Adaptive Salp Swarm Algorithm for Optimization of Geotechnical Structures
Abstract
:1. Introduction
2. Salp Swarm Algorithm
Algorithm 1. Salp swarm algorithm |
Initialize the salp population xi (i = 1, 2, …, n) considering and while t ≤ tmax Calculate the fitness of each search agent (salp) Put the best search agent as FP (Food position) Update r1 by Equation (3) for each salp (xi) if i = 1 Update the position of the leading salp by Equation (2) else Update the position of the follower salp by Equation (4) end end Amend the salps based on the upper and lower bounds of variables Calculate the fitness of each search agent FP Update the food position t = t + 1 end return the food position FP and its best fitness |
3. Adaptive Salp Swarm Algorithm
4. Model Verification
5. Foundation Optimization
5.1. Objective Function
5.2. Design Variables
5.3. Design Constraints
6. Retaining Structure Optimization
6.1. Objective Functions
6.2. Design Variables
6.3. Design Constraints
7. Design Examples
7.1. Spread Footing Optimization
7.2. Retaining Structure Optimization
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, Y.M.; Li, L.; Chi, S.-C.; Wei, W. Particle swarm optimization algorithm for the location of the critical non-circular failure surface in two-dimensional slope stability analysis. Comput. Geotech. 2007, 34, 92–103. [Google Scholar] [CrossRef]
- Gandomi, A.; Kashani, A.; Zeighami, F. Retaining wall optimization using interior search algorithm with different bound constraint handling. Int. J. Numer. Anal. Methods Geomech. 2017, 41, 1304–1331. [Google Scholar] [CrossRef]
- Khajehzadeh, M.; Taha, M.R.; El-Shafie, A.; Eslami, M. Search for critical failure surface in slope stability analysis by gravitational search algorithm. Int. J. Phys. Sci. 2011, 6, 5012–5021. [Google Scholar]
- Kashani, A.R.; Gandomi, M.; Camp, C.V.; Gandomi, A.H. Optimum design of shallow foundation using evolutionary algorithms. Soft Comput. 2020, 24, 6809–6833. [Google Scholar] [CrossRef]
- Almazán-Covarrubias, J.H.; Peraza-Vázquez, H.; Peña-Delgado, A.F.; García-Vite, P.M. An Improved Dingo Optimization Algorithm Applied to SHE-PWM Modulation Strategy. Appl. Sci. 2022, 12, 992. [Google Scholar] [CrossRef]
- Agresta, A.; Baioletti, M.; Biscarini, C.; Caraffini, F.; Milani, A.; Santucci, V. Using Optimisation Meta-Heuristics for the Roughness Estimation Problem in River Flow Analysis. Appl. Sci. 2021, 11, 10575. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Kashani, A.R. Construction cost minimization of shallow foundation using recent swarm intelligence techniques. IEEE Trans. Ind. Inform. 2017, 14, 1099–1106. [Google Scholar] [CrossRef]
- Nigdeli, S.M.; Bekdaş, G.; Yang, X.-S. Metaheuristic optimization of reinforced concrete footings. KSCE J. Civ. Eng. 2018, 22, 4555–4563. [Google Scholar] [CrossRef] [Green Version]
- Eslami, M.; Shareef, H.; Mohamed, A.; Khajehzadeh, M. Optimal location of PSS using improved PSO with chaotic sequence. In Proceedings of the International Conference on Electrical, Control and Computer Engineering 2011 (InECCE), Kuantan, Malaysia, 21–22 June 2011; pp. 253–258. [Google Scholar]
- Delice, Y.; Aydoğan, E.K.; Özcan, U.; İlkay, M.S. A modified particle swarm optimization algorithm to mixed-model two-sided assembly line balancing. J. Intell. Manuf. 2017, 28, 23–36. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, L.; Lansivaara, T.; Chi, S.; Sun, Y. An improved harmony search minimization algorithm using different slip surface generation methods for slope stability analysis. Eng. Optim. 2008, 40, 95–115. [Google Scholar] [CrossRef]
- Khajehzadeh, M.; Taha, M.R.; Eslami, M. Multi-objective optimisation of retaining walls using hybrid adaptive gravitational search algorithm. Civ. Eng. Environ. Syst. 2014, 31, 229–242. [Google Scholar] [CrossRef]
- Ji, Y.; Tu, J.; Zhou, H.; Gui, W.; Liang, G.; Chen, H.; Wang, M. An adaptive chaotic sine cosine algorithm for constrained and unconstrained optimization. Complexity 2020, 2020, 6084917. [Google Scholar] [CrossRef]
