Phytotoxic Activity and Growth Inhibitory Substances from Albizia richardiana (Voigt.) King & Prain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Test Plant Species
2.3. Extract Preparation
2.4. Growth Bioassay Experiments
2.5. Isolation and Purification of the Growth Inhibitory Substances
2.6. Growth Bioassay of the Isolated Substances
2.7. Statistical Analysis
3. Results
3.1. Allelopathic Effects of the Albizia richardiana Extracts
3.2. Determination of the Structures of the Allelopathic Substances
3.3. The Biological Effects of the Isolated Compounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Crews, T.E.; Mohler, C.L.; Power, A.G. Energetics and ecosystem integrity: The defining principles of sustainable agriculture. Am. J. Altern. Agric. 1991, 6, 146–149. [Google Scholar] [CrossRef]
- Kambewa, E.V. Contracting for sustainability: An Analysis of the Lake Victoria-EU. Nile Perch Chain; Wageningen Acad. Pub: Wageningen, The Netherlands, 2007; pp. 15–20. [Google Scholar]
- Begum, K.; Shammi, M.; Hasan, N.; Appiah, K.S.; Fujii, Y. Evaluation of Potential Volatile Allelopathic Plants from Bangladesh, with Sapindus mukorossi as a Candidate Species. Agronomy 2019, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Rajcan, I.; Swanton, C.J. Understanding maize–weed competition: Resource competition, light quality and the whole plant. Field Crop. Res. 2001, 71, 139–150. [Google Scholar] [CrossRef]
- Jabran, K.; Mahajan, G.; Sardana, V.; Chauhan, B.S. Allelopathy for weed control in agricultural systems. Crop. Prot. 2015, 72, 57–65. [Google Scholar] [CrossRef]
- Muñoz, M.; Torres-Pagán, N.; Peiró, R.; Guijarro, R.; Sánchez-Moreiras, A.M.; Verdeguer, M. Phytotoxic Effects of Three Natural Compounds: Pelargonic Acid, Carvacrol, and Cinnamic Aldehyde, against Problematic Weeds in Mediterranean Crops. Agronomy 2020, 10, 791. [Google Scholar] [CrossRef]
- Bhadoria, P.B.S. Allelopathy: A Natural Way towards Weed Management. Am. J. Exp. Agric. 2010, 1, 7–20. [Google Scholar] [CrossRef]
- Mada, D.; Duniya, N.; Adams, I.G. Effect of continuous application of herbicide on soil and environment with crop protection machinery in Southern Adamawa state. Int. Ref. J. Eng. Sci. 2013, 2, 4–9. [Google Scholar]
- Yang, X.; Kong, C.H. Interference of allelopathic rice with paddy weeds at the root level. Plant. Biol. 2017, 19, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Cheng, Z.; Meng, H.; Yang, X.; Ahmad, I. Allelopathic effect of decomposed garlic (Allium sativum L.) stalk on lettuce (L. sativa var. crispa L.). Pak. J. Bot. 2013, 45, 225–233. [Google Scholar]
- Weir, T.L.; Park, S.-W.; Vivanco, J.M. Biochemical and physiological mechanisms mediated by allelochemicals. Curr. Opin. Plant. Biol. 2004, 7, 472–479. [Google Scholar] [CrossRef]
- Zaïdi, M.A.; Huda, A.; Crow, S.A. Biological activity and elemental composition of Arceuthobium oxycedri(Dwarf Mistletoe) of juniper forest of Pakistan. Acta Bot. Hung. 2008, 50, 223–230. [Google Scholar] [CrossRef]
