Geoarchaeology: Where Geosciences Meet the Humanities to Reconstruct Past Human–Environment Interactions. An Application to the Coastal Areas of the Largest Mediterranean Islands
Abstract
:1. Introduction
2. Defining the Concept of Geoarchaeology
3. Coastal Geoarchaeology of the Largest Mediterranean Islands: A Brief Overview and Main Highlights
3.1. Cyprus (Levant)
3.2. The Aegean Basin
3.3. Central Mediterranean (Sicily–Malta–Ionian and Adriatic Seas)
3.4. Western Mediterranean (Balearic Islands and Sardinia–Corsica)
4. Materials and Methods Used to Reconstruct Past Human–Environment Interactions within the Context of Coastal Wetlands of Corsica
4.1. Defining a Precise Geomorphological Map Based on Field Surveys
4.2. Sediment Sampling Techniques
4.3. Sedimentological and Geochemical Proxies
4.4. Environmental Magnetism
4.5. Radiometric Measurements
4.6. Bioindicators
- Micro and macrofaunal remains
- Pollen and NPP identifications
- Anthracology and fire signal reconstruction based on microcharcoals
4.7. Geophysical Surveys: Imageing the Subsurface and Completing Borehole Stratigraphy
4.8. The Use of GIS for Computing the Multidisciplinary Dataset and for Developing 3-D to 4-D Palaeolandscape Modelling
5. Results
5.1. Palaeogeographic Reconstructions: The Need to Integrate Sites into Their Broader Palaeoenvironmental Context to Enrich Archaeological Knowledge
5.2. Reconstructing Vegetation History, and the Importance of Studying Anthropogenic Markers to Enlarge Knowledge of Human Occupation and Land Use
5.3. Geoarchaeology as a Tool for Debating the Role of Climate Changes and Associated Environmental and Societal Impacts: A Case Study from the Holocene RCC Events
6. Discussion/Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cordova, C. Geoarchaeology: The Human-Environmental Approach; Environmental History and Global Change; I.B. Tauris: London, UK, 2018; p. 320. [Google Scholar]
- Barnosky, A.D.; Matzke, N.; Tomyia, S.; Wogan, G.O.U.; Swartz, B.; Quental, T.B.; Marshall, C.; McGuire, J.L.; Lindsey, E.L.; Maguire, K.C.; et al. Has Earth’s sixth mass extinction already arrived ? Nature 2011, 471, 51–57. [Google Scholar] [CrossRef]
- Kolbert, E. The Sixth Extinction. An Unnatural History; Henry Holt and Company: New York, NY, USA, 2014; p. 319. [Google Scholar]
- Butzer, K.W. Adaptation to global environmental change? Prof. Geogr. 1980, 32, 269–278. [Google Scholar] [CrossRef]
- Ghilardi, M.; Lespez, L. Geoarchaeology of the Mediterranean islands: From “Lost worlds“ to vibrant places. Geoarchaeology of the Mediterranean Islands. J. Archaeol. Sci. Rep. 2017, 12, 735–740. [Google Scholar]
- Butzer, K.W. Enviromnent and Archaeology; Aldine, Atherton: Chicago, IL, USA, 1968; p. 703. [Google Scholar]
- Dincauze, D.F. Environmental Archaeology. Principles and Practice, 5th ed.; Cambridge University Press: Cambridge, UK, 2006; p. 587. [Google Scholar]
- Butzer, K.W. Archaeology as Human Ecology; Cambridge University Press: Cambridge, UK, 1982; p. 364. [Google Scholar]
- Bravard, J.P. Géoarchéologie des vallées de Rhône-Alpes depuis le Tardiglaciaire. In Dynamique du Paysage-Entretiens de Géoarchéologie; Bravard, J.P., Prestreau, M., Eds.; Documents d’Archéologie en Rhône-Alpes: Lyon, France, 1995; Volume 15, pp. 129–150. [Google Scholar]
