xiong, Y.; Li, S.; Song, Z.; Hu, Z.; Liu, F. Multi-Sensor Data Driven with PARAFAC-IPSO-PNN for Identification of Mechanical Nonstationary Multi-Fault Mode. Machines 2022, 10, 155. [Google Scholar] [CrossRef]
- Heidari, A.; Navimipour, N.J.; Unal, M. Applications of ML/DL in the management of smart cities and societies based on new trends in information technologies: A systematic literature review. Sustain. Cities Soc. 2022, 85, 104089. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, T.; Cai, G.; Hai, K.L. Research on electric vehicle charging safety warning model based on back propagation neural network optimized by improved gray wolf algorithm. J. Energy Storage 2022, 49, 104092. [Google Scholar] [CrossRef]
- Gupta, B.B.; Li, K.C.; Leung, V.C.; Psannis, K.E.; Yamaguchi, S. Blockchain-assisted secure fine-grained searchable encryption for a cloud-based healthcare cyber-physical system. IEEE/CAA J. Autom. Sin. 2021, 8, 1877–1890. [Google Scholar]
- Kumar, R.; Tripathi, R. DBTP2SF: A deep blockchain-based trustworthy privacy-preserving secured framework in industrial internet of things systems. Trans. Emerg. Telecommun. Technol. 2021, 32, e4222. [Google Scholar] [CrossRef]
- Yan, L.; Yin-He, S.; Qian, Y.; Zhi-Yu, S.; Chun-Zi, W.; Zi-Yun, L. Method of reaching consensus on probability of food safety based on the integration of finite credible data on block chain. IEEE Access 2021, 9, 123764–123776. [Google Scholar] [CrossRef]
- Jan, M.A.; Cai, J.; Gao, X.C.; Khan, F.; Mastorakis, S.; Usman, M.; Alazab, M.; Watters, P. Security and blockchain convergence with Internet of Multimedia Things: Current trends, research challenges and future directions. J. Netw. Comput. Appl. 2021, 175, 102918. [Google Scholar] [CrossRef] [PubMed]
- Alagha, A.; Singh, S.; Mizouni, R.; Ouali, A.; Otrok, H. Data-driven dynamic active node selection for event localization in IoT applications-a case study of radiation localization. IEEE Access 2019, 7, 16168–16183. [Google Scholar] [CrossRef]
- Xiao, Y.; Zuo, X.; Huang, J.; Konak, A.; Xu, Y. The continuous pollution routing problem. Appl. Math. Comput. 2020, 387, 125072. [Google Scholar] [CrossRef]
- Sun, G.; Cong, Y.; Wang, Q.; Zhong, B.; Fu, Y. Representative task self-selection for flexible clustered lifelong learning. IEEE Trans. Neural Netw. Learn. Syst. 2020, 33, 1467–1481. [Google Scholar] [CrossRef]
- Shukla, A.; Tripathi, S. An effective relay node selection technique for energy efficient WSN-assisted IoT. Wirel. Pers. Commun. 2020, 112, 2611–2641. [Google Scholar] [CrossRef]
