Assessment of the Suitability of Methods for Testing the Antioxidant Activity of Anti-Aging Creams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards and Reagents
2.1.1. Chemicals
2.1.2. Instrument
2.2. Sample Preparation
2.2.1. Extraction
2.2.2. In Vitro Methods of Testing of the Antioxidant Capacity
DPPH Method
Folin-Ciocalteu Method
FRAP Method
ABTS Method
Method of Chelating Ferro (II) Ions with Ferrosine
3. Results
3.1. Results of In Vitro Testing of the Antioxidant Capacity
3.1.1. DPPH Method
3.1.2. Folin-Ciocalteu Method
3.1.3. FRAP Method
3.1.4. ABTS Method
3.1.5. Ferroion Chelation Method with Ferrosine
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, S.; Duan, E. Fighting against Skin Aging. Cell Transpl. 2018, 27, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Ganceviciene, R.; Liakou, A.I.; Theadoridis, A.; Makrantonaki, E.; Zouboulis, C.C. Skin anti-aging strategies. Dermatol. Endocrionol. 2012, 4, 308–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abid Keen, M.; Hassan, I. Vitamin E in dermatology. Indian Dermatol. Online J. 2016, 7, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Verschoore, M.; Nielson, M. The Rationale of Anti-Aging Cosmetic Ingredients. J. Drugs Dermatol. 2017, 16, 94–97. [Google Scholar]
- Iti, S.; Kashish, B.; Mohd, Y. Status of surfactants as penetration enhancers in transdermal drug delivery. J. Pharm. Bioallied Sci. 2012, 4, 2–9. [Google Scholar]
- Kim, B.; Cho, H.-E.; Moon, S.H.; Ahn, H.-J.; Bae, S.; Cho, H.-D.; An, S. Transdermal delivery systems in cosmetics. Biomed. Dermatol. 2020, 4, 1–12. [Google Scholar] [CrossRef]
- Ghafourian, T.; Nokhodchi, A.; Kaialy, W. Surfactants as Penetration Enhancers for Dermal and Transdermal Drug Delivery. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement; Dragicevic, N., Maibach, H., Eds.; Springer: Berlin, Germany, 2015. [Google Scholar]
- Santos-Sánchez, N.F.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidants, Chapter: Antioxidant Compounds and Their Antioxidant Mechanism; Intech Open: London, UK, 2019; pp. 1–28. [Google Scholar]
- Nur Alam, M.; Nusrat, J.B.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 2013, 21, 143–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gubta, D. Methods for determination of antioxidant capacity: A review. Int. J. Pharm. Sci. Res. 2015, 6, 546–566. [Google Scholar]
- Aurelia, M.P.; Gheorghe, P.N. Methods for Total Antioxidant Activity Determination: A Review. Biochem. Anal. Biochem. 2011, 1, 1–10. [Google Scholar]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Arnao, M.B. Some methodological problems in the determination of antioxidant activity using chromogen radicals: A practical case. Trends Food Sci. Tech. 2000, 11, 419–421. [Google Scholar] [CrossRef]