- Brown, A.G. Alluvial Geoarchaeology, Floodplain Archaeology and Environmental Change; Cambridge manuals in Archaeology; Cambridge University Press: Cambridge, UK, 1997; 377p. [Google Scholar]
- Brown, A.G. Geoarchaeology, the four dimensional (4D) fluvial matrix and climatic causality. Geomorphology 2008, 101, 278–297. [Google Scholar] [CrossRef]
- Arnaud-Fassetta, G. La géoarchéologie fluviale. Concepts, attendus et méthodes d’étude rétrospectives appliqués à la caractérisation du risque hydrologique en domaine méditerranéen. EchoGéo 2008, 4. [Google Scholar] [CrossRef] [Green Version]
- Ghilardi, M. Géoarchéologie Fluviale ET Littorale: Contribution à L’identification Des Forçages Naturels ET Anthropiques Dans l’élaboration des Paysages de Mediterranee. Habilitation à Diriger des Recherches; Aix-Marseille University: Marseille, France, 2020; Volume 2. [Google Scholar]
- Stanley, J.D.; Warne, A.G. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise. Science 1994, 265, 228–231. [Google Scholar] [CrossRef]
- Brückner, H.; Vött, A.; Armin Schriever, A.; Handl, M. Holocene delta progradation in the eastern Mediterranean– case studies in their historical context. Méditerranée 2005, 104, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Ghilardi, M. (Ed.) Géoarchéologie des îles de Méditerranée; CNRS éditions Alpha: Paris, France, 2016; 344p. [Google Scholar]
- Medail, F. The specific vulnerability of plant biodiversity and vegetation on Mediterranean islands in the face of global change. Reg. Environ. Chang. 2017, 17, 1775–1790. [Google Scholar] [CrossRef] [Green Version]
- Colledge, S.; Conolly, J. A review and synthesis of the evidence for the origins of farming on Cyprus and Crete. In The Origins and Spread of Domestic Plants in Southwest Asia and Europe; Colledge, S., Conolly, J., Eds.; UCL Institute of Archaeology/Left Coast Press: Walnut Creek, CA, USA, 2017; pp. 53–74. [Google Scholar]
- Vigne, J.D.; Briois, F.; Tengberg, M. Nouvelles Données sur les Débuts du Neolithique à Chypre. Actes de la Séance de la Société Préhistorique Française, Paris, 18–19 Mars 2015; Société Préhistorique française: Paris, France, 2017; Volume 9, pp. 7–11. [Google Scholar]
- Willcox, G. Présence des céréales dans le Néolithique précéramique de Shillourokambos à Chypre: Résultats de la campagne 1999. Paléorient 2001, 26, 129–135. [Google Scholar] [CrossRef]
- Willcox, G. The origins of Cypriot farming. In Le Néolithique de Chypre. Actes du Colloque International Organisé par le Département des Antiquités de Chypre et l’Ecole Française d’Athènes, Nicosie 17–18 Mai 2001; Guilaine, J., Le Brun, A., Eds.; Bulletin de Correspondance Hellénique: Paris, France, 2003; pp. 231–238. [Google Scholar]
- Butzer, K.W.; Harris, S.E. Geoarchaeological approaches to the environmental history of Cyprus: Explication and critical evaluation. J. Archaeol. Sci. 2007, 34, 1932–1952. [Google Scholar] [CrossRef]
- Simmons, A.H. Extinct pygmy hippopotamus and early man in Cyprus. Nature 1988, 333, 554–557. [Google Scholar] [CrossRef]
