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Abstract: Based on the salp swarm algorithm (SSA), this paper proposes an efficient metaheuristic
algorithm for solving global optimization problems and optimizing two commonly encountered
geotechnical engineering structures: reinforced concrete cantilever retaining walls and shallow spread
foundations. Two new equations for the leader- and followers-position-updating procedures were
introduced in the proposed adaptive salp swarm optimization (ASSA). This change improved the
algorithm’s exploration capabilities while preventing it from converging prematurely. Benchmark
test functions were used to confirm the proposed algorithm’s performance, and the results were
compared to the SSA and other effective optimization algorithms. A Wilcoxon’s rank sum test was
performed to evaluate the pairwise statistical performances of the algorithms, and it indicated the
significant superiority of the ASSA. The new algorithm can also be used to optimize low-cost retaining
walls and foundations. In the analysis and design procedures, both geotechnical and structural limit
states were used. Two case studies of retaining walls and spread foundations were solved using the
proposed methodology. According to the simulation results, ASSA outperforms alternative models
and demonstrates the ability to produce better optimal solutions.

Keywords: salp swarm optimizer; spread foundation; retaining structures; economic design

1. Introduction

The objective function in most engineering problems is non-convex and discontinuous,
with a large number of design variables. As a result, traditional deterministic optimization
techniques based on mathematical principles may struggle to find a global optimum
solution due to local optima trapping. The use of powerful metaheuristic optimization
algorithms for obtaining a global optimum to overcome this limitation is of interest, and
metaheuristic algorithms have proven to be an excellent alternative for solving complex
problems in recent decades [1–6].

The most common geo-structures in practical application are reinforced concrete
retaining walls and spread footings, which have received considerable attention in recent
studies [7,8]. These structures are commonly used and typically involve a large volume of
material. In the past, the initial anticipated dimensions of retaining structures were tested
for stability and other building code requirements. If the dimensions were insufficient
to meet the constraints, they were adjusted until all the requirements were met. During
this time-consuming, iterative process, the cost of construction was not taken into account.
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In the optimum design of these structures, the dimensions that provide the lowest cost
and weight of construction while meeting all the design requirements are automatically
determined.

Several metaheuristic algorithms for geotechnical engineering problems have recently
been developed and are widely used. Despite the fact that metaheuristic methods can pro-
duce acceptable results, no algorithm outperforms another in solving all the optimization
problems. Furthermore, the objective function in most geotechnical engineering optimiza-
tion problems, such as shallow foundations, retaining structures, and pile optimization,
is discontinuous and has a large number of design variables. As a result, several research
projects have been launched in order to improve the performance and efficiency of the
existing metaheuristics. Some of these are modified particle swarm optimizations [9,10],
modified harmony search algorithms [11], modified gravitational search algorithms [12],
modified sine cosine algorithms [13], improved salp swarm algorithms [14], modified ant
colony optimizations [15], modified teaching–learning-based optimizations [16], improved
tunicate swarm algorithms [17], and modified wild horse optimizations [18]. According to
the effectiveness of the metaheuristics and their modified versions, these methods have
been widely used to solve several geotechnical engineering problems, as presented in
Table 1.

Table 1. Application of metaheuristic algorithms for geotechnical engineering problems.

Author, Year Reference Optimization Method Application

Goh, 2000 [19] Genetic algorithm Locate the critical circular slip surface in
slope stability analysis

Zolfaghari, Heath, and
McCombie, 2005 [20] Genetic algorithm Search for critical noncircular failure

surface in slope stability analysis

Cheng et al., 2007 [1] Particle swarm optimization Analyze two-dimensional slope stability

Cheng et al., 2008 [11] Improved harmony search algorithm Analyze slope stability

Chan, Zhang, and Ng, 2009 [21] Hybrid genetic algorithms Optimize pile groups

Kahatadeniya, Nanakorn, and
Neaupane, 2009 [22] Ant colony optimization Determine the critical failure surface of

earth slope

Khajehzadeh et al., 2011 [23] Modified particle swarm optimization Optimize design of spread footing and
retaining wall

Camp and Akin, 2012 [24] Big bang–big crunch optimization Optimize design of retaining wall

Camp and Assadollahi, 2013 [25] Hybrid big bang–big crunch algorithm Optimize CO2 and cost of reinforced
concrete footings

Khajehzadeh et al., 2013 [26] Hybrid firefly algorithm Multi-objective optimization
of foundations

Kang, Li, and Ma, 2013 [27] Artificial bee colony algorithm Locate the critical slip surface in slope
stability analysis

Khajehzadeh, Taha, and Eslami,
2014 [12] Hybrid adaptive gravitational search

algorithm
Multi-objective optimization of

retaining walls

Kashani, Gandomi, and Mousavi,
2016 [28] Imperialistic competitive algorithm Locate the critical slip surface of earth

slope

Gordan et al., 2016 [29] Particle swarm optimization and neural
network Predict seismic slope stability

Gandomi and Kashani, 2017 [7]

Accelerated particle swarm
optimization, firefly algorithm,

Levy-flight krill herd, whale
optimization algorithm, ant lion
optimizer, grey wolf optimizer,

moth–flame optimization algorithm,
and teaching–learning-based

optimization algorithm

Minimize construction cost of shallow
foundation

Aydogdu, 2017 [30] Biogeography-based
optimization algorithm Optimize cost of retaining wall
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Table 1. Cont.