- Hegazy, A.E.; Makhlouf, M.; El-Tawel, G.S. Improved salp swarm algorithm for feature selection. J. King Saud Univ. Comput. Inf. Sci. 2020, 32, 335–344. [Google Scholar] [CrossRef]
- Gao, W. Modified ant colony optimization with improved tour construction and pheromone updating strategies for traveling salesman problem. Soft Comput. 2021, 25, 3263–3289. [Google Scholar] [CrossRef]
- Duan, D.; Poursoleiman, R. Modified teaching-learning-based optimization by orthogonal learning for optimal design of an electric vehicle charging station. Util. Policy 2021, 72, 101253. [Google Scholar] [CrossRef]
- Li, L.-L.; Liu, Z.-F.; Tseng, M.-L.; Zheng, S.-J.; Lim, M.K. Improved tunicate swarm algorithm: Solving the dynamic economic emission dispatch problems. Appl. Soft Comput. 2021, 108, 107504. [Google Scholar] [CrossRef]
- Ali, M.H.; Kamel, S.; Hassan, M.H.; Tostado-Véliz, M.; Zawbaa, H.M. An improved wild horse optimization algorithm for reliability based optimal DG planning of radial distribution networks. Energy Rep. 2022, 8, 582–604. [Google Scholar] [CrossRef]
- Goh, A. Search for critical slip circle using genetic algorithms. Civ. Eng. Environ. Syst. 2000, 17, 181–211. [Google Scholar] [CrossRef]
- Zolfaghari, A.R.; Heath, A.C.; McCombie, P.F. Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis. Comput. Geotech. 2005, 32, 139–152. [Google Scholar] [CrossRef]
- Chan, C.M.; Zhang, L.; Ng, J.T. Optimization of pile groups using hybrid genetic algorithms. J. Geotech. Geoenviron. Eng. 2009, 135, 497–505. [Google Scholar] [CrossRef]
- Kahatadeniya, K.S.; Nanakorn, P.; Neaupane, K.M. Determination of the critical failure surface for slope stability analysis using ant colony optimization. Eng. Geol. 2009, 108, 133–141. [Google Scholar] [CrossRef]
- Khajehzadeh, M.; Taha, M.R.; El-Shafie, A.; Eslami, M. Modified particle swarm optimization for optimum design of spread footing and retaining wall. J. Zhejiang Univ. Sci. A 2011, 12, 415–427. [Google Scholar] [CrossRef]
- Camp, C.V.; Akin, A. Design of retaining walls using big bang–big crunch optimization. J. Struct. Eng. 2012, 138, 438–448. [Google Scholar] [CrossRef]
- Camp, C.V.; Assadollahi, A. CO2 and cost optimization of reinforced concrete footings using a hybrid big bang-big crunch algorithm. Struct. Multidiscip. Optim. 2013, 48, 411–426. [Google Scholar] [CrossRef]
- Khajehzadeh, M.; Taha, M.R.; Eslami, M. A new hybrid firefly algorithm for foundation optimization. Natl. Acad. Sci. Lett. 2013, 36, 279–288. [Google Scholar] [CrossRef]
- Kang, F.; Li, J.; Ma, Z. An artificial bee colony algorithm for locating the critical slip surface in slope stability analysis. Eng. Optim. 2013, 45, 207–223. [Google Scholar] [CrossRef]
- Kashani, A.R.; Gandomi, A.H.; Mousavi, M. Imperialistic competitive algorithm: A metaheuristic algorithm for locating the critical slip surface in 2-dimensional soil slopes. Geosci. Front. 2016, 7, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Gordan, B.; Jahed Armaghani, D.; Hajihassani, M.; Monjezi, M. Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Eng. Comput. 2016, 32, 85–97. [Google Scholar] [CrossRef]
- Aydogdu, I. Cost optimization of reinforced concrete cantilever retaining walls under seismic loading using a biogeography-based optimization algorithm with Levy flights. Eng. Optim. 2017, 49, 381–400. [Google Scholar] [CrossRef]
- Gandomi, A.; Kashani, A.; Mousavi, M.; Jalalvandi, M. Slope stability analysis using evolutionary optimization techniques. Int. J. Numer. Anal. Methods Geomech. 2017, 41, 251–264. [Google Scholar] [CrossRef]
- Mahdiyar, A.; Hasanipanah, M.; Armaghani, D.J.; Gordan, B.; Abdullah, A.; Arab, H.; Majid, M.Z.A. A Monte Carlo technique in safety assessment of slope under seismic condition. Eng. Comput. 2017, 33, 807–817. [Google Scholar] [CrossRef]
- Chen, H.; Asteris, P.G.; Jahed Armaghani, D.; Gordan, B.; Pham, B.T. Assessing dynamic conditions of the retaining wall: Developing two hybrid intelligent models. Appl. Sci. 2019, 9, 1042. [Google Scholar] [CrossRef] [Green Version]