- Mukherjee, T.; Bose, S.; Mukhopadhyay, S.K. Antioxidant properties of the carotenoid extracts of three Deinococcus–Thermus phylum bacteria. Meiothermus sp. strains RP and TP and Thermus sp. strain YY from Paniphala hot spring. India. Nutrire 2017, 42, 7. [Google Scholar] [CrossRef] [Green Version]
- Batnariu, M. Methods of Analysis (Extraction. Separation. Identification and Quantification) of Carotenoids from Natural Products. J. Ecosys. Ecography 2016, 6, 193. [Google Scholar] [CrossRef]
- Jeo, J.D. Revisiting DPPH (2.2-diphenyl-1-picrylhydrazyl) assay as a useful tool in antioxidant evaluation: A new IC100 concept to address its limitations. J. Food Bioact. 2019, 7, 36–42. [Google Scholar]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant Activity/Capacity Measurement. 1. Classification. Physicochemical Principles. Mechanisms. and Electron Transfer (ET)-Based Assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef] [PubMed]
- Lewinska, A.; Wnuk, M.; Slota, E.; Bartozs, G. Total anti-oxidant capacity of cell culture media. Clin. Exp. Pharmacol. P 2016, 34, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Amorati, R.; Valgimigli, L. Advantages and limitations of common testing methods for antioxidants. Free Radical. Res. 2015, 49, 633–649. [Google Scholar] [CrossRef] [PubMed]
- Stookey, L.L. Ferrozine—A new spectrophotometric reagent for iron. Anal. Chem. 1970, 42, 779–781. [Google Scholar] [CrossRef] [Green Version]
SAMPLE | A1 | A2 | A3 | SD | CV (%) | |
---|---|---|---|---|---|---|
BLANK | 2.416 | 2.417 | 2.416 | 2.416 | 0.0007 | 0.03 |
1 | 1.993 | 1.994 | 1.993 | 1.993 | 0.0007 | 0.04 |
2 | 2.008 | 2.007 | 2.008 | 2.008 | 0.0010 | 0.05 |
3 | 2.108 | 2.106 | 2.106 | 2.016 | 0.0010 | 0.05 |
4 | 1.174 | 1.175 | 1.178 | 1.176 | 0.0026 | 0.22 |
5 | 1.752 | 1.751 | 1.748 | 1.750 | 0.0021 | 0.12 |
6 | 2.197 | 2.195 | 2.200 | 2.197 | 0.0025 | 0.11 |
7 | 1.889 | 1.900 | 1.899 | 1.899 | 0.0007 | 0.04 |
SAMPLE | A1 | A2 | A3 | SD | CV (%) | |
---|---|---|---|---|---|---|
BLANK | 1.924 | 1.923 | 1.923 | 1.923 | 0.0010 | 0.04 |
1 | 1.002 | 1.003 | 1.002 | 1.002 | 0.0007 | 0.04 |
2 | 1.616 | 1.616 | 1.615 | 1.616 | 0.0070 | 0.35 |
3 | 1.482 | 1.481 | 1.484 | 1.483 | 0.0010 | 0.05 |
4 | 0.323 | 0.323 | 0.324 | 0.323 | 0.0021 | 0.18 |
5 | 1.553 | 1.553 | 1.554 | 1.553 | 0.0021 | 0.12 |
6 | 1.551 | 1.554 | 1.553 | 1.552 | 0.0025 | 0.11 |
7 | 0.368 | 0.368 | 0.367 | 0.368 | 0.0007 | 0.04 |
Sample | % of Inhibition | μg TE/g of Sample |
---|---|---|
1 | 17.51 | 82.31 |
2 | 16.89 | 79.88 |
3 | 16.56 | 78.56 |
4 | 51.32 | 215.69 |
5 | 27.57 | 121.98 |
6 | 9.06 | 49.00 |
7 | 21.81 | 97.66 |
Sample | % of Inhibition | μg AE/g of Sample |