- Favaretto, A.; Chini, S.O.; Basso, S.M.S.; Sobottka, A.M.; Bertol, C.D.; Perez, N.B. Pattern of allelochemical distribution in leaves and roots of tough lovegrass (Eragrostis plana Nees.). Aust. J. Crop Sci. 2015, 9, 1119–1125. [Google Scholar]
- Shaikh, A.C.; Gupta, A.; Chaphalkar, S.R. Identification of structurally unique molecules, phytochemical and immunological activity of medicinal plants. Int. J. Med. Pharm. Res. 2016, 4, 223–230. [Google Scholar]
- Tuyen, P.T.; Xuan, T.D.; Anh, T.T.T.; Van, T.M.; Ahmad, A.; Elzaawely, A.A.; Khanh, T.D. Weed Suppressing Potential and Isolation of Potent Plant Growth Inhibitors from Castanea crenata Sieb. et Zucc. Molecules 2018, 23, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvi, E.K.; Turumatay, H.; Demir, A.; Turumatay, E.A. Phytochemical profiling and evaluation of the hepatoprotective effect of Cuscuta campestris by high-performance liquid chromatography with diode array detection. Anal. Lett. 2018, 51, 1–15. [Google Scholar] [CrossRef]
- Sołtys-Kalina, D.; Rudzińska-Langwald, A.; Kurek, W.; Gniazdowska, A.; Śliwińska, E.; Bogatek, R. Cyanamide mode of action during inhibition of onion (Allium cepa L.) root growth involves disturbances in cell division and cytoskeleton formation. Planta 2011, 234, 609–621. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Liu, K.; Xie, Z.; Liu, M.; Chen, C. Effects of decomposing leaf litter of Leucaena leucocephala on photosynthetic traits of Cynodon dactylon and Medicago sativa. New For. 2018, 49, 667–679. [Google Scholar] [CrossRef]
- Saleh, A.M. In vitro assessment of allelopathic potential of olive processing waste on maize (Zea mays L.). Egypt. J. Exp. Biol. 2013, 9, 35–39. [Google Scholar]
- Vyvyan, J.R. Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 2002, 58, 1631–1646. [Google Scholar] [CrossRef]
- Weston, L.A.; Duke, S.O. Weed and Crop Allelopathy. Crit. Rev. Plant. Sci. 2003, 22, 367–389. [Google Scholar] [CrossRef]
- Soltys, D.; Krasuska, U.; Bogatek, R.; Gniazdowska, R.B.A.A. Allelochemicals as Bioherbicides—Present and Perspectives. In Herbicides—Current Research and Case Studies in Use; IntechOpen: London, UK, 2013. [Google Scholar]
- Chung, I.M.; Kim, S.H.; Oh, Y.; Ali, M.; Ahmad, A. New constituents from Oryza sativa L. straw and their algicidal activities against blue-green algae. Allelopath. J. 2017, 40, 47–62. [Google Scholar] [CrossRef]
- Daniel, J.M.; Gillian, K.B.; Joseph, T.M.; Pauline, Y.L. Molecular phylogeny of Acacia Mill. (Mimosoideae: Leguminosae): Evidence for major clades and informal classification. Taxon 2010, 59, 7–19. [Google Scholar]
- Allan, G.J.; Porter, J.M. Tribal delimitation and phylogenetic relationships of Loteae and Coronilleae (Faboideae: Fabaceae) with special reference to Lotus: Evidence from nuclear ribosomal ITS sequences. Am. J. Bot. 2000, 87, 1871–1881. [Google Scholar] [CrossRef] [PubMed]
- Azad, S.; Paul, N.K.; Matin, A. Do pre-sowing treatments affect seed germination in Albizia richardiana and Lagerstroemia speciosa? Front. Agric. China 2010, 4, 181–184. [Google Scholar] [CrossRef]
- Salam, A.; Akhter, K.; Rahman, M.A.; Chowdhury, M.H.; Mridha, M.N.A.; Chowdhury, F.H. CCB preservative treatment of rajkoroi (Albizia richardiana King & Prain) wood by soaking method. Eco-Friendly Agril. J. 2019, 1, 74–77. [Google Scholar]