- Luo, J.; Wu, D.; Pan, C.; Zha, J. Optimal energy strategy for node selection and data relay in WSN-based IoT. Mob. Netw. Appl. 2015, 20, 169–180. [Google Scholar] [CrossRef]
- Cao, B.; Li, M.; Liu, X.; Zhao, J.; Cao, W.; Lv, Z. Many-Objective Deployment Optimization for a Drone-Assisted Camera Network. IEEE Trans. Netw. Sci. Eng. 2021, 8, 2756–2764. [Google Scholar] [CrossRef]
- Bouazza, H.; Said, B.; Laallam, F.Z. A hybrid IoT services recommender system using Social IoT. J. King Saud Univ. Comput. Inf. Sci. 2022, 34 Pt B, 5633–5645. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, H.; Cai, G.; Zhang, Z.; Wang, X.; Koh, L.H. Power-frequency oscillation suppression algorithm for AC microgrid with multiple virtual synchronous generators based on fuzzy inference system. IET Renew. Power Gener. 2022, 16, 1589–1601. [Google Scholar] [CrossRef]
- Chen, H.; Li, S. Multi-Sensor Fusion by CWT-PARAFAC-IPSO-SVM for Intelligent Mechanical Fault Diagnosis. Sensors 2022, 22, 3647. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, G.; Lu, J. Multisource heterogeneous unsupervised domain adaptation via fuzzy relation neural networks. IEEE Trans. Fuzzy Syst. 2020, 29, 3308–3322. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, J.; Peng, Y. Hybrid MCDM model for location of logistics hub: A case in China under the belt and road initiative. IEEE Access 2021, 9, 41227–41245. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, J.; Niu, B.; Liu, L.; He, X. A novel hybrid multi-criteria group decision-making approach with intuitionistic fuzzy sets to design reverse supply chains for COVID-19 medical waste recycling channels. Comput. Ind. Eng. 2022, 169, 108228. [Google Scholar] [CrossRef]
- Ban, Y.; Liu, M.; Wu, P.; Yang, B.; Liu, S.; Yin, L.; Zheng, W. Depth Estimation Method for Monocular Camera Defocus Images in Microscopic Scenes. Electronics 2022, 11, 2012. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, W.; Chen, X.; Zhao, Y.; Yu, T.; Mu, D. Improving high-impact bug report prediction with combination of interactive machine learning and active learning. Inf. Softw. Technol. 2021, 133, 106530. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, W.; Xia, X.; Lo, D. Data quality matters: A case study on data label correctness for security bug report prediction. IEEE Trans. Softw. Eng. 2021, 48, 2541–2556. [Google Scholar] [CrossRef]
- Cao, B.; Zhao, J.; Lv, Z.; Yang, P. Diversified personalized recommendation optimization based on mobile data. IEEE Trans. Intell. Transp. Syst. 2020, 22, 2133–2139. [Google Scholar] [CrossRef]
