Tilt Active Vibration Isolation Using Vertical Pendulum and Piezoelectric Transducer with Parallel Controller
Abstract
:1. Introduction
2. Principle of Tilt Active Vibration Isolator
3. Theoretical Analysis of VP
4. Model and Control of PZT
4.1. Mathematical Model of Hysteresis
4.2. Design of Parallel Controller
5. Experimental Results
5.1. Open-Loop Calibration of VP Tiltmeter
5.2. Close-Loop Tilt Vibration Isolation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, Y.; Naganathan, N.G.; Dukkipati, R.V. A literature review of automotive vehicle engine mounting systems. Mech. Mach. Theory 2001, 36, 123–142. [Google Scholar] [CrossRef]
- Lan, K.; Yen, J. Sliding mode control for active vibration isolation of a long range scanning tunneling mi-croscope. Rev. Sci. Instrum. 2004, 75, 4367–4373. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Jung, J.; Youm, W.; Park, K. Design of mechanical components for vibration reduction in an atomic force microscope. Rev. Sci. Instrum. 2011, 82, 035102. [Google Scholar] [CrossRef] [PubMed]
- Notcutt, M.; Ma, L.-S.; Ye, J.; Hall, J.L. Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity. Opt. Lett. 2005, 30, 1815–1817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driggers, J.C.; Evans, M.; Pepper, K.; Adhikari, R. Active noise cancellation in a suspended inter-ferometer. Rev. Sci. Instrum. 2012, 83, 024501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheinet, P.; Canuel, B.; Dos Santos, F.P.; Gauguet, A.; Yver-Leduc, F.; Landragin, A. Measurement of the Sensitivity Function in a Time-Domain Atomic Interferometer. IEEE Trans. Instrum. Meas. 2008, 57, 1141–1148. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.; Zhou, L.; Xiong, Z.; Wang, J.; Zhan, M. A programmable broadband low frequency active vibration isolation system for atom interferometry. Rev. Sci. Instrum. 2014, 85, 093109. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.B.; Yi, Y.Y.; Wu, S.C.; Luo, J. Low-frequency seismic spectrum measured by a laser interferometer combined with a low-frequency folded pendulum. Meas. Sci. Technol. 2003, 15, 165–169. [Google Scholar] [CrossRef]
- Speake, C.C.; Newell, D.B. The design and application of a novel high-frequency tiltmeter. Rev. Sci. Instrum. 1990, 61, 1500–1503. [Google Scholar] [CrossRef]
- Zhou, Z.B.; Winterflood, J.; Ju, L.; Blair, D.G. Investigation of a laser walk-off angle sensor and its application to tilt measure-ment in gravitational wave detectors. Phys. Lett. 2001, 280, 197–203. [Google Scholar] [CrossRef]
- Cheng, Y.; Winterflood, J.; Ju, L.; Blair, D.G. Tilt sensor and servo control system for gravitational wave detection. Class. Quantum Gravity 2002, 19, 1723–1729. [Google Scholar] [CrossRef]
- Luiten, A.N.; Beccaria, M.; Bernadini, M.; Braccini, S.; Bradaschia, C.; Cella, G.; Ciampa, A.; Curci, G.; Cuoco, G.E.; D’Ambrosio, E.; et al. Ground tilt seismic spectrum measured with a new high sensitivity rotational accelerometer. Rev. Sci. Instrum. 1997, 68, 1889–1893. [Google Scholar] [CrossRef]
- Sunderland, A.; Blair, D.G.; Ju, L.; Golden, H.; Torres, F.; Chen, X.; Lockwood, R.; Wolfgram, P. High performance rotational vibration isolator. Rev. Sci. Instrum. 2013, 84, 105111. [Google Scholar] [CrossRef] [PubMed]
- Shu-Chao, W.; Yu, H.; Shu-Hua, F.; Jun, L. Measurement of the Floor Tilt in Experimental Determination of the Gravitational Constant. Chin. Phys. Lett. 2003, 20, 1210–1213. [Google Scholar] [CrossRef]
- Lining, S.; Changhai, R.; Weibin, R.; Liguo, C.; Minxiu, K. Tracking control of piezoelectric actuator based on a new mathematical model. J. Micromech. Microeng. 2004, 14, 1439–1444. [Google Scholar] [CrossRef]
- Ru, C.; Sun, L. Improving positioning accuracy of piezoelectric actuators by feed forward hysteresis compensation based on a new mathematical model. Rev. Sci. Instrum. 2005, 76, 095111. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Huang, Y.; Li, D. Tilt Active Vibration Isolation Using Vertical Pendulum and Piezoelectric Transducer with Parallel Controller. Appl. Sci. 2021, 11, 4526. https://doi.org/10.3390/app11104526
Wu L, Huang Y, Li D. Tilt Active Vibration Isolation Using Vertical Pendulum and Piezoelectric Transducer with Parallel Controller. Applied Sciences. 2021; 11(10):4526. https://doi.org/10.3390/app11104526
Chicago/Turabian StyleWu, Lihua, Yu Huang, and Dequan Li. 2021. "Tilt Active Vibration Isolation Using Vertical Pendulum and Piezoelectric Transducer with Parallel Controller" Applied Sciences 11, no. 10: 4526. https://doi.org/10.3390/app11104526
APA StyleWu, L., Huang, Y., & Li, D. (2021). Tilt Active Vibration Isolation Using Vertical Pendulum and Piezoelectric Transducer with Parallel Controller. Applied Sciences, 11(10), 4526. https://doi.org/10.3390/app11104526