Correlating Structure and Morphology of Andiroba Leaf (Carapa guianensis Aubl.) by Microscopy and Fractal Theory Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. SEM Measurements
2.3. AFM Imaging and 3D Micromorphology Evaluation
2.3.1. Power Spectrum Density Analysis
2.3.2. Advanced Fractal Analysis
2.3.3. Uniformity Analysis
2.4. Water Contact Angle Obtention
2.5. Statistical Analysis
3. Results and Discussion
3.1. SEM Analysis
3.2. AFM Analysis
3.2.1. Morphology Analysis
3.2.2. Advanced Analysis of ISO and Morphological Parameters
3.2.3. Surface Microtexture Evaluation
3.2.4. Fractal Analysis of Leaf Surface
3.3. Wettability Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grande, C.; Tradicional, M.; Medicinais, P.; Medicinais, A. Socio-Economic Aspects of Medicinal Plants and Animal Trading in Metropolitan Area of North and Northeastern Brazil. Rev. Biol. Ciênc.Terra 2008, 8, 181–189. [Google Scholar]
- Semirian, C.A.; Isolde, D.K.F. Seed quality evaluation by tetrazolium staining during a desiccation study of the recalcitrant seeds of Carapa guianensis Aubl. and Carapa surinamensis Miq.—Meliaceae. Afr. J. Agric. Res. 2017, 12, 1005–1013. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, B.M.; Rosito, J.M. Uso de plantas medicinais como instrumento de conscientização: Responsabilidade social e ambiental. Rev. Monogr. Ambient. 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Londres, M.; Schulze, M.; Staudhammer, C.L.; Kainer, K.A. Population Structure and Fruit Production of Carapa guianensis (Andiroba) in Amazonian Floodplain Forests. Trop. Conserv. Sci. 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Wanzeler, A.M.V.; Júnior, S.M.A.; Gomes, J.T.; Gouveia, E.H.H.; Henriques, H.Y.B.; Chaves, R.H.; Soares, B.M.; Salgado, H.L.C.; Santos, A.S.; Tuji, F.M. Therapeutic effect of andiroba oil (Carapa guianensis Aubl.) against oral mucositis: An experimental study in golden Syrian hamsters. Clin. Oral Investig. 2017, 22, 2069–2079. [Google Scholar] [CrossRef] [PubMed]
- De Barros, F.N.; Farias, M.P.O.; Tavares, J.P.C.; Alves, L.C.; Faustino, M.A.D.G. In vitro efficacy of oil from the seed of Carapa guianensis (andiroba) in the control of Felicola subrostratus. Rev. Bras. Farm. 2012, 22, 1130–1133. [Google Scholar] [CrossRef] [Green Version]
- Farias, M.; Teixeira, W.; Wanderley, A.; Alves, L.; Faustino, M. Avaliação in vitro dos efeitos do óleo da semente de Carapa guianensis Aubl. sobre larvas de nematóides gastrintestinais de caprinos e ovinos. Rev. Bras. Plantas Med. 2010, 12, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Meccia, G.; Quintero, P.; Rojas, L.B.; Usubillaga, A.; Velasco, J.; Diaz, T.; Diaz, C.; Velásquez, J.; Toro, M. Chemical Composition of the Essential Oil from the Leaves of Carapa guianensis Collected from Venezuelan Guayana and the Antimicrobial Activity of the Oil and Crude Extracts. Nat. Prod. Commun. 2013, 8, 1641–1642. [Google Scholar] [CrossRef] [Green Version]
- Goodman, R.C.; Aramburu, M.H.; Gopalakrishna, T.; Putz, F.E.; Gutiérrez, N.; Alvarez, J.L.M.; Aguilar-Amuchastegui, N.; Ellis, P.W. Carbon emissions and potential emissions reductions from low-intensity selective logging in southwestern Amazonia. For. Ecol. Manag. 2019, 439, 18–27. [Google Scholar] [CrossRef]