- Koopialipoor, M.; Jahed Armaghani, D.; Hedayat, A.; Marto, A.; Gordan, B. Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions. Soft Comput. 2019, 23, 5913–5929. [Google Scholar] [CrossRef]
- Yang, H.; Koopialipoor, M.; Armaghani, D.J.; Gordan, B.; Khorami, M.; Tahir, M. Intelligent design of retaining wall structures under dynamic conditions. Steel Compos. Struct. Int. J. 2019, 31, 629–640. [Google Scholar]
- Xu, C.; Gordan, B.; Koopialipoor, M.; Armaghani, D.J.; Tahir, M.; Zhang, X. Improving performance of retaining walls under dynamic conditions developing an optimized ANN based on ant colony optimization technique. IEEE Access 2019, 7, 94692–94700. [Google Scholar] [CrossRef]
- Himanshu, N.; Burman, A. Determination of critical failure surface of slopes using particle swarm optimization technique considering seepage and seismic loading. Geotech. Geol. Eng. 2019, 37, 1261–1281. [Google Scholar] [CrossRef]
- Kalemci, E.N.; İkizler, S.B.; Dede, T.; Angın, Z. Design of reinforced concrete cantilever retaining wall using Grey wolf optimization algorithm. Structures 2020, 23, 245–253. [Google Scholar] [CrossRef]
- Kaveh, A.; Hamedani, K.B.; Bakhshpoori, T. Optimal design of reinforced concrete cantilever retaining walls utilizing eleven meta-heuristic algorithms: A comparative study. Period. Polytech. Civ. Eng. 2020, 64, 156–168. [Google Scholar] [CrossRef]
- Sharma, S.; Saha, A.K.; Lohar, G. Optimization of weight and cost of cantilever retaining wall by a hybrid metaheuristic algorithm. Eng. Comput. 2021, 1–27. [Google Scholar] [CrossRef]
- Kaveh, A.; Seddighian, M.R. Optimization of Slope Critical Surfaces Considering Seepage and Seismic Effects Using Finite Element Method and Five Meta-Heuristic Algorithms. Period. Polytech. Civ. Eng. 2021, 65, 425–436. [Google Scholar] [CrossRef]
- Temur, R. Optimum design of cantilever retaining walls under seismic loads using a hybrid TLBO algorithm. Geomech. Eng. 2021, 24, 237–251. [Google Scholar]
- Li, S.; Wu, L. An improved salp swarm algorithm for locating critical slip surface of slopes. Arab. J. Geosci. 2021, 14, 359. [Google Scholar] [CrossRef]
- Khajehzadeh, M.; Keawsawasvong, S.; Sarir, P.; Khailany, D.K. Seismic Analysis of Earth Slope Using a Novel Sequential Hybrid Optimization Algorithm. Period. Polytech. Civ. Eng. 2022, 66, 355–366. [Google Scholar] [CrossRef]
- Arabali, A.; Khajehzadeh, M.; Keawsawasvong, S.; Mohammed, A.H.; Khan, B. An Adaptive Tunicate Swarm Algorithm for Optimization of Shallow Foundation. IEEE Access 2022, 10, 39204–39219. [Google Scholar] [CrossRef]
- Khajehzadeh, M.; Keawsawasvong, S.; Nehdi, M.L. Effective hybrid soft computing approach for optimum design of shallow foundations. Sustainability 2022, 14, 1847. [Google Scholar] [CrossRef]
- Khajehzadeh, M.; Kalhor, A.; Tehrani, M.S.; Jebeli, M. Optimum design of retaining structures under seismic loading using adaptive sperm swarm optimization. Struct. Eng. Mech. 2022, 81, 93–102. [Google Scholar]
- Kashani, A.R.; Camp, C.V.; Azizi, K.; Rostamian, M. Multi-objective optimization of mechanically stabilized earth retaining wall using evolutionary algorithms. Int. J. Numer. Anal. Methods Geomech. 2022, 46, 1433–1465. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, F.; Han, Y.; Cui, Y. An opposition-based chaotic salp swarm algorithm for global optimization. IEEE Access 2020, 8, 36485–36501. [Google Scholar] [CrossRef]
- Zervoudakis, K.; Tsafarakis, S. A mayfly optimization algorithm. Comput. Ind. Eng. 2020, 145, 106559. [Google Scholar] [CrossRef]
- Kaur, S.; Awasthi, L.K.; Sangal, A.; Dhiman, G. Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Yang, X.S. Firefly algorithms for multimodal optimization. Lect. Notes Comput. Sci. 2009, 5792, 169–178. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar] [CrossRef]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
- Toz, M. Chaos-based Vortex Search algorithm for solving inverse kinematics problem of serial robot manipulators with offset wrist. Appl. Soft Comput. 2020, 89, 106074. [Google Scholar] [CrossRef]