- Simmons, A.H. Bitter hippos of Cyprus: The island’s first occupants and the last endemic animals—setting the stage for colonisation. In Neolithic Revolution: New Perspectives on Southwest Asia in Light of Recent Discoveries on Cyprus; Levant Supplemantary Series I; Peltenburg, E., Wasse, A., Eds.; Oxbow Books: Oxford, UK, 2004; pp. 1–14. [Google Scholar]
- Simmons, A.; Mandel, R.D. Site formation processes at Akrotiri Aetokremnos, Cyprus: Why the site is so controversial? In Géoarchéologie des îles de Méditerranée; Ghilardi, M., Ed.; CNRS Editions Alpha: Paris, France, 2016; pp. 57–72. [Google Scholar]
- Kardulias, P.N.; Yerkes, R.W. Flaked Stone Artifacts from the Malloura Valley Survey and their Cypriot Context. In Crossroads and Boundaries: The Archaeology of Past and Present in the Malloura Valley, Cyprus; Toumazou, M.K., Kardulias, P.N., Counts, D.B., Eds.; Annual of ASOR 65; American Schools of Oriental Research: Boston, MA, USA, 2012; pp. 107–124. [Google Scholar]
- Peltenburg, E.; Colledge, S.; Croft, P.; Jackson, A.; McCartney, C.; Murray, M. Neolithic dispersals from the Levantine Corridor: A Mediterranean perspective. Levant 2001, 33, 35–64. [Google Scholar] [CrossRef]
- Morhange, C.; Goiran, J.P.; Bourcier, M.; Carbonel, P.; Le Campion, J.; Rouchy, J.M.; Yon, M. Recent Holocene paleo-environmental evolution and coastline changes of Kition, Lanarca, Cyprus, Mediterranean Sea. Mar. Geol. 2000, 170, 205–230. [Google Scholar] [CrossRef]
- Kaniewski, D.; Van Campo, E.; Guiot, J.; Le Burel, S.; Otto, T.; Baeteman, C. Environmental roots of the Late Bronze Age crisis. PLoS ONE 2013, 8, e71004. [Google Scholar] [CrossRef] [Green Version]
- Kaniewski, D.; Marriner, N.; Bretschneider, J.; Jans, G.; Morhange, C.; Cheddadi, R.; Otto, T.; Luce, F.; Van Campo, E. 300-Year drought frames Late Bronze Age to Early Iron Age transition in the Near East: New palaeoecological data from Cyprus and Syria. Reg. Environ. Chang. 2019, 19, 2287–2297. [Google Scholar] [CrossRef]
- Pirazzoli, P. The Early Byzantine tectonic paroxysm. Z. Fur Geomorphol. 1986, 62, 31–49. [Google Scholar]
- Pirazzoli, P.; Ausseil-Badie, J.; Giresse, P.; Hadjidaki, E.; Arnold, M. Historical environmental changes at Phalarsana harbor, West Crete. Geoarchaeology 1992, 7, 371–392. [Google Scholar] [CrossRef]
- Mourtzas, N. Archaeological indicators for sea level change and coastal neotectonic deformation: The submerged Roman fish tanks of the Gulf of Matala, Crete, Greece. J. Archaeol. Sci. 2012, 39, 884–895. [Google Scholar] [CrossRef]
- Stiros, S.C.; Blackman, D.J. Seismic coastal uplift and subsidence in Rhodes Island, Aegean Arc: Evidence from an uplifted harbor. Tectonophysics 2014, 611, 114–120. [Google Scholar] [CrossRef]
- Desruelles, S.; Fouache, E.; Pavlopoulos, K.; Dalongeville, R.; Peulvast, J.P.; Coquinot, Y.; Potdevin, J.L. Beachrocks et variations récentes de la ligne de rivage en Mer Egée dans l’ensemble insulaire Mykonos-Délos-Rhénée (Cyclades, Grèce). Géomorphologie: Relief Process. Environ. 2004, 10, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Mourtzas, N.D. A palaeogeographic reconstruction of the seafront of the ancient city of Delos in relation to Upper Holocene sea level changes in the central Cyclades. Quat. Int. 2012, 250, 3–18. [Google Scholar] [CrossRef]
