Enhancement of the Supercapacitive Performance of Cobalt-tin-cyanate Layered Structures through Conversion from 2D Materials to 1D Nanofibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Nanolayered Structures
2.2. Physical Characterization
2.3. Three Assembly Electrochemical Cell Setup and Electrode Preparation
3. Results and Discussion
3.1. Scanning Electron Microscopy
3.2. Powder X-ray Diffraction
3.3. Fourier-Transform Infrared Spectroscopy
3.4. Thermal Analyses
3.5. Electrochemical Performance of CSLDH Electrode
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Shen, Z.; Pan, Z.; Kou, Z.; Liu, X.; Zhang, H.; Gu, Q.; Guan, C.; Wang, J. Hierarchical micro-nano sheet arrays of nickel-cobalt double hydroxides for high-rate Ni-Zn batteries. Adv. Sci. 2019, 6, 1802002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Hu, L.; Chen, M.; Yan, Y.; Wu, L. Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv. Funct. Mater. 2014, 24, 934–942. [Google Scholar] [CrossRef]
- Zhou, J.J.; Li, Q.; Chen, C.; Li, Y.L.; Tao, K.; Han, L. Co3O4@CoNi-LDH core/shell nanosheet arrays for high-performance battery-type supercapacitors. Chem. Eng. J. 2018, 350, 551–558. [Google Scholar] [CrossRef]
- Cao, F.; Gan, M.; Ma, L.; Li, X.; Yan, F.; Ye, M.; Zhai, Y.; Zhou, Y. Hierarchical sheet like Ni–Co layered double hydroxide derived from a MOF template for high performance supercapacitors. Synthetic. Met. 2017, 234, 154–160. [Google Scholar] [CrossRef]
- Maki, H.; Inoue, M.; Mizuhata, M. Charge transfer resistance reduction by the interlayer distance expansion of Ni-Al layered double hydroxide for nickel metal hydride battery anode. Electrochim. Acta. 2018, 270, 395–401. [Google Scholar] [CrossRef]
- Kim, M.; Park, T.; Wang, C.; Tang, J.; Lim, H.; Hossain, M.S.A.; Konarova, M.; Yi, J.W.; Na, J.; Kim, J.; et al. Tailored Nanoarchitecturing of Microporous ZIF-8 to Hierarchically Porous Double-Shell Carbons and Their Intrinsic Electrochemical Property. ACS Appl. Mater. Interfaces 2020, 12, 34065–34073. [Google Scholar] [CrossRef]
- Yadav, H.M.; Nath, N.C.D.; Kim, J.; Shinde, S.K.; Ramesh, S.; Hossain, F.; Ibukun, O.; Lee, J. Nickel-Graphene Nanoplatelet Deposited on Carbon Fiber as Binder-Free Electrode for Electrochemical Supercapacitor Application. Polymers 2020, 12, 1666. [Google Scholar] [CrossRef]
- Kim, M.; Lim, H.; Wang, C.; Kani, K.; Kwon, G.; You, J.; Park, H.; Alshehri, A.A.; Alghamidi, Y.G.; Alzahrani, K.A.; et al. Core-shell structured metal-organic framework-derived carbon with redox-active polydopamine nanothin film. Mater. Lett. 2019, 253, 178–182. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, X.; Kim, J.; Malgras, V.; Mo, R.; Li, C.; Lin, Y.; Tan, H.; Tang, J.; Pan, L.; et al. Nanoarchitectured metal–organic framework/polypyrrole hybrids for brackish water desalination using capacitive deionization. Mater. Horiz. 2019, 6, 1433–1437. [Google Scholar] [CrossRef]
- Tanaka, S.; Kaneti, Y.V.; Septiani, N.L.W.; Dou, S.X.; Bando, Y.; Hossain, M.S.A.; Kim, J.; Yamauchi, Y. A Review on Iron Oxide-Based Nanoarchitectures for Biomedical, Energy Storage, and Environmental Applications. Small Methods 2019, 3, 1800512. [Google Scholar] [CrossRef]
- Saddique, J.; Cheng, X.; Shi, H.; Wu, R.; Zhang, Y. High-Performance Ni-Co Sulfide Nanosheet-Nanotubes Grown on Ni Foam as a Binder Free Electrode for Supercapacitors. Appl. Sci. 2019, 9, 3082. [Google Scholar] [CrossRef] [Green Version]