Author, Year Reference Optimization Method Application

Gandomi et al., 2017 [31]
Genetic algorithm, differential evolution,

evolutionary strategy, and
biogeography-based optimization

Analyze slope stability

Mahdiyar et al., 2017 [32] Monte Carlo simulation technique Assess safety of slope

Gandomi, Kashani, and Zeighami,
2017 [2] Interior search algorithm Optimize retaining wall

Chen et al., 2019 [33] Hybrid imperialist competitive
algorithm and artificial neural network

Predict safety factor values of retaining
walls

Koopialipoor et al., 2019 [34]

Imperialist competitive algorithm,
genetic algorithm, particle swarm

optimization, and artificial bee colony
combined with artificial neural network

Predict slope stability under static and
dynamic conditions

Yang et al., 2019 [35] Neural network system Design retaining wall structures based
on smart and optimal systems

Xu et al., 2019 [36] Hybrid artificial neural network and ant
colony optimization

Assess dynamic conditions of retaining
wall structures

Himanshu and Burman, 2019 [37] Particle swarm optimization Determine critical failure surface
considering seepage and seismic loading

Kalemci et al., 2020 [38] Grey wolf optimization algorithm Optimize retaining walls

Kaveh, Hamedani, and
Bakhshpoori, 2020 [39] Eleven metaheuristic algorithms Optimize design of cantilever retaining

walls

Kashani et al., 2020 [4]
Differential algorithm, evolution

strategy, and biogeography-based
optimization algorithm

Optimize design of shallow foundation

Sharma, Saha, and Lohar, 2021 [40] Hybrid butterfly and symbiosis
organism search algorithm Optimize retaining wall

Kaveh and Seddighian, 2021 [41]
Black hole mechanics optimization,

firefly algorithm, evolution strategy, and
sine cosine algorithm

Optimize slope critical surfaces
considering seepage and seismic effects

Temur, 2021 [42] Teaching–learning-based optimization Optimize retaining wall

Li and Wu, 2021 [43] Improved salp swarm algorithm Locate critical slip surface of slopes

Khajehzadeh, Keawsawasvong,
et al., 2022 [44] Hybrid tunicate swarm algorithm and

pattern search Seismic analysis of earth slope

Arabali et al., 2022 [45] Adaptive tunicate swarm algorithm Optimize construction cost and CO2
emissions of shallow foundation

Khajehzadeh, Keawsawasvong,
and Nehdi, 2022 [46] Artificial neural network combined with

rat swarm optimization

Predict the ultimate bearing capacity of
shallow foundations and their optimum

design

Khajehzadeh, Kalhor, et al., 2022 [47] Adaptive sperm swarm optimization Optimize design of retaining structures
under seismic load

Kashani et al., 2022 [48]

Multi-objective particle swarm
optimization, multi-objective multiverse
optimization and Pareto envelope-based

selection algorithm

Multi-objective optimization of
mechanically stabilized earth retaining

wall

A new meta-heuristic algorithm called the salp swarm algorithm (SSA) simulates
salp fish swarming in deep waters [49]. Section 2 contains more information on the SSA’s
motivation and mathematical modelling. The SSA in its basic model can be extended or
hybridized with another algorithm to produce better answers for future problems, similar
to other metaheuristic approaches [14,43,50].

This paper presents an adaptive salp swarm algorithm (ASSA) for optimization by
introducing new position-updating equations for leader and follower salps. This change
significantly improves the algorithm’s performance and convergence speed. A set of
well-known standard benchmark functions from the literature is used to validate the
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effectiveness of the proposed approach. Furthermore, numerical geotechnical structure op-
timization tests are used to investigate the proposed method’s performance and efficiency.

2. Salp Swarm Algorithm

A salp is a type of marine animal in the Salpidae family. It has a cylindrical structure
with apertures at the ends similar to those of a jellyfish, which move and eat by pumping
water through internal feeding filters in their gelatinous bodies. The salp swarm algorithm
(SSA), a population-based optimization technique, was developed by Mirjalili et al. [49].
The salp chain can be used to calculate the SSA’s behavior while hunting for optimal
feeding sources (i.e., the target of this swarm is a food position in the search space called
FP). To mathematically model salp chains, they are sampled into two groups: followers
and leaders. The salp at the head of the chain is known as the leader, while the others are
known as followers. The swarm is led by the leader of these salps, and the followers follow
in his footsteps. The chain begins with a leader, who is followed by the followers to guide
their movements.

Similar to other swarm-based algorithms, the salp location is specified in a n-dimensional
search space, where n is the number of variables in a given problem. As a result, the posi-
tions of all the salps are recorded in a two-dimensional matrix known as X, as shown in
Equation (1):

Xi =


x1

1 x1
2 . . . x1

d
x2

1 x2
2 . . . x2

d
...

... . . .
...

xn
1 xn

2 . . . xn
d

 (1)

The fitness of each salp is then determined in order to define which salp has the
best fitness. It is also supposed that the swarm’s goal is a food position called FP in the
search area.

