Self-Organized PT-Symmetry of Exciton-Polariton Condensate in a Double-Well Potential
Abstract
:1. Introduction
2. The Exciton-Polariton System
3. Equivalence of the PT-Symmetry and Steady State Conditions
4. Phase Fluctuations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Polariton Condensate in a PT-Symmetric Double Well
References
- Deng, H.; Haug, H.; Yamamoto, Y. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 2010, 82, 1489. [Google Scholar] [CrossRef] [Green Version]
- Carusotto, I.; Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 2013, 85, 299. [Google Scholar] [CrossRef] [Green Version]
- Lagoudakis, K.G.; Wouters, M.; Richard, M.; Baas, A.; Carusotto, I.; Andre, R.; Dang, L.S.; Deveaud-Pledran, B. Quantized vortices in an exciton–polariton condensate. Nat. Phys. 2008, 4, 706. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Kamide, K.; Nii, R.; Ogawa, T.; Yamamoto, Y. Second Thresholds in BEC-BCS-Laser Crossover of Exciton-Polariton Systems. Phys. Rev. Lett. 2013, 111, 026404. [Google Scholar] [CrossRef]
- Schneider, C.; Rahimi-Iman, A.; Kim, N.Y.; Fischer, J.; Savenko, I.G.; Amthor, M.; Lermer, M.; Wolf, A.; Worschech, L.; Kulakovskii, V.D.; et al. An electrically pumped polariton laser. Nature 2013, 497, 348. [Google Scholar] [CrossRef]
- Goblot, V.; Nguyen, H.S.; Carusotto, I.; Galopin, E.; Lematre, A.; Sagnes, I.; Amo, A.; Bloch, J. Phase-Controlled Bistability of a Dark Soliton Train in a Polariton Fluid. Phys. Rev. Lett. 2016, 117, 217401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasprzak, J.; Richard, M.; Kundermann, S.; Baas, A.; Jeambrun, P.; Keeling, J.; Marchetti, F.M.; Szymanska, M.H.; André, R.; Staehli, J.L.; et al. Bose–Einstein condensation of exciton polaritons. Nature 2006, 443, 409. [Google Scholar] [CrossRef]
- Balili, R.; Hartwell, V.; Snoke, D.; Pfeiffer, L.; West, K. Bose-Einstein Condensation of Microcavity Polaritons in a Trap. Science 2007, 316, 1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amo, A.; Lefrére, J.; Pigeon, S.; Adrados, C.; Ciuti, C.; Carusotto, I.; Houdre, R.; Giacobino, E.; Bramati, A. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 2009, 5, 805. [Google Scholar] [CrossRef] [Green Version]
- Dominici, L.; Carretero-Gonzalez, R.; Cuevas-Maraver, J.; Gianfrate, A.; Rodrigues, A.S.; Frantzeskakis, D.J.; Kevrekidis, P.G.; Lerario, G.; Ballarini, D.; Giorgi, M.D.; et al. Interactions and scattering of quantum vortices in a polariton fluid. Nat. Comm. 2018, 9, 1467. [Google Scholar] [CrossRef]
- Carretero-Gonzalez, R.; Cuevas-Maraver, J.; Frantzeskakis, D.J.; Horikis, T.P.; Kevrekidis, P.G.; Rodrigues, A.S. A Korteweg-de Vries description of dark solitons in polariton superfluids. Phys. Lett. A 2017, 381, 3805. [Google Scholar] [CrossRef] [Green Version]
- Ohadi, H.; Ramsay, A.J.; Sigurdsson, H.; Redondo, Y.D.; Tsintzos, S.I.; Hatzopoulos, Z.; Liew, T.C.H.; Shelykh, I.A.; Rubo, Y.G.; Savvidis, P.G.; et al. Spin Order and Phase Transitions in Chains of Polariton Condensates. Phys. Rev. Lett. 2017, 119, 067401. [Google Scholar] [CrossRef] [Green Version]
- Ohadi, H.; Redondo, Y.d.; Ramsay, A.J.; Hatzopoulos, Z.; Liew, T.C.H.; Eastham, P.R.; Savvidis, P.G.; Baumberg, J.J. Synchronization crossover of polariton condensates in weakly disordered lattices. Phys. Rev. B 2018, 97, 195109. [Google Scholar] [CrossRef] [Green Version]
- Orfanakis, K.; Tzortzakakis, A.F.; Petrosyan, D.; Savvidis, P.G.; Ohadi, H. Ultralong temporal coherence in optically trapped exciton-polariton condensates. Phys. Rev. B 2021, 103, 235313. [Google Scholar] [CrossRef]
- Harrison, S.L.; Sigurdsson, H.; Lagoudakis, P.G. Synchronization in optically trapped polariton Stuart-Landau networks. Phys. Rev. B 2020, 101, 155402. [Google Scholar] [CrossRef] [Green Version]