- Chong, B.; Azman, N.; Abdah, M.; Sulaiman, Y. Supercapacitive Performance of N-Doped Graphene/Mn3O4/Fe3O4 as an Electrode Material. Appl. Sci. 2019, 9, 1040. [Google Scholar] [CrossRef] [Green Version]
- Saber, O.; Aljaafari, A.; Osama, A.; Alshoaibi, A. Optimization Conditions for Crystal Growth of Novel Nanolayers, Nanohybrids and Nanocomposites Based on Cobalt, Zirconium, Titanium and Silicon. Chem. Select 2019, 4, 580–588. [Google Scholar] [CrossRef]
- Saber, O.; Aljaafari, A.; Asiri, S.; Batoo, K.M. Designing Magnetic Layered Double Hydroxides and Two-Dimensional Magnetic Nano-Nets of Cobalt Ferrite through a Novel Approach. Appl. Sci. 2018, 8, 2099. [Google Scholar] [CrossRef] [Green Version]
- Saber, O.; Ansari, S.A.; Alshoaibi, A. Development of Ti/Ni Nanolayered Structures to Be a New Candidate for Energy Storage Applications. Appl. Sci. 2020, 10, 6935. [Google Scholar] [CrossRef]
- Kaassis, A.Y.A.; Xu, S.M.; Guan, S.; Evans, D.G.; Wei, M.; Williamsm, G.R. Hydroxy double salts loaded with bioactive ions: Synthesis, intercalation mechanisms, and functional performance. J. Solid State Chem. 2016, 238, 129–138. [Google Scholar] [CrossRef]
- Thomas, N. Mechanochemical synthesis of layered hydroxy salts. Mater. Res. Bull. 2012, 47, 3568–3572. [Google Scholar] [CrossRef]
- Metwally, S.M.; Saber, O.; Ibrahim, S.S.; Al Naim, A.F. Synthesis and characterization of copper hydroxy nitrate salt (Cu2(OH)3NO3): Effect of gamma radiation absorbed doses on thermal stability. Mater. Express 2019, 9, 545–552. [Google Scholar] [CrossRef]
- Liu, L.; Liu, A.; Xu, Y.; Yu, H.; Yang, F.; Wang, J.; Zeng, Z.; Deng, S. Agglomerated nickel–cobalt layered double hydroxide nanosheets on reduced graphene oxide clusters as efficient asymmetric supercapacitor electrodes. J. Mater. Res. 2020, 35, 1205–1213. [Google Scholar] [CrossRef]
- Liang, H.; Lin, J.; Jia, H.; Chen, S.; Qi, J.; Cao, J.; Lin, T.; Fei, W.; Feng, J. Hierarchical NiCo LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor. J. Power Sources 2018, 378, 248–254. [Google Scholar] [CrossRef]
- He, X.; Liu, Q.; Liu, J.; Li, R.; Zhang, H.; Chen, R.; Wang, J. Hierarchical NiCo2O4-NiCoAl layered double hydroxide core/shell nanoforest arrays as advanced electrodes for high performance asymmetric supercapacitors. J. Alloys. Compd. 2017, 724, 130–138. [Google Scholar] [CrossRef]
- Yu, Y.; Tan, Y.; Zhang, H.; Yang, B.; Yuan, L.; Shen, X.; Hu, X. Hybrid Sn-Co binary oxide nanosheets grown on carbon paper as the supercapacitor electrode materials. J. Alloys Compd. 2020, 814, 152199. [Google Scholar] [CrossRef]
- Wang, G.; Li, Y.; Xu, L.; Jin, Z.; Wang, Y. Facile synthesis of difunctional NiV LDH-ZIF-67 p-n junction: Serve as prominent photocatalyst for hydrogen evolution and supercapacitor electrode as well. Renew. Energy 2020, 162, 535–549. [Google Scholar] [CrossRef]
- Ziba, A.; Pacuła, A.; Serwicka, E.M.; Drelinkiewicz, A. Transesterification of Triglycerides with Methanol over Thermally Treated Zn5(OH)8(NO3)2. 2 H2O Salt. Fuel 2010, 89, 1961–1972. [Google Scholar] [CrossRef]
- Delorme, F.; Seron, A.; Giovannelli, F.; Beny, C.; Jean-Prost, V.; Martineau, D. Synthesis and anion exchange properties of a Zn/Co double hydroxide salt. Solid State Ion. 2011, 187, 93–97. [Google Scholar] [CrossRef]