The following equation can be used by the leader salp to change positions:

x1
i =

{
FPi + r1((ubi − lbi)r2 + lbi) r3 ≥ 0
FPi − r1((ubi − lbi)r2 + lbi) r3 < 0

(2)

where x1
i denotes the first salp’s position in the ith dimension, and FPi denotes the food

position in the ith dimension. The lower and upper bounds of the ith dimension are
represented by lbi and ubi, respectively, and the coefficient r1 is calculated with Equation (3):

r1 = 2e−(
4t

tmax )
2

(3)

In addition, the random numbers r2 and r3 are between 0 and 1. The maximum
number of iterations is tmax, and the current iteration is t. It is worth noting that the r1
coefficient is critical in a SSA because it balances exploration and exploitation throughout
the search. The following equations are used to change the positions of the followers:

xj
i =

1
2

(
xj

i + xj−1
i

)
(4)

where j ≥ 2. In case some agents transfer outside of the search area, Equation (6) shows
how to move salps back into the search area if they leave it:

xj
i =


lbi i f xj

i ≤ lbi

ubi i f xj
i ≥ ubi

xj
i otherwise

(5)

The pseudocode of the SSA is shown in Algorithm 1.
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Algorithm 1. Salp swarm algorithm

Initialize the salp population xi (i = 1, 2, . . . , n) considering lbi and ubi
while t ≤ tmax

Calculate the fitness of each search agent (salp)
Put the best search agent as FP (Food position)
Update r1 by Equation (3)

for each salp (xi)
if i = 1

Update the position of the leading salp by Equation (2)
else

Update the position of the follower salp by Equation (4)
end

end
Amend the salps based on the upper and lower bounds of variables

Calculate the fitness of each search agent FP
Update the food position
t = t + 1
end

return the food position FP and its best fitness

3. Adaptive Salp Swarm Algorithm

Even though the SSA has the capability to generate acceptable results in comparison
to other well-known techniques [49], the obtained results of the SSA are prone to becoming
stuck in a local optimum, making it unsuitable for very complex problems with multiple
local optima [43].

The leading salp adjusts its location in the SSA in response to the food situation (i.e.,
the position of the best salp in the whole population), as observed in Equation (2). The SSA
algorithm updates the location of the leader salp around a single point at each incarnation
pass, and other salps (followers) follow the leader. If the algorithm fails to recover because
it lacks knowledge of the food position (FP), the algorithm fails. In other words, once an
algorithm converges, it loses its ability to explore and then becomes inactive. As a result
of this mechanism, the SSA algorithm becomes locked at local minimum points. In light
of these circumstances, an adaptive version of the SSA (ASSA) is proposed to address the
aforementioned flaw, while also increasing the algorithm’s search capability and flexibility.

In the proposed ASSA, half of the population is considered as leaders, and the re-
maining salps are followers, which improves the algorithm’s performance and exploring
capabilities. The following equation is then used to update the position of the leader salps:

xj
i =

xj
i + r1

(
FPi − xj

i

)
r3 ≥ 0.5

xj
i − r1

(
FPi − xj

i

)
r3 < 0.5

(6)

The leaders adjust their positions in response to the state of the food source, as well as
their previous position, as shown in Equation (6).

This process increases exploration while also allowing the SSA to conduct a more
powerful global search across the entire search space. To improve the proposed ASSA’s
search efficiency, the followers update their positions according to the following equation:

xj
i = rand2

(
xj

i + xj−1
i

)
(7)

In addition, in the suggested ASSA, at each iterative process, the worst salp with the
highest objective function value is replaced with a completely random salp. The flowchart
of the proposed ASSA is shown in Figure 1.
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 using Eq. (6)
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Yes No

 

Figure 1. Flowchart of ASSA.

4. Model Verification

A set of numerical reference test functions was used in this section to compare and
confirm the achievement and effectiveness of the proposed adaptive salp swarm algorithm
(ASSA). In the empirical evidence literature, these functions have commonly been used to
determine the performance of optimizers [51,52].

The mathematical models and characteristics of these test functions are shown in
Tables 2 and 3. This standard set was divided into two categories: (1) unimodal functions
with a single global best for testing the algorithm convergence pace and enslavement
ability and (2) multimodal functions with multiple local minimums and a global ideal for
testing an algorithm’s local optima avoidance and exploratory capacity. MATLAB R2020b
was used to create the suggested algorithms. All these functions should be minimized.
Furthermore, all the functions had dimensions of 30. Three-dimensional drawings of these
benchmark functions are illustrated in Figures 2 and 3.
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The proposed ASSA was compared to the original SSA, as well as to some well-known
optimization methods, such as the genetic algorithm developed by [53], the particle swarm
optimization (PSO) proposed by [54], the firefly algorithm (FA) introduced by [55], the
multiverse optimizer (MVO) developed by [56], and the tunicate swarm algorithm (TSA)
introduced by [52]. For all methodologies, the sizes of the solutions (N) and the maximum
number of iterations (tmax) were set to 30 and 1000, respectively, in order to make fair
comparisons between them.

Because the results of a single run of a metaheuristic method are stochastic, they may
be incorrect. As a result, statistical analysis should be performed in order to provide a fair
comparison and evaluate an algorithm’s efficacy. To address this issue, 30 runs for the
mentioned methods were performed, with the results presented in Tables 4 and 5.

Table 2. Description of unimodal benchmark functions.

Function Range fmin n (Dim)

F1(X) = ∑n
i=1 x2

i [−100, 100]n 0 30

F2(X) = ∑n
i=1|xi|+ ∏n

i=1|xi| [−10, 10]n 0 30

F3(X) = ∑n
i=1

(
∑i

j=1 xj

)2
[−100, 100]n 0 30

F4(X) = max
i
{|xi|, 1 ≤ i ≤ n } [−100, 100]n 0 30

F5(X) = ∑n−1
i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

[−30, 30]n 0 30

F6(X) = ∑n
i=1([xi + 0.5])2 [−100, 100]n 0 30

F7(X) = ∑n
i=1 ix4

i + random[0, 1) [−1.28, 1.28]n 0 30

Table 3. Description of multimodal benchmark functions.