- Das, D.K.; Alam, M.K. Trees of Bangladesh; Bangladesh Forest Research Institute: Chittagong, Bangladesh, 2001. [Google Scholar]
- Al Faruq, M.A.; Zaman, S.; Katoh, M. Perceptions of Local People toward Community Development and Forest Conservation in Bangladesh: The Case of Sal Forests. J. For. Plan. 2017, 22, 1. [Google Scholar] [CrossRef]
- Rahman, M.M.; Das, A.K.; Asaduzzaman, M.; Biswas, S.K.; Hannan, M.O. Physical and mechanical properties of Raj Koroi (Albizia richardiana) plywood. Afr. J. Wood Sci. For. 2013, 2, 98–103. [Google Scholar]
- Joycharat, N.; Thammavong, S.; Limsuwan, S.; Homlaead, S.; Voravuthikunchai, S.P.; Yingyongnarongkul, B.-E.; Dej-Adisai, S.; Subhadhirasakul, S. Antibacterial substances from Albizia myriophylla wood against cariogenic Streptococcus mutans. Arch. Pharmacal. Res. 2013, 36, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Xinrong, Y.; Anmin, C.; Fang, S.; Bingyi, F.; Jinlin, Q.; Yingfu, M.; Quan, L.; Yuan, G.; Shuqian, W.; Werner, H.; et al. Encyclopedic Reference of Traditional Chinese Medicine; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Rahman, M.; Shetu, H.J.; Sukul, A.; Rahman, I. Phytochemical and biological evaluation of albizia richardiana benth, Fabaceae family. World J. Pharm. Res. 2015, 4, 168–176. [Google Scholar]
- Islam, M.N.; Tasnim, H.; Arshad, L.; Haque, A.; Tareq, S.M.; Kamal, A.T.M.M.; Rahman, M.; Reza, A.S.M.A.; Chowdhury, K.A.A.; Tareq, A.M. Stem extract of Albizia richardiana exhibits potent antioxidant, cytotoxic, antimicrobial, anti-inflammatory and thrombolytic effects through in vitro approach. Clin. Phytosci. 2020, 6, 1–9. [Google Scholar] [CrossRef]
- Xuan, T.D.; Shinkichi, T.; Khanh, T.D.; Chung, I.M. Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: An overview. Crop. Prot. 2005, 24, 197–206. [Google Scholar] [CrossRef]
- Kato, T.; Tsunakawa, M.; Sasaki, N.; Aizawa, H.; Fujita, K.; Kitahara, Y.; Takahashi, N. Growth and germination inhibitors in rice husks. Phytochemistry 1977, 16, 45–48. [Google Scholar] [CrossRef]
- Kai, H.; Baba, M.; Okuyama, T. Two new megastigmanes from the leaves of Cucumis sativus. Chem. Pharm. Bull. 2007, 55, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Hodges, R.; Porte, A.L. The structure of loliolide: A terpene from Lolium perenne. Tetrahedron 1964, 20, 1463–1467. [Google Scholar] [CrossRef]
- Valdes, L.J. Loliolide from Salvia divinorum. J. Nat. Prod. 1986, 49, 171. [Google Scholar] [CrossRef]
- Kimura, J.; Maki, N. New Loliolide Derivatives from the Brown AlgaUndaria pinnatifida. J. Nat. Prod. 2002, 65, 57–58. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Zaman, F.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Phytotoxic potential of Chrysopogon aciculatus (Retz.) Trin. (Poaceae). Weed Biol. Manag. 2019, 19, 51–58. [Google Scholar] [CrossRef]