- Saber, O.; Shaalan, N.M.; Osama, A.; Alshoaibi, A. Development of the Morphology and the Band Gap Energy of Co–Si Nanofibers by Inserting Zirconium and Titanium with Dual Anions Intercalation Process. Appl. Sci. 2019, 9, 4775. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.; Li, J.; Xiang, C.; Zou, Y.; Xu, F.; Sun, L.; Zhang, J. Anchoring sea urchin-like cobalt-nickel carbonate hydroxide on 3D carbon sponge for electrochemical energy storage. J. Alloys Compd. 2020, 845, 156024–156034. [Google Scholar] [CrossRef]
- Kolinjavadi, M.; Bhojaraj; Rajamathi, M. Nickel-zinc hydroxy salts with varying amounts of octahedral Zn2+: Trends in stability and selectivity in anion exchange reaction. J. Chem. Sci. 2019, 131, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Bull, R.M.R.; Markland, C.; Williams, G.R.; O’Hare, D. Hydroxy double salts as versatile storage and delivery matrices. J. Mater. Chem. 2016, 238, 129–138. [Google Scholar] [CrossRef]
- You, Y.; Zhao, H.; Vance, G.F. Hybrid Organic-Inorganic Derivatives of Layered Double Hydroxides and Dodecylbenzene sulfonate: Preparation and Adsorption Characteristics. J. Mater. Chem. 2002, 12, 907–912. [Google Scholar] [CrossRef]
- Bao, W.; Tian, H.; Jiang, Y.; Zhu, K.; Zhang, R.; Tan, Y.; Li, W.; Yu, Z.; Wang, L. Controlled preparation of Ni–Al LDH–NO3 by a dual-anion intercalating process for supercapacitors. Ionics 2019, 25, 3859–3866. [Google Scholar] [CrossRef]
- Kotb, H.M.; Saber, O.; Ahmad, M.M. Colossal relative permittivity and low dielectric loss in BaFe0.5Nb0.5O3 ceramics prepared by spark plasma sintering. Results Phys. 2020, 19, 103607. [Google Scholar] [CrossRef]
- Miyata, S. The syntheses of hydrotalcitelike compounds and their structures and physicochemical properties. Clays Clay Miner. 1995, 23, 369–375. [Google Scholar] [CrossRef]
- Xu, Z.P.; Zeng, H.C. Decomposition Pathways of Hydrotalcite-like Compounds Mg1-xAlx (OH)2(NO3) x.nH2O as a Continuous Function of Nitrate Anions. Chem. Mater. 2001, 13, 4564–4572. [Google Scholar] [CrossRef]
- Nakamoto, N. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed.; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Li, X.; Du, D.; Zhang, Y.; Xing, W.; Xue, Q.; Yan, Z. Layered double hydroxides toward high performance supercapacitors. J. Mater. Chem. A 2017, 5, 15460–15485. [Google Scholar] [CrossRef]
- Perez-Ramirez, J.; Mul, G.; Kapteijin, F.; Moulijn, J.A. In situ investigation of the thermal decomposition of Co–Al hydrotalcite in different atmospheres. J. Mater. Chem. 2001, 11, 821–832. [Google Scholar] [CrossRef]
- Magri, V.R.; Duarte, A.; Perotti, G.F.; Constantino, V.R.L. Investigation of Thermal Behavior of Layered Double Hydroxides Intercalated with Carboxymethylcellulose Aiming Bio-Carbon Based Nanocomposites. Chem. Eng. 2019, 3, 55. [Google Scholar] [CrossRef] [Green Version]
- Constantino, V.R.L.; Pinnavaia, T.J. Basic Properties of Mg2+1−x Al3+x Layered Double Hydroxides Intercalated by Carbonate, Hydroxide, Chloride, and Sulfate Anions. Inorg. Chem. 1995, 34, 883–892. [Google Scholar] [CrossRef]
- Omar, F.S.; Numan, A.; Duraisamy, N.; Ramly, M.M.; Ramesh, K.; Ramesh, S. Binary composite of polyaniline/copper cobaltite for high performance asymmetric supercapacitor application. Electrochim. Acta 2017, 227, 41–48. [Google Scholar] [CrossRef]
- Gu, C.D.; Ge, X.; Wang, X.L.; Tu, J.P. Cation–anion double hydrolysis derived layered single metal hydroxide superstructures for boosted super capacitive energy storage. J. Mater. Chem. A 2015, 3, 14228–14238. [Google Scholar] [CrossRef]
- Wang, T.; Hao, Q.; Liu, J.; Zhao, J.; Bell, J.; Wang, H. High capacitive amorphous barium nickel phosphate nanofibers for electrochemical energy storage. RSC Adv. 2016, 6, 45986–45992. [Google Scholar] [CrossRef] [Green Version]