Function Range fmin n (Dim)

F8(X) = ∑n
i=1−xi sin

(√
|xi|
)

[−500, 500]n 428.9829 × n 30

F9(X) = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12]n 0 30

F10(X) = −20 exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

(
1
n ∑n

i=1 cos(2πxi)
)
+ 20 + e

[−32, 32]n 0 30

F11(X) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 [−600, 600]n 0 30

F12(X) =
π
n

{
10 sin(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)
]
+ (yn − 1)2

}
+∑n

i=1 u(xi, 10, 100, 4)

yi = 1 + xi+4
4 u(xi, a, k, m) =


k(xi − a)m xi > a
0 a < xi < a
k(−xi − a)m xi < −a

[−50, 50]n 0 30

F13(X) = 0.1
{

sin2(3πx1)

+∑n
i=1(xi − 1)2[1 + sin2(3πxi + 1)

]
+(xn − 1)2[1 + sin2(2πxn)

]}
+∑n

i=1 u(xi, 5, 100, 4)

[−50, 50]n 0 30
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Table 4. Comparison of different methods in solving unimodal test functions.

F Index ASSA SSA GA PSO FA MVO TSA

F1 Mean 2.23 × 10−227 3.29 × 10−7 1.95 × 10−12 4.98 × 10−9 7.11 × 10−3 2.81 × 10−1 8.31 × 10−56

Std. 0.00 5.92 × 10−7 2.01 × 10−11 1.40 × 10−8 3.21 × 10−3 1.11 × 10−1 1.02 × 10−58

F2 Mean 5.96 × 10−105 1.911 6.53 × 10−18 7.29 × 10−4 4.34 × 10−1 3.96 × 10−1 8.36 × 10−35

Std. 1.91 × 10−104 1.614 5.10 × 10−17 1.84 × 10−3 1.84 × 10−1 1.41 × 10−1 9.86 × 10−35

F3 Mean 3.27 × 10−180 1.50 × 103 7.70 × 10−10 14.0 1.66 × 103 43.1 1.51 × 10−14

Std. 0.00 7.07 × 102 7.36 × 10−9 7.13 6.72 × 102 8.97 6.55 × 10−14

F4 Mean 1.56 × 10−104 2.44 × 10−5 91.7 6.00 × 10−1 1.11 × 10−1 8.80 × 10−1 1.95 × 10−5

Std. 3.47 × 10−105 1.89 × 10−5 56.7 1.72 × 10−1 4.75 × 10−2 2.50 × 10−1 4.49 × 10−4

F5 Mean 2.56 × 10−1 1.36 × 102 5.57 × 102 49.3 79.7 1.18 × 102 28.4
Std. 4.78 × 10−1 1.54 × 102 41.6 38.9 73.9 1.43 × 102 8.40 × 10−1

F6 Mean 3.76 × 10−7 5.72 × 10−7 3.15 × 10−1 6.92 × 10−2 6.94 × 10−3 2.02 × 10−2 3.67
Std. 1.23 × 10−7 2.44 × 10−7 9.98 × 10−2 2.87 × 10−2 3.61 × 10−3 7.43 × 10−3 3.35 × 10−1

F7 Mean 2.71 × 10−6 8.82 × 10−5 6.79 × 10−4 8.94 × 10−2 6.62 × 10−2 5.24 × 10−2 1.80 × 10−3

Std. 2.33 × 10−6 6.94 × 10−5 3.29 × 10−3 2.06 × 10−2 4.23 × 10−2 1.37 × 10−2 4.62 × 10−4

Table 5. Comparison of different methods in solving multimodal test functions.

F Index ASSA SSA GA PSO FA MVO TSA

F8 Mean –1.21 × 104 –7.46 × 103 –5.11 × 103 –6.01 × 103 –5.85 × 103 –6.92 × 103 –7.89 × 103

Std. 4.89 × 102 6.34 × 102 4.37 × 102 1.30 × 103 1.61 × 103 9.19 × 102 599.2
F9 Mean 0.00 55.45 1.23 × 10−1 47.2 15.1 1.01× 102 151.4

Std. 0.00 18.27 41.1 10.3 12.5 18.9 35.87
F10 Mean 8.88 × 10−16 2.84 5.31 × 10−11 3.86 × 10−2 4.58 × 10−2 1.15 2.409

Std. 0.00 6.58 × 10−1 1.11 × 10−10 2.11 × 10−1 1.20 × 10−2 7.87 × 10−1 1.392
F11 Mean 0.00 2.29 × 10−1 3.31 × 10−6 5.50 × 10−3 4.23 × 10−3 5.74 × 10−1 7.7 × 10−3

Std. 0.00 1.29 × 10−1 4.23 × 10−5 7.39 × 10−3 1.29 × 10−3 1.12 × 10−1 5.7 × 10−3

F12 Mean 2.31 × 10−5 6.82 9.16 × 10−8 1.05 × 10−2 3.13 × 10−4 1.27 6.373
Std. 2.46 × 10−5 2.72 4.88 × 10−7 2.06 × 10−2 1.76 × 10−4 1.02 3.458

F13 Mean 1.44 × 10−4 21.31 6.39 × 10−2 4.03 × 10−1 2.08 × 10−3 6.60 × 10−2 2.897
Std. 1.95 × 10−4 16.99 4.49 × 10−2 5.39 × 10−1 9.62 × 10−4 4.33 × 10−2 6.43 × 10−1

Tables 4 and 5 show that, for all the functions, the ASSA could provide better solutions
in terms of mean value of the objective functions than the conventional SSA, as well as
the other optimization techniques. The results also showed that the mean and standard
deviation of the ASSA were significantly lower than those of the other strategies, indicating
that the algorithm was stable. The ASSA outperformed both the standard method and
alternative optimization approaches, according to the findings.