- Yu, J.; Lu, L.; Chen, Y.; Zhu, Y.; Kong, L. An indirect eavesdropping attack of keystrokes on touch screen through acoustic sensing. IEEE Trans. Mob. Comput. 2019, 20, 337–351. [Google Scholar] [CrossRef]
- Qureshi, M.N.; Kumar, P.; Kumar, D. Framework for benchmarking logistics performance using fuzzy AHP. Int. J. Bus. Perform. Supply Chain. Model. 2009, 1, 82–98. [Google Scholar] [CrossRef]
- Wudhikarn, R.; Chakpitak, N.; Neubert, G. Improving the strategic benchmarking of intellectual capital management in logistics service providers. Sustainability 2020, 12, 10174. [Google Scholar] [CrossRef]
- Riaz, N.; Qaisar, S.; Ali, M.; Naeem, M. Node selection and utility maximization for mobile edge computing–driven IoT. Trans. Emerg. Telecommun. Technol. 2022, 33, e3704. [Google Scholar] [CrossRef]
- Redhu, S.; Anupam, M.; Hegde, R.M. Optimal relay node selection for robust data forwarding over time-varying IoT networks. IEEE Trans. Veh. Technol. 2019, 68, 9178–9190. [Google Scholar] [CrossRef]
- Cuka, M.; Elmazi, D.; Ikeda, M.; Matsuo, K.; Barolli, L.; Takizawa, M. Application of fuzzy logic for IoT node elimination and selection in opportunistic networks: Performance evaluation of two fuzzy-based systems. World Wide Web 2021, 24, 929–940. [Google Scholar] [CrossRef]
- Lu, M.; Wudhikarn, R. Using the best-worst method to develop intellectual capital indicators in financial service company. In Proceedings of the 2020 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON), Chiang Rai, Thailand, 26–28 January 2022; IEEE: New York, NY, USA, 2022. [Google Scholar]
- Redhu, S.; Hegde, R.M. Optimal relay node selection in time-varying IoT networks using apriori contact pattern information. Ad Hoc Netw. 2020, 98, 102065. [Google Scholar] [CrossRef]
- Lai, Y.-J.; Liu, T.-Y.; Hwang, C.-L. Topsis for MODM. Eur. J. Oper. Res. 1994, 76, 486–500. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Raut, R.D.; Gardas, B.B.; Kamble, S.S. Sustainable partner selection: An integrated AHP-TOPSIS approach. Int. J. Oper. Res. 2020, 39, 205–236. [Google Scholar] [CrossRef]
- Kumar, S.; Barman, A.G. Fuzzy TOPSIS and fuzzy VIKOR in selecting green suppliers for sponge iron and steel manufacturing. Soft Comput. 2021, 25, 6505–6525. [Google Scholar] [CrossRef]
- Zheng, W.; Shen, T.; Chen, X.; Deng, P. Interpretability application of the Just-in-Time software defect prediction model. J. Syst. Softw. 2022, 188, 111245. [Google Scholar] [CrossRef]
Mechanism | Main Idea | Advantage | Disadvantage | Network | Strategy of Validation |
---|---|---|---|---|---|