---|---|---|
1 | 47.89 | 28.64 |
2 | 15.96 | 7.26 |
3 | 22.88 | 11.89 |
4 | 83.20 | 52.29 |
5 | 19.24 | 9.45 |
6 | 20.85 | 9.48 |
7 | 80.86 | 50.72 |
SAMPLE | A1 | A2 | A3 | SD | CV (%) | |
---|---|---|---|---|---|---|
1 | 0.028 | 0.029 | 0.029 | 0.029 | 0.0007 | 2.41 |
2 | 0.072 | 0.073 | 0.073 | 0.073 | 0.0007 | 0.96 |
3 | 0.233 | 0.233 | 0.234 | 0.233 | 0.0007 | 0.30 |
4 | 0.357 | 0.356 | 0.357 | 0.357 | 0.0007 | 0.20 |
5 | 0.178 | 0.178 | 0.177 | 0.178 | 0.0007 | 0.39 |
6 | 0.024 | 0.023 | 0.023 | 0.023 | 0.0007 | 3.04 |
7 | 0.172 | 0.173 | 0.172 | 0.172 | 0.0007 | 0.41 |
SAMPLE | A1 | A2 | A3 | SD | CV (%) | |
---|---|---|---|---|---|---|
1 | 0.239 | 0.242 | 0.242 | 0.141 | 0.0017 | 0.70 |
2 | 0.479 | 0.479 | 0.478 | 0.179 | 0.0007 | 0.15 |
3 | 0.119 | 0.117 | 0.119 | 0.119 | 0.0014 | 1.18 |
4 | 0.305 | 0.304 | 0.304 | 0.304 | 0.0007 | 0.23 |
5 | 0.071 | 0.070 | 0.070 | 0.070 | 0.0007 | 1.00 |
6 | 0.128 | 0.128 | 0.127 | 0.128 | 0.0007 | 0.101 |
7 | 0.131 | 0.131 | 0.130 | 0.131 | 0.0007 | 0.53 |
Sample | μg GAE/g of Sample |
---|---|
1 | 32.89 |
2 | 83.87 |
3 | 268.91 |
4 | 412.39 |
5 | 205.27 |
6 | 25.92 |
7 | 198.56 |
Sample | μg AE/g of Sample |
---|---|
1 | 137.46 |
2 | 201.71 |
3 | 96.88 |
4 | 413.07 |
5 | 17.41 |
6 | 115.96 |
7 | 120.56 |
SAMPLE | A1 | A2 | A3 | SD | CV (%) | |
---|---|---|---|---|---|---|
1 | 0.191 | 0.192 | 0.192 | 0.192 | 0.0007 | 0.36 |
2 | 0.104 | 0.101 | 0.101 | 0.102 | 0.0016 | 1.57 |
3 | 0.155 | 0.154 | 0.154 | 0.154 | 0.0007 | 0.45 |
4 | 0.195 | 0.194 | 0.195 | 0.195 | 0.0007 | 0.36 |
5 | 0.138 | 0.139 | 0.139 | 0.139 | 0.0007 | 0.50 |
6 | 0.080 | 0.081 | 0.081 | 0.081 | 0.0007 | 0.86 |
7 | 0.455 | 0.455 | 0.455 | 0.455 | 0 | 0 |
SAMPLE | A1 | A2 | A3 | SD | CV (%) | |
---|---|---|---|---|---|---|
1 | 0.199 | 0.199 | 0.198 | 0.199 | 0.0007 | 0.35 |
2 | 0.176 | 0.175 | 0.175 | 0.175 | 0.0007 | 0.40 |
3 | 0.165 | 0.165 | 0.165 | 0.165 | 0 | 0 |
4 | 0.181 | 0.183 | 0.183 | 0.183 | 0.0014 | 0.76 |
5 | 0.205 | 0.206 | 0.206 | 0.206 | 0.0007 | 0.34 |
6 | 0.137 | 0.136 | 0.136 | 0.136 | 0.0007 | 0.51 |
7 | 0.194 | 0.195 | 0.194 | 0.194 | 0.0007 | 0.36 |
Sample | μg TE/g of Sample |
---|---|
1 | 220.19 |
2 | 90.07 |
3 | 165.25 |
4 | 224.53 |
5 | 143.57 |
6 | 59.71 |
7 | 600.43 |
Sample | μg AE/g of Sample |
---|---|
1 | 244.47 |
2 | 213.83 |
3 | 201.06 |
4 | 224.04 |
5 | 253.40 |
6 | 164.04 |
7 | 238.06 |
SAMPLE | A1 | A2 | A3 | SD | CV (%) | |
---|---|---|---|---|---|---|
BLANK | 0.320 | 0.320 | 0.322 | 0.320 | 0.0007 | 0.22 |
1 | 0.209 | 0.212 | 0.210 | 0.209 | 0.0020 | 0.96 |
2 | 0.203 | 0.203 | 0.202 | 0.203 | 0.0007 | 0.34 |
3 | 0.035 | 0.036 | 0.034 | 0.035 | 0.0010 | 2.86 |
4 | 0.003 | 0.003 | 0.003 | 0.003 | 0 | 0 |