- Burlando, B.; Cornara, L. Revisiting Amazonian Plants for Skin Care and Disease. Cosmetics 2017, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Da Cunha, A.C.; Mustin, K.; Dos Santos, E.S.; Dos Santos, É.W.G.; Guedes, M.C.; Cunha, H.F.A.; Rosman, P.C.C.; Sternberg, L.D.S.L. Hydrodynamics and seed dispersal in the lower Amazon. Freshw. Biol. 2017, 62, 1721–1729. [Google Scholar] [CrossRef]
- Strieder, M.L.; Da Silva, P.R.F.; Rambo, L.; Bergamaschi, H.; Dalmago, G.A.; Endrigo, P.C.; Jandrey, D.B. Características de dossel e rendimento de milho em diferentes espaçamentos e sistemas de manejo. Pesqui. Agropecu. Bras. 2008, 43, 309–317. [Google Scholar] [CrossRef]
- Hacke, U. Functional and Ecological Xylem Anatomy. Funct. Ecol. Xylem Anat. 2015, 1–281. [Google Scholar] [CrossRef] [Green Version]
- Cope, J.S.; Corney, D.; Clark, J.Y.; Remagnino, P.; Wilkin, P. Plant species identification using digital morphometrics: A review. Expert Syst. Appl. 2012, 39, 7562–7573. [Google Scholar] [CrossRef]
- Wang, F.; Li, S.; Wang, L. Fabrication of artificial super-hydrophobic lotus-leaf-like bamboo surfaces through soft lithography. Colloids Surf. A Physicochem. Eng. Asp. 2017, 513, 389–395. [Google Scholar] [CrossRef]
- Liu, P.; Gao, Y.; Wang, F.; Yang, J.; Yu, X.; Zhang, W.; Yang, L. Superhydrophobic and self-cleaning behavior of Portland cement with lotus-leaf-like microstructure. J. Clean. Prod. 2017, 156, 775–785. [Google Scholar] [CrossRef]
- Gray-Munro, J.; Campbell, J. Mimicking the hierarchical surface topography and superhydrophobicity of the lotus leaf on magnesium alloy AZ31. Mater. Lett. 2017, 189, 271–274. [Google Scholar] [CrossRef]
- Ramos, G.Q.; Da Costa, Í.C.; Da Costa, M.E.H.M.; Pinto, E.P.; Matos, R.S.; Da Fonseca Filho, H.D. Stereometric analysis of Amazon rainforest Anacardium occidentale L. leaves. Planta 2021, 253, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ramos, G.Q.; Matos, R.S.; Da Fonseca Filho, H.D. Advanced Microtexture Study of Anacardium occidentale L. Leaf Surface From the Amazon by Fractal Theory. Microsc. Microanal. 2020, 26, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Salcedo, M.O.C.; Zamora, R.R.M.; Carvalho, J.C.T. Study Fractal Leaf Surface of the Plant Species Copaifera Sp. Using the Microscope Atomic-Force-AFM. Rev. ECIPerú 2016, 13, 10–16. [Google Scholar] [CrossRef]
- Ţălu, Ş.; Bramowicz, M.; Kulesza, S.; Dalouji, V.; Solaymani, S.; Valedbagi, S. Fractal features of carbon-nickel composite thin films. Microsc. Res. Tech. 2016, 79, 1208–1213. [Google Scholar] [CrossRef]
- Arman, A.; Ţălu, Ş.; Luna, C.; Ahmadpourian, A.; Naseri, M.; Molamohammadi, M. Micromorphology characterization of copper thin films by AFM and fractal analysis. J. Mater. Sci. Mater. Electron. 2015, 26, 9630–9639. [Google Scholar] [CrossRef]
- Ţălu, Ş.; Stach, S.; Abdolghaderi, S. The effects of deposition time on the nanoscale patterns of Ag/DLC nanocomposite synthesized by RF-PECVD. Microsc. Res. Tech. 2019, 82, 572–579. [Google Scholar] [CrossRef]