Qureshi, Kumar [41] | Using the FAHP technique to assist a generic logistics benchmarking process. | -High utility | -High complexity | - | Implementation |
Wudhikarn, Chakpitak [42] | Proposing an integrated strategy for developing intellectual capital performance metrics for use in a financial shared services organization. | -High performance | -High complexity | - | Implementation |
Riaz, Qaisar [43] | Presenting an optimization problem including node selection based on the quality of service and utility maximization under power and workload restrictions. | -Reduce node selection time | -Poor load balancing | IoT-edge | Simulation |
Redhu, Anupam [44] | Providing an optimal relay node selection method for robust data forwarding in time-varying networks. | -Low latency -Lower packet loss | -High energy consumption -Low scalability | IoT | Simulation by MATLAB |
Cuka, Elmazi [45] | Proposing two Fuzzy-based systems NES and Node Selection System (NSS) for IoT. | -Low energy usage | -High complexity | IoT | Simulation |
Lu and Wudhikarn [46] | Presenting an integrated methodology for producing intellectual capital performance indicators to improve the standard IC process model. | -Low latency | -Low scalability | - | Simulation |
Shukla and Tripathi [27] | Using the RN selection technique, providing a hierarchical cluster architecture for network deployment. | -High network lifetime -Low energy consumption | -Low security | IoT | Simulation by MATLAB |
Redhu and Hegde [47] | Proposing a technique for selecting online relay nodes based on a priori knowledge of network contact patterns. | -Low latency -High dependability | -High energy consumption | IoT | Simulation |
Alagha, Singh [24] | Using selection optimization, improve the source localization process by using fewer active nodes. | -Low latency -High reliability | -Low security -Low scalability | IoT | Python |
Symbol | Description |
---|---|
d | Distance between 2 triangular functions |
x and y | Triangular functions |
w | Weight of the criteria |
R = [rij] | Fuzzy normalized decision matrix for ith alternative and jth criterion |
V | Fuzzy weighted normalized decision matrix |
Fuzzy Positive Ideal Solution (FPIS) | |
Fuzzy Negative Ideal Solution (FNIS) | |
Distance of every option from the FPIS | |
Distance of each alternative from the FNIS | |
closeness coefficient for each option |
S. N | Parameters | Term Sets | Code | Triangular Fuzzy Membership Functions | Relative Importance of the Parameters | Triangular Fuzzy Membership Functions |
---|---|---|---|---|---|---|
1 | INRE | Low | L | (1, 1, 5.5) | High | (5.5, 10, 10) |