- Premkumara, V.K.; Sivakumar, G. Hydrothermally Synthesized CoSn(OH)6 Nanoparticles for Electrochemical Performance. Jordan J. Phys. 2018, 11, 131–135. [Google Scholar]
- Pal, B.; Krishnan, S.G.; Vijayan, B.L.; Harilal, M.; Yang, C.; Ezema, F.I.; Yusoff, M.M.; Jose, R.R. In situ encapsulation of tin oxide and cobalt oxide composite in porous carbon for high-performance energy storage applications. J. Electroanal. Chem. 2018, 817, 217–225. [Google Scholar] [CrossRef]
- Wang, Y.; Chai, H.; Dong, H.; Xu, J.; Jia, D.; Zhou, W. Superior cycle stability performance of quasi-cuboidal CoV2O6 microstructures as electrode material for supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 27291–27297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Chen, J.; Guo, Q.; Wang, T.; Pang, H. Cobalt vanadium oxide thin nanoplates: Primary electrochemical capacitor application. Sci. Rep. 2014, 4, 5687–5691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Cheng, M.; Chen, D.; Wang, R. Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 3892–3900. [Google Scholar] [CrossRef]
- He, G.; Li, J.; Li, W.; Li, B.; Noor, N.; Xu, K.; Hu, J.; Parkin, I.P. One pot synthesis of nickel foam supported self-assembly of NiWO4 and CoWO4 nanostructures that act as high performance electrochemical capacitor electrodes. J. Mater. Chem. A 2015, 3, 14272–14278. [Google Scholar] [CrossRef]
- Pang, H.; Liu, Y.; Li, J.; Ma, Y.; Li, G.; Ai, Y.; Chen, J.; Zhang, J.; Zheng, H. Cobalt phosphite microarchitectures assembled by ultralong nanoribbons and their application as effective electrochemical capacitor electrode materials. Nanoscale 2013, 5, 503–507. [Google Scholar] [PubMed]
Sample | Cobalt (Co+2) (mole) | Tin (Sn+2) (mole) | Tin (Sn+4) (mole) | Co/Sn Molar Ratio |
---|---|---|---|---|
CSHDS | 0.038 | - | 0.0095 | 4 |
CSLDH-1 | 0.038 | 0.0095 | 4 | |
CSLDH-2 | 0.03 | 0.0095 | 3 |
Electrode Material | Electrolyte | Current Density | Capacitance | References |
---|---|---|---|---|
CoV2O6 | 2 M KOH | 1 Ag−1 | 223 Fg−1 | 45 |
Co3V2O8 | 3 M KOH | 0.5 Ag−1 | 739 Fg−1 | 46 |
Co2P | 6 M KOH | 1 Ag−1 | 416 Fg−1 | 47 |
CoWO4 | 2 M KOH | 1 Ag−1 | 764 Fg−1 | 48 |
Co11(HPO3)8(OH)6 | 3 M KOH | 1.25 Ag−1 | 312 Fg−1 | 49 |
CSLDH-2 | 2 M KOH | 1 Ag−1 | 658 Fg−1 | Present Work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saber, O.; Ansari, S.A.; Aljaafari, A. Enhancement of the Supercapacitive Performance of Cobalt-tin-cyanate Layered Structures through Conversion from 2D Materials to 1D Nanofibers. Appl. Sci. 2021, 11, 4289. https://doi.org/10.3390/app11094289
Saber O, Ansari SA, Aljaafari A. Enhancement of the Supercapacitive Performance of Cobalt-tin-cyanate Layered Structures through Conversion from 2D Materials to 1D Nanofibers. Applied Sciences. 2021; 11(9):4289. https://doi.org/10.3390/app11094289
Chicago/Turabian StyleSaber, Osama, Sajid Ali Ansari, and Abdullah Aljaafari. 2021. "Enhancement of the Supercapacitive Performance of Cobalt-tin-cyanate Layered Structures through Conversion from 2D Materials to 1D Nanofibers" Applied Sciences 11, no. 9: 4289. https://doi.org/10.3390/app11094289
APA StyleSaber, O., Ansari, S. A., & Aljaafari, A. (2021). Enhancement of the Supercapacitive Performance of Cobalt-tin-cyanate Layered Structures through Conversion from 2D Materials to 1D Nanofibers. Applied Sciences, 11(9), 4289. https://doi.org/10.3390/app11094289