- Rob, M.; Hossen, K.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Phytotoxic Activity and Identification of Phytotoxic Substances from Schumannianthus dichotomus. Plants 2020, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Hossen, K.; Das, K.R.; Okada, S.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Allelopathic Potential and Active Substances from Wedelia Chinensis (Osbeck). Foods 2020, 9, 1591. [Google Scholar] [CrossRef]
- Hossen, K.; Kato-Noguchi, H. Determination of allelopathic properties of Acacia catechu (L.f.) Willd. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 2050–2059. [Google Scholar] [CrossRef]
- Scognamiglio, M.; D’Abrosca, B.; Esposito, A.; Pacifico, S.; Monaco, P.; Fiorentino, A. Plant growth inhibitors: Allelopathic role or phytotoxic effects? Focus on Mediterranean biomes. Phytochem. Rev. 2013, 12, 803–830. [Google Scholar] [CrossRef]
- Reigosa, M.J.; Sánchez-Moreiras, A.; González, L. Ecophysiological Approach in Allelopathy. Crit. Rev. Plant. Sci. 1999, 18, 577–608. [Google Scholar] [CrossRef]
- Zhuo, Y.H.; Yu, J.Q. Allelochemicals and photosynthesis. In Allelopathy: A Physiological Process with Ecological Implications; Reigosa, M.J., Pedrol, N., González, L., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2006; pp. 127–139. [Google Scholar]
- Yan, X.; Lynch, J.P.; Beebe, S.E. Genetic Variation for Phosphorus Efficiency of Common Bean in Contrasting Soil Types: I. Vegetative Response. Crop. Sci. 1995, 35, 1086–1093. [Google Scholar] [CrossRef]
- Wu, H.; Pratley, J.; Lemerled, D.; Haig, T. Crop cultivars with allelopathic capability. Weed Res. 1999, 39, 171–180. [Google Scholar] [CrossRef]
- Netsere, A.; Mendesil, E. Allelopathic effects of Parthenium hysterophorus L. aqueous extracts on soybean (Glycine max L.) and haricot bean (Phaseolus vulgaris L.) seed germination, shoot and root growth and dry matter production. J. Appl. Bot. Food Qual. 2011, 84, 219–222. [Google Scholar]
- Liu, J.; Xie, M.; Li, X.; Jin, H.; Yang, X.; Yan, Z.; Su, A.; Qin, B. Main Allelochemicals from the Rhizosphere Soil of Saussurea lappa (Decne.) Sch. Bip. and Their Effects on Plants’ Antioxidase Systems. Molecules 2018, 23, 2506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.S.; Kato-Noguchi, H. Phytotoxicity assessment of Cyperus difformis (L.) towards a sustainable weed management option. J. Anim. Plant. Sci. 2016, 2, 1765–1771. [Google Scholar]
- Nishida, N.; Tamotsu, S.; Nagata, N.; Saito, C.; Sakai, A. Allelopathic Effects of Volatile Monoterpenoids Produced by Salvia leucophylla: Inhibition of Cell Proliferation and DNA Synthesis in the Root Apical Meristem of Brassica campestris Seedlings. J. Chem. Ecol. 2005, 31, 1187–1203. [Google Scholar] [CrossRef]
- Tanveer, A.; Jabbar, M.K.; Kahliq, A.; Matloob, A.; Abbas, R.N.; Javaid, M.M. Allelopathic effects of aqueous and organic fractions of Euphorbia dracunculoides Lam. on germination and seedling growth of chickpea and wheat. Chil. J. Agric. Res. 2012, 72, 495–501. [Google Scholar] [CrossRef]
- Pan, L.; Sinden, M.R.; Kennedy, A.H.; Chai, H.; Watson, L.E.; Graham, T.L.; Kinghorn, A.D. Bioactive constituents of Helianthus tuberosus (Jerusalem artichoke). Phytochem. Lett. 2009, 2, 15–18. [Google Scholar] [CrossRef]