- Ţălu, Ş.; Stach, S.; Valedbagi, S.; Bavadi, R.; Elahi, S.M.; Ţălu, M. Multifractal characteristics of titanium nitride thin films. Mater. Sci. 2015, 33, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Ţălu, Ş.; Stach, S.; Méndez, A.; Trejo, G.; Ţălu, M. Multifractal Characterization of Nanostructure Surfaces of Electrodeposited Ni-P Coatings. J. Electrochem. Soc. 2013, 161, D44–D47. [Google Scholar] [CrossRef]
- Gong, Y.; Misture, S.T.; Gao, P.; Mellott, N.P. Surface Roughness Measurements Using Power Spectrum Density Analysis with Enhanced Spatial Correlation Length. J. Phys. Chem. C 2016, 120, 22358–22364. [Google Scholar] [CrossRef]
- Ţălu, Ş.; Stach, S.; Sueiras, V.; Ziebarth, N.M. Fractal Analysis of AFM Images of the Surface of Bowman’s Membrane of the Human Cornea. Ann. Biomed. Eng. 2014, 43, 906–916. [Google Scholar] [CrossRef]
- Stach, S.; Dallaeva, D.; Ţălu, Ş.; Kaspar, P.; Tománek, P.; Giovanzana, S.; Grmela, L. Morphological features in aluminum nitride epilayers prepared by magnetron sputtering. Mater. Sci. 2015, 33, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Stach, S.; Sapota, W.; Ţălu, Ş.; Ahmadpourian, A.; Luna, C.; Ghobadi, N.; Arman, A.; Ganji, M. 3-D surface stereometry studies of sputtered TiN thin films obtained at different substrate temperatures. J. Mater. Sci. Mater. Electron. 2017, 28, 2113–2122. [Google Scholar] [CrossRef]
- Bobrovskij, I.N. How to Select the most Relevant Roughness Parameters of a Surface: Methodology Research Strategy. IOP Conf. Ser. Mater. Sci. Eng. 2018, 302, 12066. [Google Scholar] [CrossRef] [Green Version]
- Horcas, I.; Fernández, R.; Rodriguez, J.M.G.; Colchero, J.; Gomez-Herrero, J.; Baro, A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef] [PubMed]
- Digital Surf. MountainsMap Premium 8.0; Digital Surf: Besançon, France, 2020. [Google Scholar]
- Jacobs, T.D.B.; Junge, T.; Pastewka, L. Quantitative characterization of surface topography using spectral analysis. Surf. Topogr. Metrol. Prop. 2017, 5, 013001. [Google Scholar] [CrossRef]
- Martínez, J.F.G.; Nieto-Carvajal, I.; Abad, J.; Colchero, J. Nanoscale measurement of the power spectral density of surface roughness: How to solve a difficult experimental challenge. Nanoscale Res. Lett. 2012, 7, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, E.C.M.; Pinto, E.P.; Ferreira, N.S.; Matos, R.S. Fractal Study of Kefir Biofilms. In Proceedings of the XVIII Brazil MRS Meeting—SBPMat, Camboriú, Brazil, 22–26 September 2019. [Google Scholar]
- Kanafi, M.M.; Kuosmanen, A.; Pellinen, T.K.; Tuononen, A.J. Macro- and micro-texture evolution of road pavements and correlation with friction. Int. J. Pavement Eng. 2014, 16, 168–179. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Open Phys. 2012, 10. [Google Scholar] [CrossRef]
- Gao, H.; Qiang, T. Fracture Surface Morphology and Impact Strength of Cellulose/PLA Composites. Materials 2017, 10, 624. [Google Scholar] [CrossRef]
- Xia, Y.; Cai, J.; Perfect, E.; Wei, W.; Zhang, Q.; Meng, Q. Fractal dimension, lacunarity and succolarity analyses on CT images of reservoir rocks for permeability prediction. J. Hydrol. 2019, 579, 124198. [Google Scholar] [CrossRef]