In order to obtain significant effectiveness between two or more algorithms, a nonpara-
metric Wilcoxon’s rank sum test is often used [57]. In this study, a pairwise comparison was
performed using the best results from 30 runs of each algorithm. The Wilcoxon’s rank sum
test returned the p-value, the sum of the positive ranks (R+), and the sum of the negative
ranks (R−). Table 6 shows the results of the Wilcoxon’s rank sum test for all the benchmark
functions. The p-value is the smallest level of significance for detecting differences. In
this study, the level of significance was set at 0.05 (α = 0.05). If the p-value was smaller
than 0.05, it meant that the better result achieved by the best method in each pairwise
comparison was statistically significant and was not obtained by chance. However, there
was no significant difference between the two examined methods if the p-value was greater
than 0.05. Such a result is indicated with “NA” in the “win” rows of Table 6. In addition, if
the R+ was greater than the R−, the ASSA had a better performance than the alternative
technique. Otherwise, the ASSA had a poor performance, and the other approach had a
better performance [58].
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Table 6. Results of Wilcoxon’s rank sum test for benchmark functions.

Fun. Index ASSA vs. SSA ASSA vs. GA ASSA vs. PSO ASSA vs. FA ASSA vs.
MVO ASSA vs. TSA

F1

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 465 465 465 465 465
R− 0.0 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F2

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 465 465 465 465 465
R− 0.0 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F3

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 465 465 465 465 465
R− 0.0 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F4

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 465 465 465 465 465
R− 0.0 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F5

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 465 465 465 465 465
R− 0.0 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F6

p-val. 6.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 453 465 465 465 465 465
R− 12 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F7

p-val. 6.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 453 465 465 465 465 465
R− 12 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F8

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 465 465 465 465 465
R− 0.0 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F9

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 465 465 465 465 465
R− 0.0 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F10

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 465 465 465 465 465
R− 0.0 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F11

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 465 465 465 465 465
R− 0.0 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

F12

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 0.0 465 465 465 465
R− 0.0 465 0.0 0.0 0.0 0.0
Win ASSA GA ASSA ASSA ASSA ASSA

F13

p-val. 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6 2.0 × 10−6

R+ 465 465 465 465 465 465
R− 0.0 0.0 0.0 0.0 0.0 0.0
Win ASSA ASSA ASSA ASSA ASSA ASSA

Superior
/Inferior/NA 13/0/0 12/1/0 13/0/0 13/0/0 13/0/0 13/0/0

According to the findings of the Wilcoxon’s rank sum test in Table 6, the pairwise com-
parison of the ASSA and the SSA in the optimization of thirteen test functions demonstrated
that the new approach outperformed the original method in all thirteen cases. Similarly,
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in the other pairwise comparisons, the ASSA provided better results for the majority of
the test suite. As a result of the nonparametric statistical analysis, the ASSA created much
better answers and performed significantly better than the other techniques.

5. Foundation Optimization

A shallow spread foundation, as an essential geotechnical structure, must safely and
reliably support the superstructure, guarantee stability against soil-bearing capacity failings
and excessive settlement, and reduce concrete stresses. Aside from these design criteria,
spread footings must meet a number of other criteria: they must have enough shear and
moment capacities in both the long and short dimensions; the load-carrying capacity of
the foundation must not be surpassed; and the reinforcing steel configuration must meet
all building code criteria [59]. The foundation optimization problem requires determining
the objective function, layout constraint, and design variables, which are discussed in the
following subsections.

5.1. Objective Function

The total cost of the spread footing was the study’s objective function, which can be
expressed mathematically as follows:

f (X) = CcVc + CeVe + CbVb + C f A f + CsWs (8)

In Equation (8), Cc, Ce, Cb, Cf, and Cs are the unit costs of concrete, excavation, backfill,
formwork, and reinforcement, respectively. The unit costs considered here are listed in
Table 7 [60].

Table 7. Spread footing assembly unit cost [60].

Item Symbol Unit Unit Cost (USD)

Excavation Ce m3 25.16
Formwork Cf m2 51.97

Reinforcement Cs kg 2.16
Concrete Cc m3 173.96
Backfill Cb m3 3.97

5.2. Design Variables

Figure 4 depicts the design features for the given model. The design variables were
divided into two categories: those that described geometric dimensions and those that
described steel reinforcement. As shown in Figure 4, there were four spatial design variables
that reflected the foundation dimensions: the foundation’s length (Y1), the width (Y2), the
thickness (Y3), and the embedment’s depth (Y4). The steel reinforcement also had two
design variables: the longitudinal reinforcement (Y5) and the transverse reinforcement (Y6).

5.3. Design Constraints

While optimizing and designing a reinforced concrete footing, both structural and
geotechnical limit states should be considered. Two different geotechnical limit states are
the bearing capacity of the surrounding geo-material and the permitted settlement of the
footing. The shear capacity of the footing (one- and two-way shear), flexural capacity,
and reinforcement limitation are all structural limit states. The structural limit states are
investigated using ACI 318-11 specifications [59]. Service loads are commonly used to
satisfy geotechnical limit states. Even so, factored loads can be used for structural limit
states. Table 8 provides a list of both structural and geotechnical limit states.
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Table 8. Design constraints of spread footing.