- Mourtzas, N.D.; Kolaiti, E. Holocene sea-level changes and palaeogeographic reconstruction of the Ayia Irini prehistoric settlement (Keos island, Cyclades archipelago, Greece). In Géoarchéologie des îles de Méditerranée; Ghilardi, M., Ed.; CNRS Editions Alpha: Paris, France, 2016; pp. 119–135. [Google Scholar]
- Mourtzas, N. Palaeogeographic reconstruction of the coast of ancient Andros. In Palaiopolis, Andros: Thirty Years of Excavation Research; Palaiokrassa-Kopitsa, L., Ed.; Κaireios Library: Andros, Greece, 2018; pp. 56–66. [Google Scholar]
- Kolaiti, E.; Mourtzas, N.D. New insights on the relative sea level changes during the Late Holocene along the coast of Paros Island and the northern Cyclades (Greece). Ann. Geophys. 2020, 63, 669. [Google Scholar] [CrossRef]
- Stiros, S. The AD 365 Crete earthquake and possible seismic clustering during the fourth to sixth centuries AD in the Eastern Mediterranean: A review of historical and archaeological data. J. Struct. Geol. 2001, 23, 545–562. [Google Scholar] [CrossRef]
- Moslopoulou, V.; Begg, J.; Nicol, A.; Oncken, O.; Prior, C. Formation of Late Quaternary paleoshorelines in Crete, Eastern Mediterranean. Earth Planet Sci. Lett. 2015, 431, 294–307. [Google Scholar] [CrossRef]
- Lespez, L. Les dynamiques des systèmes fluviaux en Grèce du Nord au cours des 7 derniers millénaires: Vers une approche multiscalaire des interactions Nature/Société. Géomorphologie Relief Process. Environ. 2007, 1, 49–66. [Google Scholar]
- Evelpidou, N.; Pavlopoulos, K.; Vouvalidis, K.; Syrides, G.; Triantaphyllou, M.; Karkani, A.; Paraschou, T. Holocene palaeogeographical reconstruction and relative sea-level changes in the southeastern part of the island of Samos (Greece). Comptes Rendus Geosci. 2019, 351, 451–460. [Google Scholar] [CrossRef]
- Pavlopoulos, K.; Fouache, E.; Sidiropoulou, M.; Triantaphyllou, M.; Vouvalidis, K.; Syrides, G.; Gonnet, A.; Greco, E. Palaeoenvironmental evolution and sea-level changes in the coastal area of NE Lemnos Island (Greece) during the Holocene. Quat. Int. 2013, 308–309, 80–88. [Google Scholar] [CrossRef]
- Pavlopoulos, K.; Triantaphyllou, M.; Karkanas, P.; Kouli, K.; Syrides, G.; Vouvalidis, G.; Palyvos, N.; Tsourou, T. Paleoenvironmental evolution and prehistoric human environment, in the embayment of Palamari (Skyros Island, Greece) during Middle-Late Holocene. Quat. Int. 2010, 216, 41–53. [Google Scholar] [CrossRef]
- Karkani, A.; Evelpidou, N.; Giaime, M.; Marriner, N.; Maroukian, H.; Morhange, C. Late Holocene palaeogeographical evolution of Paroikia Bay (Paros Island, Greece). Comptes Rendus Geosci. 2018, 350, 202–211. [Google Scholar] [CrossRef]
- Ghilardi, M.; Vacchi, M.; Currás, A.; Müller Celka, S.; Theurillat, T.; Lemos, I.; Pavlopoulos, K. Géoarchéologie des paysages littoraux le long du golfe sud-eubéen (île d’Eubée, Grèce) au cours de l’Holocène. Quaternaire 2018, 29, 95–120. [Google Scholar] [CrossRef]