- Ţălu, Ş.; Abdolghaderi, S.; Pinto, E.P.; Matos, R.S.; Salerno, M. Advanced fractal analysis of nanoscale topography of Ag/DLC composite synthesized by RF-PECVD. Surf. Eng. 2020, 36, 713–719. [Google Scholar] [CrossRef]
- De Lucena, L.R.R.; Filho, M.C. Lacunarity as index of evaluation of wind direction in Pernambuco. Rev. Bras. DE Biom. 2019, 37, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Pinto, E.; Tavares, W.; Matos, R.; Ferreira, A.; Menezes, R.; Costa, M.; Souza, T.; Ferreira, I.; Sousa, F.; Zamora, R. Influence of low and high glycerol concentrations on wettability and flexibility of chitosan biofilms. Quím. Nova 2018, 41, 1109–1116. [Google Scholar] [CrossRef]
- De Oliveira, L.M.; Matos, R.S.; Campelo, P.H.; Sanches, E.A.; Da Fonseca Filho, H.D. Evaluation of the nanoscale surface applied to biodegradable nanoparticles containing Allium sativum essential oil. Mater. Lett. 2020, 275, 128111. [Google Scholar] [CrossRef]
- Matos, R.S.; Lopes, G.A.C.; Ferreira, N.S.; Pinto, E.P.; Carvalho, J.C.T.; Figueiredo, S.S.; Oliveira, A.F.; Zamora, R.R.M. Superficial Characterization of Kefir Biofilms Associated with Açaí and Cupuaçu Extracts. Arab. J. Sci. Eng. 2018, 43, 3371–3379. [Google Scholar] [CrossRef]
- Nosonovsky, M. Entropy in Tribology: In the Search for Applications. Entropy 2010, 12, 1345–1390. [Google Scholar] [CrossRef]
- Aja-Fernandez, S.; Estepar, R.S.J.; Alberola-Lopez, C.; Westin, C.-F. Image Quality Assessment Based on Local Variance. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 30 August–3 September 2006; pp. 4815–4818. [Google Scholar]
- Drăguţ, L.; Eisank, C.; Strasser, T. Local variance for multi-scale analysis in geomorphometry. Geomorphology 2011, 130, 162–172. [Google Scholar] [CrossRef] [Green Version]
- Woodcock, C.E.; Strahler, A.H. The factor of scale in remote sensing. Remote. Sens. Environ. 1987, 21, 311–332. [Google Scholar] [CrossRef]
- Hothorn, T.; Everitt, B.S. A Handbook of Statistical Analyses Using R; Chapman and Hall/CRC: Boca Raton, FL, USA, 2009; ISBN 9780429146169. [Google Scholar]
- Burton, Z.; Bhushan, B. Surface Characterization and Adhesion and Friction Properties of Hydrophobic Leaf Surfaces. In NanoScience and Technology; Springer: Berlin/Heidelberg, Germany, 2006; pp. 55–81. [Google Scholar]
- Wang, L.; Zhou, Q. Surface hydrophobicity of slippery zones in the pitchers of two Nepenthes species and a hybrid. Sci. Rep. 2016, 6, 19907. [Google Scholar] [CrossRef] [Green Version]
- Haworth, M.; Scutt, C.P.; Douthe, C.; Marino, G.; Gomes, M.T.G.; Loreto, F.; Flexas, J.; Centritto, M. Allocation of the epidermis to stomata relates to stomatal physiological control: Stomatal factors involved in the evolutionary diversification of the angiosperms and development of amphistomaty. Environ. Exp. Bot. 2018, 151, 55–63. [Google Scholar] [CrossRef]
- Ramos, G.Q.; Cotta, E.A.; Da Fonseca Filho, H.D. Studies on the ultrastructure in Anacardium occidentale L. leaves from Amazon in northern Brazil by scanning microscopy. Scanning 2016, 38, 329–335. [Google Scholar] [CrossRef]