Medium | M | (1, 5.5, 10) | ||||
High | H | (5.5, 10, 10) | ||||
2 | IoT Node’s Free Buffer Space (INFBS) | Small | S | (1, 1, 5.5) | Low | (1, 1, 5.5) |
Average | A | (1, 5.5, 10) | ||||
Big | B | (5.5, 10, 10) | ||||
3 | INDE | Near | N | (5.5, 10, 10) | Average | (1, 5.5, 10) |
Middle | Mi | (1, 5.5, 10) | ||||
Far | F | (1, 1, 5.5) |
Linguistic Terms for INSPs | Corresponding Triangular Fuzzy Membership Functions |
---|---|
EL | (1, 1, 2) |
VL | (1, 2, 3) |
Lw | (2, 3.5, 5) |
Mo | (4, 5.5, 7) |
Hi | (6, 7.5, 9) |
VH | (8, 9, 10) |
EH | (9, 10, 10) |
Weights (wj) | 5.5 | 10 | 10 | 1 | 1 | 5 | 1 | 5.5 | 10 |
---|---|---|---|---|---|---|---|---|---|
S.N. | INRE | INFBS | INDE | ||||||
1 | 1 | 1 | 5.5 | 1 | 1 | 5.5 | 5.5 | 10 | 10 |
2 | 1 | 1 | 5.5 | 1 | 5.5 | 10 | 5.5 | 10 | 10 |
3 | 1 | 1 | 5.5 | 5.5 | 10 | 10 | 5.5 | 10 | 10 |
4 | 1 | 5.5 | 10 | 1 | 1 | 5.5 | 5.5 | 10 | 10 |
5 | 1 | 5.5 | 10 | 1 | 5.5 | 10 | 5.5 | 10 | 10 |
6 | 1 | 5.5 | 10 | 5.5 | 10 | 10 | 5.5 | 10 | 10 |
7 | 5.5 | 10 | 10 | 1 | 1 | 5.5 | 5.5 | 10 | 10 |
8 | 5.5 | 10 | 10 | 1 | 5.5 | 10 | 5.5 | 10 | 10 |
9 | 5.5 | 10 | 10 | 5.5 | 10 | 10 | 5.5 | 10 | 10 |
10 | 1 | 1 | 5.5 | 1 | 1 | 5.5 | 1 | 5.5 | 10 |
11 | 1 | 1 | 5.5 | 1 | 5.5 | 10 | 1 | 5.5 | 10 |
12 | 1 | 1 | 5.5 | 5.5 | 10 | 10 | 1 | 5.5 | 10 |
13 | 1 | 5.5 | 10 | 1 | 1 | 5.5 | 1 | 5.5 | 10 |
14 | 1 | 5.5 | 10 | 1 | 5.5 | 10 | 1 | 5.5 | 10 |
15 | 1 | 5.5 | 10 | 5.5 | 10 | 10 | 1 | 5.5 | 10 |
16 | 5.5 | 10 | 10 | 1 | 1 | 5.5 | 1 | 5.5 | 10 |
17 | 5.5 | 10 | 10 | 1 | 5.5 | 10 | 1 | 5.5 | 10 |
18 | 5.5 | 10 | 10 | 5.5 | 10 | 10 | 1 | 5.5 | 10 |
19 | 1 | 1 | 5.5 | 1 | 1 | 5.5 | 1 | 1 | 5.5 |
20 | 1 | 1 | 5.5 | 1 | 5.5 | 10 | 1 | 1 | 5.5 |
21 | 1 | 1 | 5.5 | 5.5 | 10 | 10 | 1 | 1 | 5.5 |
22 | 1 | 5.5 | 10 | 1 | 1 | 5.5 | 1 | 1 | 5.5 |
23 | 1 | 5.5 | 10 | 1 | 5.5 | 10 | 1 | 1 | 5.5 |
24 | 1 | 5.5 | 10 | 5.5 | 10 | 10 | 1 | 1 | 5.5 |
25 | 5.5 | 10 | 10 | 1 | 1 | 5.5 | 1 | 1 | 5.5 |
26 | 5.5 | 10 | 10 | 1 | 5.5 | 10 | 1 | 1 | 5.5 |
27 | 5.5 | 10 | 10 | 5.5 | 10 | 10 | 1 | 1 | 5.5 |
S. N | INRE (Benefit Criterion) | INFBS (Benefit Criterion) | INDE (Cost Criterion) | INSP |
---|---|---|---|---|
1 | L | S | N | VL |
2 | L | A | N | Mo |
3 | L | B | N | VH |
4 | Me | S | N | Lw |
5 | Me | A | N | Hi |
6 | Me | B | N | EH |
7 | H | S | N | VH |
8 | H | A | N | EH |
9 | H | B | N | EH |
10 | L | S | Mi | EL |
11 | L | A | Mi | VL |
12 | L | B | Mi | Mo |
13 | Me | S | Mi | VL |
14 | Me | A | Mi | Lw |
15 | Me | B | Mi | Hi |
16 | H | S | Mi | Lw |
17 | H | A | Mi | Hi |
18 | H | B | Mi | EH |
19 | L | S | Fa | EL |
20 | L | A | Fa | EL |