- Ghilardi, M.; Fachard, S.; Pavlopoulos, K.; Psomiadis, D.; Collana, C.; Bicket, A.; Crest, Y.; Bonneau, A.; Delanghe-Sabatier, D.; Knodell, A.; et al. Reconstructing mid-to-recent Holocene paleoenvironments in the vicinity of Ancient Amarynthos (Euboea, Greece). Geodin. Acta. 2012, 25, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Ghilardi, M.; Psomiadis, D.; Pavlopoulos, K.; Müller-Celka, S.; Fachard, S.; Theurillat, T.; Verdan, S.; Knodell, A.; Theodoropoulou, T.; Bicket, A.; et al. Mid- to Late Holocene shoreline reconstruction and human occupation in Ancient Eretria (South Central Euboea, Greece). Geomorphology 2014, 208, 225–237. [Google Scholar] [CrossRef]
- Fachard, S.; Knoepfler, D.; Reber, K.; Karapaschalidou, A.; Krapf, T.; Theurillat, T.; Kalamara, P. Recent research at the Sanctuary of Artemis Amarysia in Amarynthos (Euboea). Archaeol. Rep. 2017, 63, 167–180. [Google Scholar] [CrossRef]
- Spampinato, C.R.; Costa, B.; Di Stefano, A.; Monaco, C.; Scicchitano, G. The contribution of tectonics to relative sea-level change during the Holocene in coastal south-eastern Sicily: New data from boreholes. Quat. Int. 2011, 232, 214–227. [Google Scholar] [CrossRef]
- Basso, D.; Bernasconi, M.P.; Robba, E.; Marozzo, S. Environmental evolution of the Marsala Sound, Sicily, during the last 6000 years. J. Coast. Res. 2008, 24, 177–197. [Google Scholar] [CrossRef]
- Leighton, R. Sicily before History. An Archeological Survey from the Paleolithic to the Iron Age; Cornell University Press: Ithaca, NY, USA, 1999; p. 224. [Google Scholar]
- Mazza, A. Reconstructing the coastal landscape of Selinus (Sicily, Italy) and Lipari Sotto Monastero (Lipari, Italy). In Géoarchéologie des îles de Méditerranée; Ghilardi, M., Ed.; CNRS Editions Alpha: Paris, France, 2016; pp. 177–190. [Google Scholar]
- Marriner, N.; Gambin, T.; Djamali, M.; Morhange, C.; Spiteri, M. Geoarchaeology of the Burmarrad ria and early Holocene human impacts on western Malta. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 339, 52–65. [Google Scholar] [CrossRef]
- Pirazzoli, P.; Stiros, S.C.; Laborel, J.; Laborel-Deguen, F.; Arnold, M.; Papageorgiou, S.; Morhange, C. Late-Holocene shoreline changes related to palaeoseismic events in the Ionian Islands, Greece. Holocene 1994, 4, 397–405. [Google Scholar] [CrossRef]
- Evelpidou, N.; Karkani, A.; Pirazzoli, P.A. Late Holocene tectonic implications deduced from tidal notches in Leukas and Meganisi islands (Ionian Sea). Geol. Acta. 2017, 15, 1–9. [Google Scholar]
- Berger, J.F.; Metallinou, G.; Guilaine, J. Vers une révision de la transition méso-néolithique sur le site de Sidari (Corfou, Grèce). Nouvelles données géoarchéologiques et radiocarbone, évaluation des processus post-dépositionnels. In La transition néolithique en Méditerranée; Manen, C., Perrin, T., Guilaine, J., Eds.; Archives d’écologie préhistorique; Errance: Toulouse, France, 2014; pp. 213–232. [Google Scholar]
- Marriner, N.; Morhange, C.; Faivre, S.; Flaux, C.; Vacchi, M.; Milko, S.; Dumas, V.; Boetto, G.; Radic Rossi, I. Post-Roman sea-level changes on Pag island (Adriatic Sea): Dating Croatia’s “enigmatic” coastal notch? Geomorphology 2014, 221, 83–94. [Google Scholar] [CrossRef]
- Alcover, J.A. Disentangling the Balearic first settlement issues. ENDINS 2004, 26, 143–156. [Google Scholar]