- Cernusak, L.A.; Ubierna, N.; Jenkins, M.W.; Garrity, S.R.; Rahn, T.; Powers, H.H.; Hanson, D.T.; Sevanto, S.; Wong, S.C.; McDowell, N.G.; et al. Unsaturation of vapour pressure inside leaves of two conifer species. Sci. Rep. 2018, 8, 7667. [Google Scholar] [CrossRef] [PubMed]
- Laurance, W.F.; Camargo, J.L.C.; Fearnside, P.M.; Lovejoy, T.E.; Williamson, G.B.; Mesquita, R.C.G.; Meyer, C.F.J.; Bobrowiec, P.E.D.; Laurance, S.G.W. An A mazonian rainforest and its fragments as a laboratory of global change. Biol. Rev. 2018, 93, 223–247. [Google Scholar] [CrossRef]
- Keronen, P.I.R. Flux and Concentration Measurements of Carbon Dioxide and Ozone in a Forested Environment; Department of Physics, University of Helsinki: Helsinki, Finland, 2017; Volume 204, ISBN 978-952-7091-91-3. [Google Scholar]
- Oksanen, E. Trichomes form an important first line of defence against adverse environment—New evidence for ozone stress mitigation. Plant Cell Environ. 2018, 41, 1497–1499. [Google Scholar] [CrossRef]
- Freeman, B.C.; Beeattie, G.A. An Overview of Plant Defenses against Pathogens and Herbivores. Plant Health Instr. 2008. [Google Scholar] [CrossRef] [Green Version]
- Bi, H.; Kovalchuk, N.; Langridge, P.; Tricker, P.J.; Lopato, S.; Borisjuk, N. The impact of drought on wheat leaf cuticle properties. BMC Plant Biol. 2017, 17, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Zeisler, V.; Schreiber, L. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier. Planta 2016, 243, 65–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Günzel, R.E.; da Costa Güllich, R.I. Aprendendo Ciências: Ensino e Extensão; Universidade Federal da Fronteira Sul: Chapecó, Brazil, 2018; ISBN 9788568221242. [Google Scholar]
- Muller, O.; Cohu, C.M.; Stewart, J.J.; Protheroe, J.A.; Demmig-Adams, B.; Adams, W.W. Association between photosynthesis and contrasting features of minor veins in leaves of summer annuals loading phloem via symplastic versus apoplastic routes. Physiol. Plant. 2014, 152, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Hickey, L.J. Classification of the architecture of dicotyledonous leaves. Am. J. Bot. 1973, 60, 17–33. [Google Scholar] [CrossRef]
- Dantas, A.R.; Lira-Guedes, A.C.; Mustin, K.; Aparício, W.C.S.; Guedes, M.C. Phenology of the multi-use tree species Carapa guianensis in a floodplain forest of the Amazon Estuary. Acta Bot. Bras. 2016, 30, 618–627. [Google Scholar] [CrossRef] [Green Version]
- Adams, W.W.I.; Cohu, C.M.; Muller, O.; Demmig-Adams, B. Foliar phloem infrastructure in support of photosynthesis. Front. Plant Sci. 2013, 4, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, P.A.; Pinto, E.P.; Filho, H.D.F.; Matos, R.S. Distribution of Microorganisms on Surface of Kefir Biofilms Associated with Açaí Extract Distribution of Microorganisms on Surface of Kefir Biofilms Associated with Açaí Extract. Sci. Amaz. 2019, 8, C10–C18. [Google Scholar]
- Ferraro, M.A.N.; Pinto, E.P.; Matos, R.S. Study of the superficial distribution of microorganisms in kefir biofilms prepared with Cupuaçu juice. J. Bioenergy Food Sci. 2020, 07, 1–11. [Google Scholar] [CrossRef]