Failure Mode Constraint

Bearing capacity qmax ≤ qall
FS

Settlement of foundation

δ ≤ δall

δ =
P(1−µ2)
kz E
√

Y1Y2

kz = −0.0017
(

Y2
Y1

)2
+ 0.0597

(
Y2
Y1

)
+ 0.9843

Eccentricity e ≤ Y1/6

One-way (wide beam) shear Vu ≤ 1
6∅v

√
f ′cbd

Two-way (punching) shear
Vu ≤

min
{(

1 + 2
βc

)
/6,
(

αsd
b0

+ 2
)

/12, 1
3

}
∅v
√

f ′cbd

Bending moment Mu ≤ ∅M As fy
(
d− a

2
)

Minimum and maximum reinforcements ρminbd ≤ As ≤ ρmaxbd

Limitation of depth of embedment 0.5 ≤ Y4 ≤ 2

All the parameters presented in Table 8 are defined in Table 9.

Table 9. Definition of parameters of Table 7.

Parameter Definition

qult ultimate bearing capacity of the foundation soil

qmax
maximum contact pressure at the interface between the bottom of a foundation and
the underlying soil

δall allowable settlement of foundation
δ immediate settlement of foundation
φV shear strength reduction factor equal to 0.75
f′c compression strength of concrete
b0 perimeter of critical section taken at d/2 from face of column
b width of the section
βc ratio of long side to short side of column section
αs is equal to 40 for interior columns
Mu bending moment
φM flexure strength reduction factor equal to 0.9
As cross-sectional area of steel reinforcement
fy yield strength of steel
ρmin minimum reinforcement ratio
ρmax maximum reinforcement ratio
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6. Retaining Structure Optimization

Reinforced concrete retaining walls are structures that are built to withstand lateral soil
pressure as the land elevation changes. The retaining structure design process necessitates
several considerations, such as structural dimensions, material characteristics, and needed
reinforcement. Generally, the designer’s experience plays a critical role in the cost-effective
and safe design of these structures. However, the optimum design of retaining walls is
independent of user experience, and the results satisfy both safety and economy.

6.1. Objective Functions

In the case of retaining structure optimization, the total construction cost of the retain-
ing wall was considered as an objective function that incorporated the cost of materials, as
well as labor and installation costs, that could be represented as follows:

f (X) = CcVc + CeVe + CbVb + C f A f + CsWs (9)

In Equation (9), Cc, Ce, Cb, Cf, and Cs are the unit costs of concrete, excavation, backfill,
formwork, and reinforcement, respectively. Table 10 presents the unit construction of a
retaining structure [61].

Table 10. Basic prices considered in the analysis.

Item Unit Unit Cost (USD/m)

Excavation m3 11.41
Foundation formwork m2 36.82

Stem formwork m2 37.08
Reinforcement kg 1.51

Concrete in foundations m3 104.51
Concrete in stem m3 118.05

Backfill m3 38.10

6.2. Design Variables

Figure 5 depicts the retaining wall model’s cross-section, design variables, and external
load. As shown in this diagram, the dimensions of the retaining wall are represented by
five geometric design variables: the heel width, represented by X1; the top stem thickness,
represented by X2; the bottom stem thickness, represented by X3; the toe width, represented
by X4; and the base slab thickness, represented by X5. Three additional design features are
included in the steel reinforcement of the various sections of the retaining wall. The vertical
steel reinforcement in the stem is designated as X6, the horizontal steel reinforcement in the
toe is designated as X7, and the horizontal steel reinforcement in the heel is designated as
X8. B is the foundation’s base width, H is the wall’s total height, and H′ is the stem’s height.
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6.3. Design Constraints

Figure 6 depicts the general forces acting on the retaining wall. Table 11 summarizes
and presents the various design constraints that were taken into account when optimizing
the concrete retaining wall.
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Table 11. Failure modes of retaining wall.

Failure Mode Constraints

Sliding stability FSS ≤ (ΣFR/ΣFd)

Overturning stability FSO ≤ (ΣMR/ΣMO)

Bearing capacity FSb ≤ (qult/qmax)

Eccentricity failure e ≤ (B/6)
e = b

2 −
∑ MR−∑ MO

∑ V

Toe shear Vut ≤ Vnt

Toe moment Mut ≤Mnt

Heel shear Vuh ≤ Vnh

Heel moment Muh ≤Mnh

Shear at bottom of stem Vus ≤ Vns

Moment at bottom of stem Mus ≤Mns

Deflection at top of stem (1/150) × H′ ≤ δmax

All the parameters presented in Figure 6 and Table 11 are defined in Table 12.

Table 12. Definition of parameters of Figure 6 and Table 10.

Parameter Definition

β backfill slop angle
D depth of soil in front of the wall
Q distributed surcharge load
Pa active earth pressure
Pp passive earth pressure
FSS required factor of safety against sliding
FSO required factor of safety against overturning
FSb required factor of safety against bearing capacity
∑FR sum of the horizontal resisting forces
∑Fd sum of the horizontal driving forces
∑MR sum of the moments of forces that tends to resist overturning about the toe
∑MO sum of the moments of forces that tends to overturn the structure about the toe
∑V sum of the vertical forces due to the weight of wall
Vut ultimate shearing force of toe
Vuh ultimate shearing force of heel
Vus ultimate shearing force of stem
Vn nominal shear strength of concrete
Mut ultimate bending moment of toe
Muh ultimate bending moment of heel
Mus ultimate bending moment of toe stem
Mn nominal flexural strength of concrete
δmax maximum deflection at the top of the stem

In addition to the constraints mentioned above, the design variables had practical
lower and upper values [62]. Table 13 summarizes the lower and upper boundaries of the
design variables.
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Table 13. Upper bound and lower bound for design variables of retaining wall.