- Burjachs, F.; Perez-Olbiol, R.; Picornell Gelabert, L.; Revelles, J.; Servera-Vives, G.; Exposito Barea, I.; Yll, E.I. Overview of environmental changes and human colonization in the Balearic Islands (Western Mediterranean) and their impacts on vegetation composition during the Holocene. Geoarchaeology of the Mediterranean Islands. J. Archaeol. Sci. Rep. 2017, 12, 845–859. [Google Scholar] [CrossRef]
- Cherry, J.F.; Leppard, T.P. The Balearic paradox: Why were the islands colonized so late? Pyrenae 2018, 49, 49–70. [Google Scholar]
- Simon, M.; Diaz, N.; Solorzano, E.; Montiel, R.; Francalacci, P.; Malgosa, A. Dissecting mithocondrial dna variability of baleraic populations from the bronze age to current era. Am. J. Hum. Biol. 2017, 29, e22883. [Google Scholar] [CrossRef]
- Micó, R. Radiocarbon dating and Balearic prehistory: Reviewing the periodization of the prehistoric sequence. Radiocarbon 2006, 48, 421–434. [Google Scholar] [CrossRef] [Green Version]
- Melis, R.T.; Depalmas, A.; Di Rita, F.; Montis, F.; Vacchi, M. Mid to late Holocene environmental changes along the coast of western Sardinia (Mediterranean Sea). Glob. Planet. Chang. 2017, 155, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Melis, R.T.; Di Rita, F.; French, C.; Marriner, N.; Montis, F.; Serreli, G.; Sulas, F.; Vacchi, M. 8000 years of coastal changes on a western Mediterranean island: A multiproxy approach from the Posada plain of Sardinia. Mar. Geol. 2018, 403, 93–108. [Google Scholar] [CrossRef]
- Beffa, G.; Pedrotta, T.; Colombaroli, D.; Henne, P.D.; van Leeuwen, J.F.N.; Süsstrunk, P.; Kalterieder, P.; Adolf, C.; Vogel, H.; Pasta, S.; et al. Vegetation and fire history of coastal north-eastern Sardinia (Itlay) under changing Holocene climates and land use. Veget. Hist. Archaeobot. 2016, 25, 271–289. [Google Scholar] [CrossRef]
- Van Geel, B. Non-Pollen Palynomorphs. In Tracking Environmental Change Using Lake Sediments; Smol, J.P., Birks, H.J.B., Last, W.M., Bradley, R.S., Alverson, K., Eds.; Developments in Paleoenvironmental Research; Springer: Dordrecht, The Netherlands, 2001; pp. 99–119. [Google Scholar]
- Reille, M. Origine de la végétation actuelle de la Corse sud-orientale; analyse pollinique de cinq marais côtiers. Pollen Spores 1984, 1, 43–60. [Google Scholar]
- Currás, A.; Ghilardi, M.; Peche-Quilichini, K.; Fagel, N.; Vacchi, M.; Delanghe, D.; Dussouillez, P.; Vella, C.; Bontempi, J.M.; Ottaviani, J.C. Reconstructing past landscapes of the Eastern plain of Corsica (NW Mediterranean) during the last 6000 yr based on macrofaunal, sedimentological and palynological analyses. Geoarchaeology of the Mediterranean Islands. J. Archaeol. Sci. Rep. 2017, 12, 755–769. [Google Scholar]
- Revelles, J.; Ghilardi, M.; Vacchi, M.; Rossi, V.; Currás, A.; López-Bultò, O.; Brkojewitsch, G. Coastal landscape evolution of Corsica: Palaeoenvironments, vegetation history and human impacts since the Early Neolithic period. Quat. Sci. Rev. 2019, 225, 105993. [Google Scholar] [CrossRef]
- Lugliè, C. Your path through the sea…The emergence of Neolithic in Sardinia and Corsica. Quat. Int. 2018, 470, 285–300. [Google Scholar] [CrossRef] [Green Version]
- Ghilardi, M. Lagunes et Marais Littoraux de Corse. De la Préhistoire à nos Jours. Collection Orma: La Corse archéologie, ARAC Edi-tion. Available online: https://www.araceditions.com/ (accessed on 14 May 2021).