- Megevand, B.; Lins, L.C.; Duchet-Rumeau, J.; Pruvost, S.; Livi, S.; Gérard, J.-F. Probing nanomechanical properties with AFM to understand the structure and behavior of polymer blends compatibilized with ionic liquids. RSC Adv. 2016, 6, 96421–96430. [Google Scholar] [CrossRef]
- Ramos, G.; Cotta, E.; Filho, H.F. Análise Morfológica das Folhas de Anacardium occidentale L. Biota Amazônia 2016, 6, 16–19. [Google Scholar] [CrossRef]
- Ramos, G.Q.; Da Fonseca De Albuquerque, M.D.; Ferreira, J.L.P.; Cotta, E.A.; Da Fonseca Filho, H.D. Molhabilidade e Morfologia Da Superfície Da Folha Em Cajueiro Da Amazônia Na Região Norte Do Brasil. Acta Sci. Biol. Sci. 2016, 38, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Matos, R.S.; Pinto, E.P.; Ramos, G.Q.; Albuquerque, M.D.D.F.D.; Da Fonseca Filho, H.D. Stereometric characterization of kefir microbial films associated with Maytenus rigida extract. Microsc. Res. Tech. 2020, 83, 1401–1410. [Google Scholar] [CrossRef]
- Franco, L.A.; Sinatora, A. 3D surface parameters (ISO 25178-2): Actual meaning of Spk and its relationship to Vmp. Precis. Eng. 2015, 40, 106–111. [Google Scholar] [CrossRef]
- Blateyron, F. Characterisation of Areal Surface Texture; Leach, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 9783642364, ISBN 978-3-642-36457-0. [Google Scholar]
- Solaymani, S.; Ţălu, Ş.; Nezafat, N.B.; Rezaee, S.; Kenari, M.F. Diamond nanocrystal thin films: Case study on surface texture and power spectral density properties. AIP Adv. 2020, 10, 045206. [Google Scholar] [CrossRef] [Green Version]
- Bucur, V. Wood Structural Anisotropy Estimated by Acoustic Invariants. IAWA J. 1988, 9, 67–74. [Google Scholar] [CrossRef]
- Whitehouse, D.J. Handbook of Surface and Nanometrology, 2nd ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2002; ISBN 9781420034196. [Google Scholar]
- Mandelbrot, B.B.; Wheeler, J.A. The Fractal Geometry of Nature. Am. J. Phys. 1983, 51, 286–287. [Google Scholar] [CrossRef]
- Matos, R.S.; Ramos, G.Q.; Da Fonseca Filho, H.D.; Ţălu, Ş. Advanced micromorphology study of microbial films grown on Kefir loaded with Açaí extract. Micron 2020, 137, 102912. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shi, H.; Li, Y.; Wang, Y. The Effects of Leaf Roughness, Surface Free Energy and Work of Adhesion on Leaf Water Drop Adhesion. PLoS ONE 2014, 9, e107062. [Google Scholar] [CrossRef]
- Fernández, V.; Sancho-Knapik, D.; Guzmán-Delgado, P.; Peguero-Pina, J.J.; Gil, L.; Karabourniotis, G.; Khayet, M.; Fasseas, C.; Heredia-Guerrero, J.A.; Heredia, A.; et al. Wettability, Polarity, and Water Absorption of Holm Oak Leaves: Effect of Leaf Side and Age. Plant Physiol. 2014, 166, 168–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueiredo, S.S. Análise de Superfícies Foliares: Um Estudo Sobre a Entropia Como Parâmetro de Uniformidade Superficial e a Superhidrofobicidade Da Espécie Vegetal Thalia Geniculata (LINEU, 1753); Fundação Universidade Federal do Amapá: Macapá, Brazil, 2015. [Google Scholar]
- Burton, Z.; Bhushan, B. Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces. Ultramicroscopy 2006, 106, 709–719. [Google Scholar] [CrossRef] [PubMed]