21 | L | B | Fa | Lw |
22 | Me | S | Fa | EL |
23 | Me | A | Fa | VL |
24 | Me | B | Fa | Mo |
25 | H | S | Fa | VL |
26 | H | A | Fa | Mo |
27 | H | B | Fa | VH |
Weights (wj) | 5.5 | 10 | 10 | 1 | 1 | 5 | 1 | 5.5 | 10 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S.N | INRE | INFBS | INDE | INSP (ws) | ||||||||
1 | 0.1 | 0.1 | 0.55 | 0.1 | 0.1 | 0.55 | 0.1 | 0.1 | 0.1818 | 1 | 2 | 3 |
2 | 0.1 | 0.1 | 0.55 | 0.1 | 0.55 | 1 | 0.1 | 0.1 | 0.1818 | 4 | 5.5 | 7 |
3 | 0.1 | 0.1 | 0.55 | 0.55 | 1 | 1 | 0.1 | 0.1 | 0.1818 | 8 | 9 | 10 |
4 | 0.1 | 0.55 | 1 | 0.1 | 0.1 | 0.55 | 0.1 | 0.1 | 0.1818 | 2 | 3.5 | 5 |
5 | 0.1 | 0.55 | 1 | 0.1 | 0.55 | 1 | 0.1 | 0.1 | 0.1818 | 6 | 7.5 | 9 |
6 | 0.1 | 0.55 | 1 | 0.55 | 1 | 1 | 0.1 | 0.1 | 0.1818 | 9 | 10 | 10 |
7 | 0.55 | 1 | 1 | 0.1 | 0.1 | 0.55 | 0.1 | 0.1 | 0.1818 | 8 | 9 | 10 |
8 | 0.55 | 1 | 1 | 0.1 | 0.55 | 1 | 0.1 | 0.1 | 0.1818 | 9 | 10 | 10 |
9 | 0.55 | 1 | 1 | 0.55 | 1 | 1 | 0.1 | 0.1 | 0.1818 | 9 | 10 | 10 |
10 | 0.1 | 0.1 | 0.55 | 0.1 | 0.1 | 0.55 | 0.1 | 0.1818 | 1 | 1 | 1 | 2 |
11 | 0.1 | 0.1 | 0.55 | 0.1 | 0.55 | 1 | 0.1 | 0.1818 | 1 | 1 | 2 | 3 |
12 | 0.1 | 0.1 | 0.55 | 0.55 | 1 | 1 | 0.1 | 0.1818 | 1 | 4 | 5.5 | 7 |
13 | 0.1 | 0.55 | 1 | 0.1 | 0.1 | 0.55 | 0.1 | 0.1818 | 1 | 1 | 2 | 3 |
14 | 0.1 | 0.55 | 1 | 0.1 | 0.55 | 1 | 0.1 | 0.1818 | 1 | 2 | 3.5 | 5 |
15 | 0.1 | 0.55 | 1 | 0.55 | 1 | 1 | 0.1 | 0.1818 | 1 | 6 | 7.5 | 9 |
16 | 0.55 | 1 | 1 | 0.1 | 0.1 | 0.55 | 0.1 | 0.1818 | 1 | 2 | 3.5 | 5 |
17 | 0.55 | 1 | 1 | 0.1 | 0.55 | 1 | 0.1 | 0.1818 | 1 | 6 | 7.5 | 9 |
18 | 0.55 | 1 | 1 | 0.55 | 1 | 1 | 0.1 | 0.1818 | 1 | 9 | 10 | 10 |
19 | 0.1 | 0.1 | 0.55 | 0.1 | 0.1 | 0.55 | 0.1818 | 1 | 1 | 1 | 1 | 2 |
20 | 0.1 | 0.1 | 0.55 | 0.1 | 0.55 | 1 | 0.1818 | 1 | 1 | 1 | 1 | 2 |
21 | 0.1 | 0.1 | 0.55 | 0.55 | 1 | 1 | 0.1818 | 1 | 1 | 2 | 3.5 | 5 |
22 | 0.1 | 0.55 | 1 | 0.1 | 0.1 | 0.55 | 0.1818 | 1 | 1 | 1 | 1 | 2 |
23 | 0.1 | 0.55 | 1 | 0.1 | 0.55 | 1 | 0.1818 | 1 | 1 | 1 | 2 | 3 |
24 | 0.1 | 0.55 | 1 | 0.55 | 1 | 1 | 0.1818 | 1 | 1 | 4 | 5.5 | 7 |
25 | 0.55 | 1 | 1 | 0.1 | 0.1 | 0.55 | 0.1818 | 1 | 1 | 1 | 2 | 3 |
26 | 0.55 | 1 | 1 | 0.1 | 0.55 | 1 | 0.1818 | 1 | 1 | 4 | 5.5 | 7 |
27 | 0.55 | 1 | 1 | 0.55 | 1 | 1 | 0.1818 | 1 | 1 | 8 | 9 | 10 |
S.N | INRE | INFBS | INDE | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 0.55 | 2 | 16.5 | TRUE | 0.2 | 8.25 | 0.1 | 1.1 | 5.454 |
2 | 2.2 | 5.5 | 38.5 | 0.4 | 3.025 | 35 | 0.4 | 3.025 | 12.727 |
3 | 4.4 | 9 | 55 | 4.4 | 9 | 50 | 0.8 | 4.95 | 18.182 |
4 | 1.1 | 19.25 | 50 | 0.2 | 0.35 | 13.75 | 0.2 | 1.925 | 9.091 |
5 | 3.3 | 41.25 | 90 | 0.6 | 4.125 | 45 | 0.6 | 4.125 | 16.364 |