- Vacchi, M.; Ghilardi, M.; Melis, R.T.; Spada, G.; Giaime, M.; Marriner, N.; Lorscheid, T.; Morhange, C.; Burjachs, F.; Rovere, A. New relative sea-level insights into the isostatic history of the Western Mediterranean. Quat. Sci. Rev. 2018, 201, 396–408. [Google Scholar] [CrossRef]
- Buurman, P.; Pape, T.; Muggler, R.C.C. Laser grain-size determination in soil genetic studies: Practical problems. Soil Sci. 1996, 162, 211–218. [Google Scholar] [CrossRef]
- Buurman, P.; de Boer, K.; Pape, T. Laser Diffraction grain-size characteristics of Andisols in perhumid Costa Rica: The aggregate size of allophane. Geoderma 1997, 78, 71–91. [Google Scholar] [CrossRef]
- Dean, W.E. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods. J. Sediment. Petrol. 1974, 44, 242–248. [Google Scholar]
- Avramidis, P.; Panagiotaras, D.; Papoulis, D.; Kontopoulos, N. Sedimentological and geochemical characterization of Holocene sediments, from Alikes lagoon, Zakynthos island, Western Greece. Bull. Geol. Soc. Greece 2010, 43, 558–567. [Google Scholar] [CrossRef]
- Emmanouilidis, A.; Katrantsiotis, C.; Norström, E.; Risberg, J.; Kylander, M.; Ali Sheik, T.; Iliopoulos, G.; Avramidis, P. Middle to late Holocene palaeoenvironmental study of Gialova Lagoon, SW Peloponnese, Greece. Quat. Int. 2018, 476, 46–62. [Google Scholar] [CrossRef]
- Croudace, I.W.; Rindby, A.; Rothwell, R.G. ITRAX: Description and evaluation of a new multi-function X-ray core scanner. Geol. Soc. Spec. Publ. 2006, 267, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Brisset, E.; Guiter, F.; Miramont, C.; Delhon, C.; Arnaud, F.; Disnar, J.R.; Poulenard, J.; Anthony, E.; Meunier, J.D.; Wilhelm, B.; et al. Approche multidisciplinaire d’une séquence lacustre holocène dans les alpes du sud au Lac Petit (Mercantour, alt. 2200 m, France): Histoire d’un géosystème degrade. Quaternaire 2012, 23, 309–319. [Google Scholar]
- Thompson, R.; Battarbee, R.W.; O’Sullivan, P.E.; Oldfield, F. Magnetic susceptibility of lake sediments. Limnol. Oceanogr. 1975, 20, 687–698. [Google Scholar] [CrossRef]
- Evans, M.E.; Heller, F. Environmental Magnetism-Principles and Applications of Enviromagnetics; Academic Press: Amsterdam, The Netherlands, 2003; p. 299. [Google Scholar]
- Ghilardi, M.; Kunesch, S.; Styllas, M.; Fouache, E. Reconstruction of Mid-Holocene sedimentary environments in the central part of the Thessaloniki Plain (Greece), based on microfaunal identification, magnetic susceptibility and grain-size analyses. Geomorphology 2008, 97, 617–630. [Google Scholar] [CrossRef]
- Ghilardi, M.; Delanghe, D.; Demory, F.; Leandri, F.; Pêche-Quilichini, K.; Vacchi, M.; Vella, M.A.; Rossi, V.; Robresco, S. Enregistrements d’événements extrêmes et évolution des paysages dans les basses vallées fluviales du Taravo et du Sagone (Corse occidentale, France) au cours de l’âge du Bronze moyen à final: Une perspective géoarchéologique. Géomorphologie, Relief Process. Environ. 2017, 23, 15–35. [Google Scholar] [CrossRef] [Green Version]
- Maher, B.A. Magnetic properties of modern soils and loessic paleosols: Implications for paleoclimate. Palaeogeogr. Palaeoclim. Palaeoecol. 1998, 137, 25–54. [Google Scholar] [CrossRef] [Green Version]
- Stuiver, M.; Polach, H.A. Discussion reporting of 14C Data. Radiocarbon 1977, 19, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Goiran, J.P.; Morhange, C. Geoarcheology of ancient mediterranean harbours: Issues and case studies; Lyon: Association des amis de la Bibliothèque Salomon Reinach. Topoi Orient 2003, 11, 647–669. [Google Scholar]
- Stuiver, M.; Pearson, G.W.; Braziunas, T. Radiocarbon Age calibration of marine samples back to 9000 cal. YR BP. Radiocarbon 1986, 28, 980–1021. [Google Scholar] [CrossRef] [Green Version]