- ACI Committee 318. ACI 318-11 Building Code Requirements for Structural Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2011. [Google Scholar]
- Wang, Y.; Kulhawy, F.H. Economic design optimization of foundations. J. Geotech. Geoenviron. Eng. 2008, 134, 1097–1105. [Google Scholar] [CrossRef]
- Yepes, V.; Gonzalez-Vidosa, F.; Alcala, J.; Villalba, P. CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. J. Comput. Civ. Eng. 2012, 26, 378–386. [Google Scholar] [CrossRef] [Green Version]
- Bowles, J. Foundation Analysis and Design; McGraw-Hill: New York, NY, USA, 1982. [Google Scholar]
Author, Year | Reference | Optimization Method | Application |
---|---|---|---|
Goh, 2000 | [19] | Genetic algorithm | Locate the critical circular slip surface in slope stability analysis |
Zolfaghari, Heath, and McCombie, 2005 | [20] | Genetic algorithm | Search for critical noncircular failure surface in slope stability analysis |
Cheng et al., 2007 | [1] | Particle swarm optimization | Analyze two-dimensional slope stability |
Cheng et al., 2008 | [11] | Improved harmony search algorithm | Analyze slope stability |
Chan, Zhang, and Ng, 2009 | [21] | Hybrid genetic algorithms | Optimize pile groups |
Kahatadeniya, Nanakorn, and Neaupane, 2009 | [22] | Ant colony optimization | Determine the critical failure surface of earth slope |
Khajehzadeh et al., 2011 | [23] | Modified particle swarm optimization | Optimize design of spread footing and retaining wall |
Camp and Akin, 2012 | [24] | Big bang–big crunch optimization | Optimize design of retaining wall |
Camp and Assadollahi, 2013 | [25] | Hybrid big bang–big crunch algorithm | Optimize CO2 and cost of reinforced concrete footings |
Khajehzadeh et al., 2013 | [26] | Hybrid firefly algorithm | Multi-objective optimization of foundations |
Kang, Li, and Ma, 2013 | [27] | Artificial bee colony algorithm | Locate the critical slip surface in slope stability analysis |
Khajehzadeh, Taha, and Eslami, 2014 | [12] | Hybrid adaptive gravitational search algorithm | Multi-objective optimization of retaining walls |
Kashani, Gandomi, and Mousavi, 2016 | [28] | Imperialistic competitive algorithm | Locate the critical slip surface of earth slope |
Gordan et al., 2016 | [29] | Particle swarm optimization and neural network | Predict seismic slope stability |
Gandomi and Kashani, 2017 | [7] | Accelerated particle swarm optimization, firefly algorithm, Levy-flight krill herd, whale optimization algorithm, ant lion optimizer, grey wolf optimizer, moth–flame optimization algorithm, and teaching–learning-based optimization algorithm | Minimize construction cost of shallow foundation |
Aydogdu, 2017 | [30] | Biogeography-based optimization algorithm | Optimize cost of retaining wall |
Gandomi et al., 2017 | [31] | Genetic algorithm, differential evolution, evolutionary strategy, and biogeography-based optimization | Analyze slope stability |
Mahdiyar et al., 2017 | [32] | Monte Carlo simulation technique | Assess safety of slope |
Gandomi, Kashani, and Zeighami, 2017 | [2] | Interior search algorithm | Optimize retaining wall |
Chen et al., 2019 | [33] | Hybrid imperialist competitive algorithm and artificial neural network | Predict safety factor values of retaining walls |
Koopialipoor et al., 2019 | [34] | Imperialist competitive algorithm, genetic algorithm, particle swarm optimization, and artificial bee colony combined with artificial neural network | Predict slope stability under static and dynamic conditions |
Yang et al., 2019 | [35] | Neural network system | Design retaining wall structures based on smart and optimal systems |
Xu et al., 2019 | [36] | Hybrid artificial neural network and ant colony optimization | Assess dynamic conditions of retaining wall structures |
Himanshu and Burman, 2019 | [37] | Particle swarm optimization | Determine critical failure surface considering seepage and seismic loading |
Kalemci et al., 2020 | [38] | Grey wolf optimization algorithm | Optimize retaining walls |