- Ryan, B.J.; Poduska, K.M. Roughness effects on contact angle measurements. Am. J. Phys. 2008, 76, 1074–1077. [Google Scholar] [CrossRef] [Green Version]
Parameters | Units | S50 | S20 | S10 |
---|---|---|---|---|
Ra | µm | 0.571 ± 0.065 | 0.34 ± 0.027 | 0.237 ± 0.015 |
RRMS | µm | 0.700 ± 0.081 | 0.413 ± 0.033 | 0.296 ± 0.018 |
SS | - | 0.136 ± 0.073 | −0.424 ± 0.005 | 0.851 ± 0.014 |
Ks | - | 2.582 ± 0.045 | 2.853 ± 0.018 | 3.061 ± 0.067 |
Sk Parameters | Units | S50 | S20 | S10 |
---|---|---|---|---|
Sk | µm | 0.4003 | 0.3475 | 0.03477 |
Spk | µm | 0.1839 | 0.09454 | 0.02651 |
Svk | µm | 0.2105 | 0.23 | 0.02454 |
Smr1 | % | 11.19 | 8.992 | 13 |
Smr2 | % | 89.30 | 87.48 | 81.91 |
Volume Parameters | - | S50 | S20 | S10 |
Vmp | µm3/µm2 | 0.009091 | 0.004902 | 0.001329 |
Vmc | µm3/µm2 | 0.1443 | 0.1272 | 0.01356 |
Vvc | µm3/µm2 | 0.1996 | 0.1613 | 0.01977 |
Vvv | µm3/µm2 | 0.02133 | 0.02275 | 0.002437 |
Particle Parameters | - | S50 | S20 | S10 |
Particle count | - | 1038 | 241 | 50 |
Covering | % | 53.73 | 49.88 | 49.77 |
Density | Particles/mm2 | 10,335,877 | 128,538 | 96,400 |
Furrow Parameter | Unit | S50 | S20 | S10 |
Max. depth | µm | 0.8207 | 0.6314 | 0.1169 |
Mean depth | µm | 0.3016 | 0.1771 | 0.03247 |
Mean density | cm/cm2 | 0.2105 | 16,011 | 44,170 |
Texture Parameter | Unit | S50 | S20 | S10 |
Texture Isotropy | % | 60.72 | 49.54 | 55.38 |
First Dir. | ° | 0.02569 | 180 | 0.01696 |
Second Dir. | ° | 90.01 | 44.96 | 161.5 |
Third Dir. | ° | 33.78 | 135 | 168 |
Parameters | Unit | S50 | S20 | S10 |
---|---|---|---|---|
H | - | 0.4894 ± 0.010 | 0.4881 ± 0.005 | 0.4169 ± 0.008 |
FD | - | 2.183 ± 0.012 | 2.129 ± 0.008 | 2.114 ± 0.005 |
FS | - | 0.474 ± 0.030 | 0.254 ± 0.008 | 0.363 ± 0.012 |
׀β׀ | - | 0.029 ± 0.002 | 0.024 ± 0.001 | 0.056 ± 0.009 |
E | - | 0.998 ± 0.002 | 0.998 ± 0.001 | 0.996 ± 0.005 |
- | 0.001 ± 0.001 | 0.001 ± 0.001 | 0.003 ± 0.004 |
Parameters | Units | Adaxial | Abaxial |
---|---|---|---|
Angle (T = 1 s) | º | 72.6 | 85.2 |
Angle (T = 30 s) | º | 59.3 | 76.3 |
Mean angle | º | 67.49 ± 4.8 | 80.05 ± 2.6 |
Surface energy | UE.cm−2 | - | 35.44 ± 0.3 |
Rf | - | - | 1.054 ± 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matos, R.S.; Ţălu, Ş.; Mota, G.V.S.; Pinto, E.P.; Pires, M.A.; Abraçado, L.G.; Ferreira, N.S. Correlating Structure and Morphology of Andiroba Leaf (Carapa guianensis Aubl.) by Microscopy and Fractal Theory Analyses. Appl. Sci. 2021, 11, 5848. https://doi.org/10.3390/app11135848
Matos RS, Ţălu Ş, Mota GVS, Pinto EP, Pires MA, Abraçado LG, Ferreira NS. Correlating Structure and Morphology of Andiroba Leaf (Carapa guianensis Aubl.) by Microscopy and Fractal Theory Analyses. Applied Sciences. 2021; 11(13):5848. https://doi.org/10.3390/app11135848
Chicago/Turabian StyleMatos, Robert S., Ştefan Ţălu, Gunar V. S. Mota, Erveton P. Pinto, Marcelo A. Pires, Leida G. Abraçado, and Nilson S. Ferreira. 2021. "Correlating Structure and Morphology of Andiroba Leaf (Carapa guianensis Aubl.) by Microscopy and Fractal Theory Analyses" Applied Sciences 11, no. 13: 5848. https://doi.org/10.3390/app11135848