Description Lower Bound Upper Bound

Width of footing Bmin = 0.4 H Bmax = 0.7 H

Thickness of base slab X5min = H/12 X5max = H/10

Width of toe X4min = 0.4 H/3 X4max = 0.7 H/3

Stem thickness at top X2min = 20 cm -

Steel reinforcement ratio ρmin = max
{

1.4
fy

, 0.25
√

f ′c
fy

}
ρmax = 0.85β1

f ′ c
fy

(
600

600+ fy

)

7. Design Examples

This section investigates numerical problems of geotechnical structures in order to
evaluate the ASSA performance. To address the current inquiry, a MATLAB code was
developed to computerize the design approach based on the ACI 318-11 specifications, as
stated earlier [59].

In order to consider the constraints and transform a constrained optimization to an
unconstrained problem, a penalty function method was used in this paper:

F(X) = f (X) + r
p

∑
i=1

max{0, gi(X)}l (10)

where F(X) is the penalized objective function, f (X) is the problem’s original objective
function presented in (8) and (9), and g(X) is the problem’s constraints presented in
mboxcreftabref:applsci-1718195-t007,tabref:applsci-1718195-t010 for the spread footing and
retaining wall, respectively. r is a penalty factor considered equal to 1000, l is the power of
the penalty function considered equal to 2, and p is the total number of constraints.

To demonstrate the efficacy of the proposed technique, the findings were compared
to state-of-the-art algorithms such as particle swarm optimization (PSO) and the firefly
algorithm (FA) in the following cases. The maximum number of iterations in any algorithm
was assumed to be 1000. Because of the stochastic behavior of the metaheuristics in the
following experiments, all the algorithms were run 30 times, and the best results of the
analyses for the minimum cost obtained by each method are reported.

7.1. Spread Footing Optimization

The first two design examples were concerned with the best design for a dry sand
inner surface spread footing. Table 14 lists the other input parameters for such case studies.

Table 14. Input parameters for design examples 1 and 2.

Parameter Unit Value for Example 1 Value for Example 2

Effective friction angle of base soil degree 35 30
Unit weight of base soil kN/m3 18.5 18.5

Young’s modulus MPa 50 35
Poisson’s ratio − 0.3 0.3

Vertical dead load (D) kN 2000 4200
Vertical live load (L) kN 1000 2100

Moment (M) kN-m 0.0 850
Concrete cover cm 7.0 7.0

Yield strength of reinforcing steel MPa 400 400
Compressive strength of concrete MPa 30 28

Factor of safety for bearing
capacity − 3.0 3.0

Allowable settlement of footing m 0.04 0.04
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The presented procedure solved the problem by combining all the previously men-
tioned algorithms. Tables 15 and 16 show the best results of the analyses for the lowest cost.

Table 15. Optimization results for design example 1.

Design
Variable Unit

Optimum
Values
ASSA

Optimum
Values

SSA

Optimum
Values

FA

Optimum
Values

PSO

(Y1) cm 169.5 158.3 155.3 169.4
(Y2) cm 218.8 248.5 253.1 219.2
(Y3) cm 57.5 58.1 58.2 60
(Y4) cm 200 158.2 200 200
(Y5) cm2 39.58 48.2 49.65 37.75
(Y6) cm2 25.13 21.74 20.94 23.91

Objective
function USD 1091 1098 1162 1108

Table 16. Optimization result for design example 2.

Design
Variable Unit

Optimum
Values
ASSA

Optimum
Values

SSA

Optimum
Values

FA

Optimum
Values

PSO

(Y1) cm 153 153.1 159.3 153.2
(Y2) cm 833.4 833.2 819.1 837.6
(Y3) cm 80.6 80.6 82.4 80.8
(Y4) cm 200 200 200 200
(Y5) cm2 277.1 277.2 256.8 278.1
(Y6) cm2 20.54 21.1 24.7 20.6

Objective
function USD 4512 4520 4650 4544

Tables 15 and 16 show that the optimization findings computed by the proposed ASSA
were lower than those calculated by the conventional SSA and other approaches, indicating
that the new method was effective. Table 15 shows that, contrary to popular belief that
the best shape for a footing under vertical load is square, a rectangular footing provided a
more cost-effective design.

7.2. Retaining Structure Optimization

The optimal design of two retaining walls with heights of 4 and 6 m was the subject of
this section. Table 17 lists the other parameters that were required for this example.

Table 17. Input parameters for design examples 3 and 4.

Parameter Unit Value for Example 3 Value for Example 4

Height of stem m 4.0 6
Internal friction angle of retained soil degree 36 36

Internal friction angle of base soil degree 0.0 34
Unit weight of retained soil kN/m3 17.5 17.5

Unit weight of base soil kN/m3 18.5 18.5
Unit weight of concrete kN/m3 23.5 24

Cohesion of base soil kPa 125 100
Depth of soil in front of wall m 0.5 0.75

Surcharge load kPa 20 30
Backfill slop degree 10 15
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Table 17. Cont.