Kaveh, Hamedani, and Bakhshpoori, 2020 | [39] | Eleven metaheuristic algorithms | Optimize design of cantilever retaining walls |
Kashani et al., 2020 | [4] | Differential algorithm, evolution strategy, and biogeography-based optimization algorithm | Optimize design of shallow foundation |
Sharma, Saha, and Lohar, 2021 | [40] | Hybrid butterfly and symbiosis organism search algorithm | Optimize retaining wall |
Kaveh and Seddighian, 2021 | [41] | Black hole mechanics optimization, firefly algorithm, evolution strategy, and sine cosine algorithm | Optimize slope critical surfaces considering seepage and seismic effects |
Temur, 2021 | [42] | Teaching–learning-based optimization | Optimize retaining wall |
Li and Wu, 2021 | [43] | Improved salp swarm algorithm | Locate critical slip surface of slopes |
Khajehzadeh, Keawsawasvong, et al., 2022 | [44] | Hybrid tunicate swarm algorithm and pattern search | Seismic analysis of earth slope |
Arabali et al., 2022 | [45] | Adaptive tunicate swarm algorithm | Optimize construction cost and CO2 emissions of shallow foundation |
Khajehzadeh, Keawsawasvong, and Nehdi, 2022 | [46] | Artificial neural network combined with rat swarm optimization | Predict the ultimate bearing capacity of shallow foundations and their optimum design |
Khajehzadeh, Kalhor, et al., 2022 | [47] | Adaptive sperm swarm optimization | Optimize design of retaining structures under seismic load |
Kashani et al., 2022 | [48] | Multi-objective particle swarm optimization, multi-objective multiverse optimization and Pareto envelope-based selection algorithm | Multi-objective optimization of mechanically stabilized earth retaining wall |
Function | Range | n (Dim) | |
---|---|---|---|
0 | 30 | ||
0 | 30 | ||
0 | 30 | ||
0 | 30 | ||
0 | 30 | ||
0 | 30 | ||
0 | 30 |
Function | Range | n (Dim) | |
---|---|---|---|
428.9829 × n | 30 | ||
0 | 30 | ||
0 | 30 | ||
0 | 30 | ||
0 | 30 | ||
0 | 30 |
F | Index | ASSA | SSA | GA | PSO | FA | MVO | TSA |
---|---|---|---|---|---|---|---|---|
F1 | Mean | 2.23 × 10−227 | 3.29 × 10−7 | 1.95 × 10−12 | 4.98 × 10−9 | 7.11 × 10−3 | 2.81 × 10−1 | 8.31 × 10−56 |
Std. | 0.00 | 5.92 × 10−7 | 2.01 × 10−11 | 1.40 × 10−8 | 3.21 × 10−3 | 1.11 × 10−1 | 1.02 × 10−58 | |
F2 | Mean | 5.96 × 10−105 | 1.911 | 6.53 × 10−18 | 7.29 × 10−4 | 4.34 × 10−1 | 3.96 × 10−1 | 8.36 × 10−35 |
Std. | 1.91 × 10−104 | 1.614 | 5.10 × 10−17 | 1.84 × 10−3 | 1.84 × 10−1 | 1.41 × 10−1 | 9.86 × 10−35 | |
F3 | Mean | 3.27 × 10−180 | 1.50 × 103 | 7.70 × 10−10 | 14.0 | 1.66 × 103 | 43.1 | 1.51 × 10−14 |
Std. | 0.00 | 7.07 × 102 | 7.36 × 10−9 | 7.13 | 6.72 × 102 | 8.97 | 6.55 × 10−14 | |
F4 | Mean | 1.56 × 10−104 | 2.44 × 10−5 | 91.7 | 6.00 × 10−1 | 1.11 × 10−1 | 8.80 × 10−1 | 1.95 × 10−5 |
Std. | 3.47 × 10−105 | 1.89 × 10−5 | 56.7 | 1.72 × 10−1 | 4.75 × 10−2 | 2.50 × 10−1 | 4.49 × 10−4 | |
F5 | Mean | 2.56 × 10−1 | 1.36 × 102 | 5.57 × 102 | 49.3 | 79.7 | 1.18 × 102 | 28.4 |
Std. | 4.78 × 10−1 | 1.54 × 102 | 41.6 | 38.9 | 73.9 | 1.43 × 102 | 8.40 × 10−1 | |
F6 | Mean | 3.76 × 10−7 | 5.72 × 10−7 | 3.15 × 10−1 | 6.92 × 10−2 | 6.94 × 10−3 | 2.02 × 10−2 | 3.67 |
Std. | 1.23 × 10−7 | 2.44 × 10−7 | 9.98 × 10−2 | 2.87 × 10−2 | 3.61 × 10−3 | 7.43 × 10−3 | 3.35 × 10−1 | |
F7 | Mean | 2.71 × 10−6 | 8.82 × 10−5 | 6.79 × 10−4 | 8.94 × 10−2 | 6.62 × 10−2 | 5.24 × 10−2 | 1.80 × 10−3 |
Std. | 2.33 × 10−6 | 6.94 × 10−5 | 3.29 × 10−3 | 2.06 × 10−2 | 4.23 × 10−2 | 1.37 × 10−2 | 4.62 × 10−4 |
F | Index | ASSA | SSA | GA | PSO | FA | MVO | TSA |
---|---|---|---|---|---|---|---|---|
F8 | Mean | –1.21 × 104 | –7.46 × 103 | –5.11 × 103 | –6.01 × 103 | –5.85 × 103 | –6.92 × 103 | –7.89 × 103 |
Std. | 4.89 × 102 | 6.34 × 102 | 4.37 × 102 | 1.30 × 103 | 1.61 × 103 | 9.19 × 102 | 599.2 | |
F9 | Mean | 0.00 | 55.45 | 1.23 × 10−1 | 47.2 | 15.1 | 1.01× 102 | 151.4 |
Std. | 0.00 | 18.27 | 41.1 | 10.3 | 12.5 | 18.9 | 35.87 | |
F10 | Mean | 8.88 × 10−16 | 2.84 | 5.31 × 10−11 | 3.86 × 10−2 | 4.58 × 10−2 | 1.15 | 2.409 |
Std. | 0.00 | 6.58 × 10−1 | 1.11 × 10−10 | 2.11 × 10−1 | 1.20 × 10−2 | 7.87 × 10−1 | 1.392 | |