- Takasugi, M.; Anetai, M.; Katsui, N.; Masamune, T. The occurrence of vomifoliol, dehydrovomifoliol and dihydrophaseic acid in the roots of “kidney bean” (Phaseolus vulgaris L.). Chem. Lett. 1973, 2, 245–248. [Google Scholar] [CrossRef]
- Kim, I.; Chin, Y.-W.; Lim, S.W.; Kim, Y.C.; Kim, J. Norisoprenoids and hepatoprotective flavone glycosides from the aerial parts of Beta vulgaris var. cicla. Arch. Pharmacal Res. 2004, 27, 600–603. [Google Scholar] [CrossRef]
- Machado, F.B.; Yamamoto, R.E.; Zanoli, K.; Nocchi, S.R.; Novello, C.R.; Schuquel, I.T.A.; Sakuragui, C.M.; Luftmann, H.; Ueda-Nakamura, T.; Nakamura, C.V.; et al. Evaluation of the Antiproliferative Activity of the Leaves from Arctium lappa by a Bioassay-Guided Fractionation. Molecules 2012, 17, 1852–1859. [Google Scholar] [CrossRef]
- Yang, Y.; Bakri, M.; Gu, D.; Aisa, H.A. Separation of (s)-dehydrovomifoliol from leaves of nitraria sibirica pall. by high-speed counter-current chromatography. J. Liq. Chromatogr. Relat. Technol. 2012, 36, 573–582. [Google Scholar] [CrossRef]
- Mayer, H. Synthesis of optically active carotenoids and related compounds. Pure Appl. Chem. 1979, 51, 535–564. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Shen, L.; Zhang, D.-W.; Dai, S.-J. Two New Sesquiterpenoids from Solanum lyratum with Cytotoxic Activities. Chem. Pharm. Bull. 2009, 57, 408–410. [Google Scholar] [CrossRef] [Green Version]
- Grabarczyk, M.; Winska, K.; Maczka, W.; Potaniec, B.; Anioł, M. Loliolide‒The most ubiquitous lactone. Folia Biol. Oecol. 2015, 11, 1–8. [Google Scholar] [CrossRef]
- Erosa-Rejón, G.; Peña-Rodríguez, L.M.; Sterner, O. Secondary Metabolites from Heliotropium angiospermum. J. Mex. Chem. Soc. 2019, 53, 44–47. [Google Scholar] [CrossRef]
- Zhou, B.; Kong, C.H.; Li, Y.-H.; Wang, P.; Xu, X.-H. Crabgrass (Digitaria sanguinalis) Allelochemicals That Interfere with Crop Growth and the Soil Microbial Community. J. Agric. Food Chem. 2013, 61, 5310–5317. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Moriyasu, M.; Ohno, O.; Suenaga, K. Growth limiting effects on various terrestrial plant species by an allelopathic substance, loliolide, from water hyacinth. Aquat. Bot. 2014, 117, 56–61. [Google Scholar] [CrossRef]
- Masum, S.M.; Akamine, H.; Hossain, M.A.; Sakagami, J.I.; Ishii, T.; Gima, S. Assessment of the allelopathic potential and iden-tification of the phytotoxic substances from the straw of Bangladeshi indigenous rice variety ‘Goria’. Appl. Ecol. Environ. Res. 2020, 18, 5547–5560. [Google Scholar] [CrossRef]
- Yang, X.; Kang, M.-C.; Lee, K.-W.; Kang, S.-M.; Lee, W.-W.; Jeon, Y.-J. Antioxidant activity and cell protective effect of loliolide isolated from Sargassum ringgoldianum subsp. coreanum. ALGAE 2011, 26, 201–208. [Google Scholar] [CrossRef]
- Kim, H.-S.; Wang, L.; Fernando, I.P.S.; Je, J.-G.; Ko, S.-C.; Kang, M.C.; Lee, J.M.; Yim, M.-J.; Jeon, Y.-J.; Lee, D.-S. Antioxidant efficacy of (−)-loliolide isolated from Sargassum horneri against AAPH-induced oxidative damage in Vero cells and zebrafish models in vivo. Environ. Biol. Fishes 2020, 32, 3341–3348. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, D.S.; Kim, S.; Lorz, L.R.; Choi, E.; Lim, H.Y.; Hossain, M.A.; Chang, S.; Choi, Y.I.; Park, K.J.; et al. Loliolide Presents Antiapoptosis and Antiscratching Effects in Human Keratinocytes. Int. J. Mol. Sci. 2019, 20, 651. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Evangelopoulos, D.; Bhakta, S.; Gray, A.I.; Seidel, V. Antitubercular activity of Arctium lappa and Tussilago farfara extracts and constituents. J. Ethnopharmacol. 2014, 155, 796–800. [Google Scholar] [CrossRef]