- Töpfer, J.D.; Sigurdsson, H.; Alyatkin, S.; Lagoudakis, P.G. Lotka-Volterra population dynamics in coherent and tunable oscillators of trapped polariton condensates. Phys. Rev. B 2020, 102, 195428. [Google Scholar] [CrossRef]
- Cherotchenko, E.D.; Sigurdsson, H.; Askitopoulos, A.; Nalitov, A.V. Optically controlled polariton condensate molecules. Phys. Rev. B 2021, 103, 115309. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Dong, H.; Tang, B.; Li, D.; Tian, C.; Xua, C.; Zhou, W. Room temperature exciton–polariton condensate in an optically-controlled trap. Nanoscale 2019, 11, 4496. [Google Scholar] [CrossRef]
- Berloff, N.G.; Silva, M.; Kalinin, K.; Askitopoulos, A.; Töpfer, J.D.; Cilibrizzi, P.; Langbein, W.; Lagoudakis, P.G. Realizing the classical XY Hamiltonian in polariton simulators. Nat. Mat. 2017, 16, 1120. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Ghosh, S.; Wang, J.; Liu, S.; Diederichs, C.; Liew, T.C.H.; Xiong, Q. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 2020, 16, 301. [Google Scholar] [CrossRef] [Green Version]
- Bender, C.M.; Brody, D.C.; Jones, H.F. Complex Extension of Quantum Mechanics. Phys. Rev. Lett. 2002, 89, 270401. [Google Scholar] [PubMed] [Green Version]
- Bender, C.M.; Brody, D.C.; Jones, H.F. Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction. Phys. Rev. D 2004, 70, 025001. [Google Scholar]
- El-Ganainy, R.; Makris, K.G.; Christodoulides, D.N.; Musslimani, Z.H. Theory of coupled optical PT-symmetric structures. Opt. Lett. 2007, 32, 2632. [Google Scholar]
- Fleury, R.; Sounas, D.; Alú, A. An invisible acoustic sensor based on parity-time symmetry. Nat. Commun. 2015, 6, 5905. [Google Scholar]
- Chestnov, I.Y.; Demirchyan, S.S.; Alodjants, A.P.; Rubo, Y.G.; Kavokin, A.V. Permanent Rabi oscillations in coupled exciton-photon systems with PT-symmetry. Sci. Rep. 2016, 6, 19551. [Google Scholar]
- Lien, J.-Y.; Chen, Y.-N.; Ishida, N.; Chen, H.-B.; Hwang, C.-C.; Nori, F. Multistability and condensation of exciton-polaritons below threshold. Phys. Rev. B 2015, 91, 024511. [Google Scholar]
- Khurgin, J.B. Exceptional points in polaritonic cavities and subthreshold Fabry–Perot lasers. Optica 2020, 7, 1015. [Google Scholar]
- Hanai, R.; Littlewood, P.B. Critical fluctuations at a many-body exceptional point. Phys. Rev. Res. 2020, 2, 033018. [Google Scholar]
- Kalozoumis, P.A.; Nikolopoulos, G.M.; Petrosyan, D. Coherent population oscillations and an effective spin-exchange interaction in a PT-symmetric polariton mixture. EPL 2020, 129, 37003. [Google Scholar]
- Wouters, M.; Carusotto, I. Excitations in a Nonequilibrium Bose-Einstein Condensate of Exciton Polaritons. Phys. Rev. Lett. 2007, 99, 140402. [Google Scholar] [PubMed] [Green Version]
- Sukhorukov, A.A.; Xu, Z.; Kivshar, Y.S. Nonlinear suppression of time reversals in PT-symmetric optical couplers. Phys. Rev. A 2010, 82, 043818. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalozoumis, P.A.; Petrosyan, D. Self-Organized PT-Symmetry of Exciton-Polariton Condensate in a Double-Well Potential. Appl. Sci. 2021, 11, 7372. https://doi.org/10.3390/app11167372
Kalozoumis PA, Petrosyan D. Self-Organized PT-Symmetry of Exciton-Polariton Condensate in a Double-Well Potential. Applied Sciences. 2021; 11(16):7372. https://doi.org/10.3390/app11167372
Chicago/Turabian StyleKalozoumis, Panayotis A., and David Petrosyan. 2021. "Self-Organized PT-Symmetry of Exciton-Polariton Condensate in a Double-Well Potential" Applied Sciences 11, no. 16: 7372. https://doi.org/10.3390/app11167372
APA StyleKalozoumis, P. A., & Petrosyan, D. (2021). Self-Organized PT-Symmetry of Exciton-Polariton Condensate in a Double-Well Potential. Applied Sciences, 11(16), 7372. https://doi.org/10.3390/app11167372