F11 | Mean | 0.00 | 2.29 × 10−1 | 3.31 × 10−6 | 5.50 × 10−3 | 4.23 × 10−3 | 5.74 × 10−1 | 7.7 × 10−3 |
Std. | 0.00 | 1.29 × 10−1 | 4.23 × 10−5 | 7.39 × 10−3 | 1.29 × 10−3 | 1.12 × 10−1 | 5.7 × 10−3 | |
F12 | Mean | 2.31 × 10−5 | 6.82 | 9.16 × 10−8 | 1.05 × 10−2 | 3.13 × 10−4 | 1.27 | 6.373 |
Std. | 2.46 × 10−5 | 2.72 | 4.88 × 10−7 | 2.06 × 10−2 | 1.76 × 10−4 | 1.02 | 3.458 | |
F13 | Mean | 1.44 × 10−4 | 21.31 | 6.39 × 10−2 | 4.03 × 10−1 | 2.08 × 10−3 | 6.60 × 10−2 | 2.897 |
Std. | 1.95 × 10−4 | 16.99 | 4.49 × 10−2 | 5.39 × 10−1 | 9.62 × 10−4 | 4.33 × 10−2 | 6.43 × 10−1 |
Fun. | Index | ASSA vs. SSA | ASSA vs. GA | ASSA vs. PSO | ASSA vs. FA | ASSA vs. MVO | ASSA vs. TSA |
---|---|---|---|---|---|---|---|
F1 | p-val. | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 |
R+ | 465 | 465 | 465 | 465 | 465 | 465 | |
R− | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Win | ASSA | ASSA | ASSA | ASSA | ASSA | ASSA | |
F2 | p-val. | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 |
R+ | 465 | 465 | 465 | 465 | 465 | 465 | |
R− | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Win | ASSA | ASSA | ASSA | ASSA | ASSA | ASSA | |
F3 | p-val. | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 |
R+ | 465 | 465 | 465 | 465 | 465 | 465 | |
R− | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Win | ASSA | ASSA | ASSA | ASSA | ASSA | ASSA | |
F4 | p-val. | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 |
R+ | 465 | 465 | 465 | 465 | 465 | 465 | |
R− | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Win | ASSA | ASSA | ASSA | ASSA | ASSA | ASSA | |
F5 | p-val. | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 |
R+ | 465 | 465 | 465 | 465 | 465 | 465 | |
R− | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Win | ASSA | ASSA | ASSA | ASSA | ASSA | ASSA | |
F6 | p-val. | 6.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 |
R+ | 453 | 465 | 465 | 465 | 465 | 465 | |
R− | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Win | ASSA | ASSA | ASSA | ASSA | ASSA | ASSA | |
F7 | p-val. | 6.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 |
R+ | 453 | 465 | 465 | 465 | 465 | 465 | |
R− | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Win | ASSA | ASSA | ASSA | ASSA | ASSA | ASSA | |
F8 | p-val. | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 |
R+ | 465 | 465 | 465 | 465 | 465 | 465 | |
R− | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Win | ASSA | ASSA | ASSA | ASSA | ASSA | ASSA | |
F9 | p-val. | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 |
R+ | 465 | 465 | 465 | 465 | 465 | 465 | |
R− | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Win | ASSA | ASSA | ASSA | ASSA | ASSA | ASSA | |
F10 | p-val. | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 |
R+ | 465 | 465 | 465 | 465 | 465 | 465 | |
R− | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Win | ASSA | ASSA | ASSA | ASSA | ASSA | ASSA | |
F11 | p-val. | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 |
R+ | 465 | 465 | 465 | 465 | 465 | 465 | |
R− | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Win | ASSA | ASSA | ASSA | ASSA | ASSA | ASSA | |
F12 | p-val. | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 |
R+ | 465 | 0.0 | 465 | 465 | 465 | 465 | |
R− | 0.0 | 465 | 0.0 | 0.0 | 0.0 | 0.0 | |
Win | ASSA | GA | ASSA | ASSA | ASSA | ASSA | |
F13 | p-val. | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 | 2.0 × 10−6 |
R+ | 465 | 465 | 465 | 465 | 465 | 465 | |
R− | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Win | ASSA | ASSA | ASSA | ASSA | ASSA | ASSA | |
Superior /Inferior/NA | 13/0/0 | 12/1/0 | 13/0/0 | 13/0/0 | 13/0/0 | 13/0/0 |
Item | Symbol | Unit | Unit Cost (USD) |
---|---|---|---|
Excavation | Ce | m3 | 25.16 |
Formwork | Cf | m2 | 51.97 |
Reinforcement | Cs | kg | 2.16 |
Concrete | Cc | m3 | 173.96 |
Backfill | Cb | m3 | 3.97 |
Failure Mode | Constraint |
---|---|
Bearing capacity | |
Settlement of foundation | |
Eccentricity | e ≤ Y1/6 |
One-way (wide beam) shear | |
Two-way (punching) shear | |
Bending moment | |