Parameter Unit Value for Example 3 Value for Example 4

Concrete cover cm 7.0 7.0
Yield strength of reinforcing steel MPa 400 400
Compressive strength of concrete MPa 21 28

Shrinkage and temporary
reinforcement percent - 0.002 0.002

Factor of safety for overturning
stability - 1.5 1.5

Factor of safety against sliding - 1.5 1.5
Factor of safety for bearing capacity - 3.0 3.0

Tables 18 and 19 show the results of the assessments for the examples with the
lowest cost.

Table 18. Optimization results for design example 3.

Design
Variable Unit Optimum

Values ASSA
Optimum

Values SSA
Optimum
Values FA

Optimum
Values PSO

(X1) m 0.7233 0.6947 0.6948 0.6436
(X2) m 0.2 0.2 0.2 0.25
(X3) m 0.4674 0.5 0.5 0.55
(X4) m 0.7778 0.7778 0.7778 0.7778
(X5) m 0.2727 0.2727 0.2723 0.2727
(X6) cm2/m 6.67 6.66 6.66 6.66
(X7) cm2/m 6.75 6.75 6.75 6.75
(X8) cm2/m 6.75 6.75 6.75 6.75

Objective
function USD/m 822.73 827.02 860.42 848.17

Table 19. Optimization results for design example 4.

Design
Variable Unit Optimum

Values ASSA
Optimum

Values SSA
Optimum
Values FA

Optimum
Values PSO

(X1) m 1.423 1.391 1.459 1.444
(X2) m 0.25 0.25 0.246 0.249
(X3) m 0.531 0.532 0.466 0.517
(X4) m 0.755 0.772 0.773 0.774
(X5) m 0.331 0.374 0.352 0.339
(X6) cm2/m 25.38 25.64 32.21 27.52
(X7) cm2/m 6.78 6.75 6.75 7.02
(X8) cm2/m 7.94 7.47 7.57 8.39

Objective
function USD/m 1631.2 1643.1 1668.4 1653.9

Tables 18 and 19 show that, when compared to the traditional SSA and other methods,
the ASSA may be able to provide a better solution by calculating lower values of the
objective functions. It can be observed that the ASSA’s best price was relatively lower than
that of the SSA and significantly lower than that of the PSO and FA. However, additional
experiments revealed that increasing the maximum number of iterations reduced the
distinctions between the algorithm results. The fact that the best solution was found in the
first iteration was due to the effective modification of the algorithm proposed in this study.
The modified algorithm demonstrated a much-enhanced efficacy.

In order to determine the statistical significance of the comparative results between
the considered algorithms in all the design examples, a nonparametric Wilcoxon’s rank
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sum test was performed between the results. In this regard, utilizing the results obtained
from 30 runs of each method, a pairwise comparison was conducted. According to the
results of the Wilcoxon’s rank sum test in Table 20, the pairwise comparison between the
ASSA and the SSA revealed that, in the optimization of four design examples, the new
method had superior performances in three cases. In addition, for design example 3, both
methods were statistically equivalent. Similarly, in the other pairwise comparisons, the
ASSA provided better results. Therefore, the nonparametric statistical analysis proved
that the ASSA generated significantly better solutions and, comparatively, had a superior
performance over the other algorithms.

Table 20. Results of Wilcoxon’s rank sum test for design examples.

Example No. Index ASSA vs. SSA ASSA vs. FA ASSA vs. PSO

Ex. 1

p-val. 6.0 × 10−6 1.73 × 10−6 1.73 × 10−6

R+ 453 465 465
R− 12 0.0 0.0
Win ASSA ASSA ASSA

Ex. 2

p-val. 0.012 1.73 × 10−6 1.73 × 10−6

R+ 354 465 465
R− 111 0.0 0.0
Win ASSA ASSA ASSA

Ex. 3

p-val. 0.106 1.73 × 10−6 1.73 × 10−6

R+ 311 465 465
R− 154 0.0 0.0
Win NA ASSA ASSA

Ex. 4

p-val. 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R+ 465 465 465
R− 0.0 0.0 0.0
Win ASSA ASSA ASSA

Superior
/Inferior/NA 3/0/1 4/0/0 4/0/0

8. Conclusions

The primary objective of this study was to introduce an adaptive version of the
salp swarm algorithm (ASSA). Two new equations for the leader- and follower-updating
positions were introduced to improve the proposed ASSA’s search and discovery abilities.
In the standard SSA, the leading salp modifies its position based on a single point, which is
the food location. However, due to a lack of knowledge about the real position of the food
location, the algorithm may be locked at the local optimum. To overcome this weakness
and to improve the exploration ability of the algorithm, in the proposed ASSA, half of
the population was considered as leaders, which adjusted their positions not only based
on the food location but also based on their previous positions. In addition, instead of
the constant value considered in an SSA for follower-position-updating, in the ASSA, a
random value was proposed. In addition, at each iteration of the optimization process, the
ASSA replaced the worst salp, yielding the highest fitness value with a randomly generated
salp. A statistical analysis was carried out in order to make an accurate assessment of the
new algorithm’s performance. The proposed method was shown to perform admirably in
terms of accuracy, stability, and robustness when tested on some well-known unimodal
and multimodal test functions. The paper’s second goal was to automate a cost-effective
design process for spread foundations and retaining walls. A computer program in Matlab
was developed to reduce the cost of retaining structures and spread footings. On four case
studies of these structures, the proposed method was compared to a classical SSA and some
state-of-the-art metaheuristic algorithms. Given the final results, it was demonstrated that
the ASSA outperformed the other techniques and should be able to provide better optimal
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results. The new method concurrently satisfied geotechnical and structural limit states
while simultaneously providing a cost-effective design.
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