5 | 0.079 | 0.079 | 0.078 | 0.079 | 0.0007 | 0.50 |
6 | 0.250 | 0.249 | 0.247 | 0.249 | 0.0016 | 0.89 |
7 | 0.123 | 0.121 | 0.125 | 0.123 | 0.0020 | 1.62 |
SAMPLE | A1 | A2 | A3 | SD | CV (%) | |
---|---|---|---|---|---|---|
BLANK | 0.526 | 0.525 | 0.527 | 0.526 | 0.0010 | 0.19 |
1 | 0.232 | 0.231 | 0.232 | 0.232 | 0.0007 | 0.30 |
2 | 0.188 | 0.190 | 0.188 | 0.188 | 0.0014 | 0.74 |
3 | 0.493 | 0.493 | 0.494 | 0.493 | 0.0007 | 0.14 |
4 | 0.099 | 0.101 | 0.100 | 0.100 | 0.0010 | 1.00 |
5 | 0.141 | 0.139 | 0.139 | 0.140 | 0.0007 | 0.50 |
6 | 0.522 | 0.521 | 0.522 | 0.522 | 0.0007 | 0.13 |
7 | 0.350 | 0.351 | 0.350 | 0.350 | 0.0007 | 0.20 |
Sample | % of Inhibition | μg TE/g of Sample |
---|---|---|
1 | 34.69 | 29.76 |
2 | 36.56 | 30.87 |
3 | 89.06 | 66.36 |
4 | 99.06 | 73.12 |
5 | 75.31 | 57.06 |
6 | 22.19 | 21.15 |
7 | 61.56 | 47.77 |
Sample | % of Inhibition | μg AE/g of Sample |
---|---|---|
1 | 55.89 | 19.73 |
2 | 64.26 | 23.04 |
3 | 6.08 | 0.07 |
4 | 80.99 | 79.67 |
5 | 73.38 | 26.66 |
6 | 0.76 | 0.02 |
7 | 33.46 | 10.84 |
SAMPLE | A1 | A2 | A3 | SD | CV (%) | |
---|---|---|---|---|---|---|
BLANK | 0.603 | 0.603 | 0.602 | 0.603 | 0.0007 | 0.12 |
1 | 0.460 | 0.461 | 0.461 | 0.461 | 0.0007 | 0.15 |
2 | 0.456 | 0.455 | 0.455 | 0.455 | 0.0007 | 0.15 |
3 | 0.478 | 0.479 | 0.479 | 0.479 | 0.0007 | 0.14 |
4 | 0.460 | 0.460 | 0.460 | 0.460 | 0 | 0 |
5 | 0.482 | 0.483 | 0.483 | 0.483 | 0.0007 | 0.14 |
6 | 0.482 | 0.480 | 0.480 | 0.481 | 0.0010 | 0.21 |
7 | 0.093 | 0.093 | 0.092 | 0.093 | 0.0007 | 0.75 |
Sample | mg EDTA/g of Sample |
---|---|
1 | 18.80 |
2 | 22.97 |
3 | 6.51 |
4 | 19.54 |
5 | 3.77 |
6 | 5.14 |
7 | 271.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imamović, B.; Ivazović, I.; Alispahić, A.; Bečić, E.; Dedić, M.; Dacić, A. Assessment of the Suitability of Methods for Testing the Antioxidant Activity of Anti-Aging Creams. Appl. Sci. 2021, 11, 1358. https://doi.org/10.3390/app11041358
Imamović B, Ivazović I, Alispahić A, Bečić E, Dedić M, Dacić A. Assessment of the Suitability of Methods for Testing the Antioxidant Activity of Anti-Aging Creams. Applied Sciences. 2021; 11(4):1358. https://doi.org/10.3390/app11041358
Chicago/Turabian StyleImamović, Belma, Irmela Ivazović, Amra Alispahić, Ervina Bečić, Mirza Dedić, and Armina Dacić. 2021. "Assessment of the Suitability of Methods for Testing the Antioxidant Activity of Anti-Aging Creams" Applied Sciences 11, no. 4: 1358. https://doi.org/10.3390/app11041358
APA StyleImamović, B., Ivazović, I., Alispahić, A., Bečić, E., Dedić, M., & Dacić, A. (2021). Assessment of the Suitability of Methods for Testing the Antioxidant Activity of Anti-Aging Creams. Applied Sciences, 11(4), 1358. https://doi.org/10.3390/app11041358