Minimum and maximum reinforcements | |
Limitation of depth of embedment | 0.5 ≤ Y4 ≤ 2 |
Parameter | Definition |
---|---|
qult | ultimate bearing capacity of the foundation soil |
qmax | maximum contact pressure at the interface between the bottom of a foundation and the underlying soil |
δall | allowable settlement of foundation |
δ | immediate settlement of foundation |
ϕV | shear strength reduction factor equal to 0.75 |
f′c | compression strength of concrete |
b0 | perimeter of critical section taken at d/2 from face of column |
b | width of the section |
βc | ratio of long side to short side of column section |
αs | is equal to 40 for interior columns |
Mu | bending moment |
ϕM | flexure strength reduction factor equal to 0.9 |
As | cross-sectional area of steel reinforcement |
fy | yield strength of steel |
ρmin | minimum reinforcement ratio |
ρmax | maximum reinforcement ratio |
Item | Unit | Unit Cost (USD/m) |
---|---|---|
Excavation | m3 | 11.41 |
Foundation formwork | m2 | 36.82 |
Stem formwork | m2 | 37.08 |
Reinforcement | kg | 1.51 |
Concrete in foundations | m3 | 104.51 |
Concrete in stem | m3 | 118.05 |
Backfill | m3 | 38.10 |
Failure Mode | Constraints |
---|---|
Sliding stability | FSS ≤ (ΣFR/ΣFd) |
Overturning stability | FSO ≤ (ΣMR/ΣMO) |
Bearing capacity | FSb ≤ (qult/qmax) |
Eccentricity failure | e ≤ (B/6) |
Toe shear | Vut ≤ Vnt |
Toe moment | Mut ≤ Mnt |
Heel shear | Vuh ≤ Vnh |
Heel moment | Muh ≤ Mnh |
Shear at bottom of stem | Vus ≤ Vns |
Moment at bottom of stem | Mus ≤ Mns |
Deflection at top of stem | (1/150) × H′ ≤ δmax |
Parameter | Definition |
---|---|
β | backfill slop angle |
D | depth of soil in front of the wall |
Q | distributed surcharge load |
Pa | active earth pressure |
Pp | passive earth pressure |
FSS | required factor of safety against sliding |
FSO | required factor of safety against overturning |
FSb | required factor of safety against bearing capacity |
∑FR | sum of the horizontal resisting forces |
∑Fd | sum of the horizontal driving forces |
∑MR | sum of the moments of forces that tends to resist overturning about the toe |
∑MO | sum of the moments of forces that tends to overturn the structure about the toe |
∑V | sum of the vertical forces due to the weight of wall |
Vut | ultimate shearing force of toe |
Vuh | ultimate shearing force of heel |
Vus | ultimate shearing force of stem |
Vn | nominal shear strength of concrete |
Mut | ultimate bending moment of toe |
Muh | ultimate bending moment of heel |
Mus | ultimate bending moment of toe stem |
Mn | nominal flexural strength of concrete |
δmax | maximum deflection at the top of the stem |
Description | Lower Bound | Upper Bound |
---|---|---|
Width of footing | Bmin= 0.4 H | Bmax = 0.7 H |
Thickness of base slab | X5min= H/12 | X5max= H/10 |
Width of toe | X4min= 0.4 H/3 | X4max= 0.7 H/3 |
Stem thickness at top | X2min= 20 cm | - |
Steel reinforcement ratio |
Parameter | Unit | Value for Example 1 | Value for Example 2 |
---|---|---|---|
Effective friction angle of base soil | degree | 35 | 30 |
Unit weight of base soil | kN/m3 | 18.5 | 18.5 |
Young’s modulus | MPa | 50 | 35 |
Poisson’s ratio | − | 0.3 | 0.3 |
Vertical dead load (D) | kN | 2000 | 4200 |
Vertical live load (L) | kN | 1000 | 2100 |
Moment (M) | kN-m | 0.0 | 850 |
Concrete cover | cm | 7.0 | 7.0 |
Yield strength of reinforcing steel | MPa | 400 | 400 |
Compressive strength of concrete | MPa | 30 | 28 |
Factor of safety for bearing capacity | − | 3.0 | 3.0 |
Allowable settlement of footing | m | 0.04 | 0.04 |
Design Variable | Unit | Optimum Values ASSA | Optimum Values SSA | Optimum Values FA | Optimum Values PSO |
---|---|---|---|---|---|
(Y1) | cm | 169.5 | 158.3 | 155.3 | 169.4 |
(Y2) | cm | 218.8 | 248.5 | 253.1 | 219.2 |
(Y3) | cm | 57.5 | 58.1 | 58.2 | 60 |
(Y4) | cm | 200 | 158.2 | 200 | 200 |
(Y5) | cm2 | 39.58 | 48.2 | 49.65 | 37.75 |
(Y6) | cm2 | 25.13 | 21.74 | 20.94 | 23.91 |
Objective function | USD | 1091 | 1098 | 1162 | 1108 |
Design Variable | Unit | Optimum Values ASSA | Optimum Values SSA | Optimum Values FA | Optimum Values PSO |