6 | 4.95 | 55 | 100 | 4.95 | 10 | 50 | 0.9 | 5.5 | 18.182 |
7 | 24.2 | 90 | 100 | 0.8 | 0.9 | 27.5 | 0.8 | 4.95 | 18.182 |
8 | 27.225 | 100 | 100 | 0.9 | 5.5 | 50 | 0.9 | 5.5 | 18.182 |
9 | 27.225 | 100 | 100 | 4.95 | 10 | 50 | 0.9 | 5.5 | 18.182 |
10 | 0.55 | 1 | 11 | 0.1 | 0.1 | 5.5 | 0.1 | 1 | 20 |
11 | 0.55 | 2 | 16.5 | 0.1 | 1.1 | 15 | 0.1 | 2 | 30 |
12 | 2.2 | 5.5 | 38.5 | 2.2 | 5.5 | 35 | 0.4 | 5.5 | 70 |
13 | 0.55 | 11 | 30 | 0.1 | 0.2 | 8.25 | 0.1 | 2 | 30 |
14 | 1.1 | 19.25 | 50 | 0.2 | 1.925 | 25 | 0.2 | 3.5 | 50 |
15 | 3.3 | 41.25 | 90 | 3.3 | 7.5 | 45 | 0.6 | 7.5 | 90 |
16 | 6.05 | 35 | 50 | 0.2 | 0.35 | 13.75 | 0.2 | 3.5 | 50 |
17 | 18.15 | 75 | 90 | 0.6 | 4.125 | 45 | 0.6 | 7.5 | 90 |
18 | 27.225 | 100 | 100 | 4.95 | 10 | 50 | 0.9 | 10 | 100 |
19 | 0.55 | 1 | 11 | 0.1 | 0.1 | 5.5 | 0.182 | 5.5 | 20 |
20 | 0.55 | 1 | 11 | 0.1 | 0.55 | 10 | 0.182 | 5.5 | 20 |
21 | 1.1 | 3.5 | 27.5 | 1.1 | 3.5 | 25 | 0.364 | 19.25 | 50 |
22 | 0.55 | 5.5 | 20 | 0.1 | 0.1 | 5.5 | 0.182 | 5.5 | 20 |
23 | 0.55 | 11 | 30 | 0.1 | 1.1 | 15 | 0.182 | 11 | 30 |
24 | 2.2 | 30.25 | 70 | 2.2 | 5.5 | 35 | 0.727273 | 30.25 | 70 |
25 | 3.025 | 20 | 30 | 0.1 | 0.2 | 8.25 | 0.182 | 11 | 30 |
26 | 12.1 | 55 | 70 | 0.4 | 3.025 | 35 | 0.727 | 30.25 | 70 |
27 | 24.2 | 90 | 100 | 4.4 | 9 | 50 | 1.454 | 49.5 | 100 |
27.225 | 100 | 100 | 4.95 | 10 | 50 | 1.4545 | 49.5 | 100 | |
0.55 | 1 | 11 | 0.1 | 0.1 | 5.5 | 0.1 | 1 | 5.454 |
S. N | Distance from FPIS | Distance from FNIS | CCi | Ranking | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 75.912 | 24.864 | 61.328 | 162.104 | 3.227 | 1.672 | 0.058 | 4.957 | 0.029671 | 27 |
2 | 66.680 | 9.905 | 57.089 | 133.675 | 16.116 | 17.116 | 4.362 | 37.595 | 0.219506 | 17 |
3 | 60.075 | 0.659 | 53.788 | 114.521 | 25.915 | 26.318 | 7.704 | 59.938 | 0.343564 | 14 |
4 | 56.871 | 21.831 | 59.244 | 137.946 | 24.862 | 4.766 | 2.167 | 31.795 | 0.187314 | 20 |
5 | 37.076 | 5.113 | 54.938 | 97.128 | 51.214 | 22.925 | 6.558 | 80.697 | 0.453801 | 11 |
6 | 28.990 | 0.000 | 53.636 | 82.626 | 60.156 | 26.469 | 7.808 | 94.433 | 0.533342 | 10 |
7 | 6.032 | 14.216 | 53.788 | 74.036 | 73.940 | 12.717 | 7.704 | 94.361 | 0.56035 | 8 |
8 | 0.000 | 3.495 | 53.636 | 57.132 | 78.387 | 25.885 | 7.808 | 112.079 | 0.662365 | 5 |
9 | 0.000 | 0.000 | 53.636 | 53.636 | 78.387 | 26.469 | 7.808 | 112.663 | 0.677472 | 4 |
10 | 78.387 | 26.469 | 54.019 | 158.874 | 0.000 | 0.000 | 8.398 | 8.398 | 0.050204 | 26 |
11 | 75.912 | 21.038 | 48.847 | 145.796 | 3.227 | 5.515 | 14.183 | 22.926 | 0.135879 | 22 |