- Hunyadi, A.; Veres, K.; Danko, B.; Kele, Z.; Wéber, E.; Hetenyi, A.; Zupkó, I.; Hsieh, T.-J. In vitroAnti-diabetic Activity and Chemical Characterization of an Apolar Fraction ofMorus albaLeaf Water Extract. Phytother. Res. 2012, 27, 847–851. [Google Scholar] [CrossRef]
- Colom, O.A.; Popich, S.; Bardon, A. Bioactive constituents from Rollinia emarginata (Annonaceae). Nat. Prod. Res. 2007, 21, 254–259. [Google Scholar] [CrossRef]
- Zaman, F.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Two allelopathic substances fromPaspalum commersoniiLam. Acta Agric. Scand. Sect. B Plant. Soil Sci. 2017, 68, 342–348. [Google Scholar] [CrossRef]
- Pan, W.; Liu, K.; Guan, Y.; Tan, G.T.; Van Hung, N.; Cuong, N.M.; Soejarto, D.D.; Pezzuto, J.M.; Fong, H.H.S.; Hongjie, Z. Bioactive Compounds from Vitex leptobotrys. J. Nat. Prod. 2014, 77, 663–667. [Google Scholar] [CrossRef] [Green Version]
- DellaGreca, M.; Fiorentino, A.; Monaco, P.; Previtera, L.; Temussi, F.; Zarrelli, A. New dimeric phenanthrenoids from the rhizomes of Juncus acutus. Structure determination and antialgal activity. Tetrahedron 2003, 59, 2317–2324. [Google Scholar] [CrossRef]
- Kobayashi, M.; Ueda, M.; Furumoto, T.; Kawanami, Y. Retarding Activity of 6-O-Acyl-D-alloses against Plant Growth. Biosci. Biotechnol. Biochem. 2010, 74, 216–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tested Species | I50 Values (g Dry Weight Equivalent Extract/mL) | ||
---|---|---|---|
Shoot | Root | ||
Dicot | Cress | 0.019 | 0.015 |
Monocot | Barnyard grass | 0.049 | 0.008 |
Test Plant | Dehydrovomifoliol | Loliolide | |
---|---|---|---|
(mM) | |||
Cress | Shoot | 3.1633 | 0.0341 |
Root | 3.0155 | 0.0256 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossen, K.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Phytotoxic Activity and Growth Inhibitory Substances from Albizia richardiana (Voigt.) King & Prain. Appl. Sci. 2021, 11, 1455. https://doi.org/10.3390/app11041455
Hossen K, Iwasaki A, Suenaga K, Kato-Noguchi H. Phytotoxic Activity and Growth Inhibitory Substances from Albizia richardiana (Voigt.) King & Prain. Applied Sciences. 2021; 11(4):1455. https://doi.org/10.3390/app11041455
Chicago/Turabian StyleHossen, Kawsar, Arihiro Iwasaki, Kiyotake Suenaga, and Hisashi Kato-Noguchi. 2021. "Phytotoxic Activity and Growth Inhibitory Substances from Albizia richardiana (Voigt.) King & Prain" Applied Sciences 11, no. 4: 1455. https://doi.org/10.3390/app11041455
APA StyleHossen, K., Iwasaki, A., Suenaga, K., & Kato-Noguchi, H. (2021). Phytotoxic Activity and Growth Inhibitory Substances from Albizia richardiana (Voigt.) King & Prain. Applied Sciences, 11(4), 1455. https://doi.org/10.3390/app11041455