---|---|---|---|---|---|
(Y1) | cm | 153 | 153.1 | 159.3 | 153.2 |
(Y2) | cm | 833.4 | 833.2 | 819.1 | 837.6 |
(Y3) | cm | 80.6 | 80.6 | 82.4 | 80.8 |
(Y4) | cm | 200 | 200 | 200 | 200 |
(Y5) | cm2 | 277.1 | 277.2 | 256.8 | 278.1 |
(Y6) | cm2 | 20.54 | 21.1 | 24.7 | 20.6 |
Objective function | USD | 4512 | 4520 | 4650 | 4544 |
Parameter | Unit | Value for Example 3 | Value for Example 4 |
---|---|---|---|
Height of stem | m | 4.0 | 6 |
Internal friction angle of retained soil | degree | 36 | 36 |
Internal friction angle of base soil | degree | 0.0 | 34 |
Unit weight of retained soil | kN/m3 | 17.5 | 17.5 |
Unit weight of base soil | kN/m3 | 18.5 | 18.5 |
Unit weight of concrete | kN/m3 | 23.5 | 24 |
Cohesion of base soil | kPa | 125 | 100 |
Depth of soil in front of wall | m | 0.5 | 0.75 |
Surcharge load | kPa | 20 | 30 |
Backfill slop | degree | 10 | 15 |
Concrete cover | cm | 7.0 | 7.0 |
Yield strength of reinforcing steel | MPa | 400 | 400 |
Compressive strength of concrete | MPa | 21 | 28 |
Shrinkage and temporary reinforcement percent | - | 0.002 | 0.002 |
Factor of safety for overturning stability | - | 1.5 | 1.5 |
Factor of safety against sliding | - | 1.5 | 1.5 |
Factor of safety for bearing capacity | - | 3.0 | 3.0 |
Design Variable | Unit | Optimum Values ASSA | Optimum Values SSA | Optimum Values FA | Optimum Values PSO |
---|---|---|---|---|---|
(X1) | m | 0.7233 | 0.6947 | 0.6948 | 0.6436 |
(X2) | m | 0.2 | 0.2 | 0.2 | 0.25 |
(X3) | m | 0.4674 | 0.5 | 0.5 | 0.55 |
(X4) | m | 0.7778 | 0.7778 | 0.7778 | 0.7778 |
(X5) | m | 0.2727 | 0.2727 | 0.2723 | 0.2727 |
(X6) | cm2/m | 6.67 | 6.66 | 6.66 | 6.66 |
(X7) | cm2/m | 6.75 | 6.75 | 6.75 | 6.75 |
(X8) | cm2/m | 6.75 | 6.75 | 6.75 | 6.75 |
Objective function | USD/m | 822.73 | 827.02 | 860.42 | 848.17 |
Design Variable | Unit | Optimum Values ASSA | Optimum Values SSA | Optimum Values FA | Optimum Values PSO |
---|---|---|---|---|---|
(X1) | m | 1.423 | 1.391 | 1.459 | 1.444 |
(X2) | m | 0.25 | 0.25 | 0.246 | 0.249 |
(X3) | m | 0.531 | 0.532 | 0.466 | 0.517 |
(X4) | m | 0.755 | 0.772 | 0.773 | 0.774 |
(X5) | m | 0.331 | 0.374 | 0.352 | 0.339 |
(X6) | cm2/m | 25.38 | 25.64 | 32.21 | 27.52 |
(X7) | cm2/m | 6.78 | 6.75 | 6.75 | 7.02 |
(X8) | cm2/m | 7.94 | 7.47 | 7.57 | 8.39 |
Objective function | USD/m | 1631.2 | 1643.1 | 1668.4 | 1653.9 |
Example No. | Index | ASSA vs. SSA | ASSA vs. FA | ASSA vs. PSO |
---|---|---|---|---|
Ex. 1 | p-val. | 6.0 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
R+ | 453 | 465 | 465 | |
R− | 12 | 0.0 | 0.0 | |
Win | ASSA | ASSA | ASSA | |
Ex. 2 | p-val. | 0.012 | 1.73 × 10−6 | 1.73 × 10−6 |
R+ | 354 | 465 | 465 | |
R− | 111 | 0.0 | 0.0 | |
Win | ASSA | ASSA | ASSA | |
Ex. 3 | p-val. | 0.106 | 1.73 × 10−6 | 1.73 × 10−6 |
R+ | 311 | 465 | 465 | |
R− | 154 | 0.0 | 0.0 | |
Win | NA | ASSA | ASSA | |
Ex. 4 | p-val. | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
R+ | 465 | 465 | 465 | |
R− | 0.0 | 0.0 | 0.0 | |
Win | ASSA | ASSA | ASSA | |
Superior /Inferior/NA | 3/0/1 | 4/0/0 | 4/0/0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khajehzadeh, M.; Iraji, A.; Majdi, A.; Keawsawasvong, S.; Nehdi, M.L. Adaptive Salp Swarm Algorithm for Optimization of Geotechnical Structures. Appl. Sci. 2022, 12, 6749. https://doi.org/10.3390/app12136749
Khajehzadeh M, Iraji A, Majdi A, Keawsawasvong S, Nehdi ML. Adaptive Salp Swarm Algorithm for Optimization of Geotechnical Structures. Applied Sciences. 2022; 12(13):6749. https://doi.org/10.3390/app12136749
Chicago/Turabian StyleKhajehzadeh, Mohammad, Amin Iraji, Ali Majdi, Suraparb Keawsawasvong, and Moncef L. Nehdi. 2022. "Adaptive Salp Swarm Algorithm for Optimization of Geotechnical Structures" Applied Sciences 12, no. 13: 6749. https://doi.org/10.3390/app12136749
APA StyleKhajehzadeh, M., Iraji, A., Majdi, A., Keawsawasvong, S., & Nehdi, M. L. (2022). Adaptive Salp Swarm Algorithm for Optimization of Geotechnical Structures. Applied Sciences, 12(13), 6749. https://doi.org/10.3390/app12136749