12 | 66.680 | 9.180 | 30.752 | 106.612 | 16.116 | 17.357 | 37.356 | 70.830 | 0.399171 | 12 |
13 | 67.163 | 24.917 | 48.847 | 140.927 | 12.396 | 1.589 | 14.183 | 28.168 | 0.166581 | 21 |
14 | 56.871 | 15.414 | 39.233 | 111.518 | 24.862 | 11.308 | 25.759 | 61.929 | 0.357047 | 13 |
15 | 37.076 | 3.365 | 24.931 | 65.373 | 51.214 | 23.276 | 48.957 | 123.447 | 0.653781 | 6 |
16 | 48.899 | 21.831 | 39.233 | 109.962 | 30.040 | 4.766 | 25.759 | 60.565 | 0.355162 | 14 |
17 | 16.405 | 5.113 | 24.931 | 46.450 | 63.316 | 22.925 | 48.957 | 135.199 | 0.744288 | 3 |
18 | 0.000 | 0.000 | 22.808 | 22.808 | 78.387 | 26.469 | 54.835 | 159.690 | 0.875025 | 2 |
19 | 78.387 | 26.469 | 52.718 | 157.574 | 0.000 | 0.000 | 8.791 | 8.791 | 0.05284 | 25 |
20 | 78.387 | 23.894 | 52.718 | 155.000 | 0.000 | 2.611 | 8.791 | 11.402 | 0.068519 | 24 |
21 | 71.300 | 15.078 | 33.745 | 120.124 | 9.640 | 11.443 | 27.793 | 48.876 | 0.28921 | 16 |
22 | 73.125 | 26.469 | 52.718 | 152.312 | 5.809 | 0.000 | 8.791 | 14.600 | 0.087472 | 23 |
23 | 67.163 | 21.038 | 46.130 | 134.330 | 12.396 | 5.515 | 15.302 | 33.214 | 0.198239 | 18 |
24 | 46.157 | 9.180 | 20.584 | 75.920 | 38.032 | 17.357 | 40.915 | 96.304 | 0.559177 | 9 |
25 | 62.943 | 24.917 | 46.130 | 133.991 | 15.579 | 1.589 | 15.302 | 32.470 | 0.195062 | 19 |
26 | 32.423 | 9.905 | 20.584 | 62.912 | 46.656 | 17.116 | 40.915 | 104.687 | 0.624627 | 7 |
27 | 6.032 | 0.659 | 0.000 | 6.691 | 73.940 | 26.318 | 61.354 | 161.612 | 0.960246 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gardas, B.B.; Heidari, A.; Navimipour, N.J.; Unal, M. A Fuzzy-Based Method for Objects Selection in Blockchain-Enabled Edge-IoT Platforms Using a Hybrid Multi-Criteria Decision-Making Model. Appl. Sci. 2022, 12, 8906. https://doi.org/10.3390/app12178906
Gardas BB, Heidari A, Navimipour NJ, Unal M. A Fuzzy-Based Method for Objects Selection in Blockchain-Enabled Edge-IoT Platforms Using a Hybrid Multi-Criteria Decision-Making Model. Applied Sciences. 2022; 12(17):8906. https://doi.org/10.3390/app12178906
Chicago/Turabian StyleGardas, Bhaskar B., Arash Heidari, Nima Jafari Navimipour, and Mehmet Unal. 2022. "A Fuzzy-Based Method for Objects Selection in Blockchain-Enabled Edge-IoT Platforms Using a Hybrid Multi-Criteria Decision-Making Model" Applied Sciences 12, no. 17: 8906. https://doi.org/10.3390/app12178906
APA StyleGardas, B. B., Heidari, A., Navimipour, N. J., & Unal, M. (2022). A Fuzzy-Based Method for Objects Selection in Blockchain-Enabled Edge-IoT Platforms Using a Hybrid Multi-Criteria Decision-Making Model. Applied Sciences, 12(17), 8906. https://doi.org/10.3390/app12178906