- Heaton, T.; Köhler, P.; Butzin, M.; Bard, E.; Reimer, R.; Austin, W.; Bronk-Ramsey, C.; Grootes, P.M.; Hughen, K.A.; Kromer, B.; et al. Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP). Radiocarbon 2020, 62, 779–820. [Google Scholar] [CrossRef]
- Siani, G.; Paterne, M.; Arnold, M.; Bard, E.; Métivier, B.; Tisnerat, N.; Bassinot, F. Radiocarbon reservoir ages in the Mediterranean Sea and Black Sea. Radiocarbon 2000, 42, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Vella, M.A.; Andrieu-Ponel, V.; Cesari, J.; Leandri, F.; Pêche-Quilichini, K.; Reille, M.; Poher, Y.; Demory, F.; Delanghe, D.; Ghilardi, M.; et al. Early Impact of Agropastoral Activities and Climate on the Littoral Landscape of Corsica since Mid-Holocene. PLoS ONE 2019, 14, e0226358. [Google Scholar] [CrossRef]
- Rius, D.; Vannière, B.; Galop, D.; Richard, H. Holocene fire regime changes from multiple-site sedimentary charcoal analyses in the Lourdes basin (Pyrenees, France). Quat. Sci. Rev. 2011, 30, 1696–1709. [Google Scholar] [CrossRef]
- Leys, B.A.; Commerford, J.L.; McLauchlan, K.K. Reconstructing grassland fire history using sedimentary charcoal: Considering count, size and shape. PLoS ONE 2017, 12, e0176445. [Google Scholar] [CrossRef] [PubMed]
- Lestienne, M.; Jouffroy-Bapicot, I.; Leyssenne, D.; Sabatier, P.; Debret, M.; Albertini, P.J.; Colombaroli, D.; Didier, J.; Hély, C.; Vannière, B. Fires and Human Activities as Key Factors in the High Diversity of Corsican Vegetation. Holocene 2020, 30, 244–257. [Google Scholar] [CrossRef]
- Vannière, B.; Galop, D.; Rendu, C.; Davasse, B. Feux et pratiques agro-pastorales dans les Pyrénées orientales: Le case de la montagne d’Enveitg (Cerdagne, Pyrénées orientales, France). Sud-Ouest Eur. 2001, 11, 29–42. [Google Scholar]
- Ghilardi, M.; Istria, D.; Currás, A.; Vacchi, M.; Contreras, D.; Vella, C.; Dussouillez, P.; Crest, Y.; Colleu, M.; Guiter, F.; et al. Reconstructing the landscape evolution and the human occupation of the Lower Sagone River (Western Corsica, France) from the Bronze Age to the Medieval period. Geoarchaeology of the Mediterranean Islands. J. Archaeol. Sci. Rep. 2017, 12, 741–754. [Google Scholar]
- D’Anna, A.; Guendon, J.L.; Pinet, L.; Tramoni, P. Espaces, territoires et mégalithes: Le plateau de Cauria (Sartène, Corse-du-Sud) au Néolithique et à l’âge du Bronze. In Impacts interculturels au Néolithique moyen: Du terroir au Territoire: Sociétés et espaces; Duhamel, P., Ed.; Colloque Interrégional sur le Néolithique (Dijon, octobre 2001), Revue Archéologique de l’Est: Dijon, France, 2006; (Suppl. 25), pp. 191–213. [Google Scholar]
- D’Anna, A. Les statues-menhirs de Corse: Chronologie et contextes, l’exemple de Cauria. Doc. D’archéologie Méridionale 2011, 34, 21–36. [Google Scholar] [CrossRef]
- Guilaine, J.; Leandri, F. Menhirs et stèles de Corse. Une hypothèse chronologique. L’Anthropologie 2016, 120, 107–124. [Google Scholar] [CrossRef]
- D’Anna, A.; Guendon, J.L.; Pinet, L.; Tramoni, P. Le plateau de Cauria à l’âge du Bronze: De la lecture évènementielle à l’approche pluridisciplinaire anthropologique. In Un Siècle de Construction du Discours Scientifique en Préhistoire; Société Préhistorique Française: Paris, France, 2007; pp. 331–346. [Google Scholar]
- Cesari, J.; Istria, D.; Leandri, F. Nouvelles découvertes de statues-menhirs du groupe de Sagone à Sant’ Appianu (Vico, Corse-du-Sud). In Six Millénaires en Centre Ouest Corse: Sevi, Sorru, Cruzzini, Cinarca: Archéologie, Histoire, Architecture ET Toponymie; Patrimoine d’une île: Ajaccio, France, 2016; Volume 5, pp. 13–23. [Google Scholar]
- Bellotti, P.; Caputo, C.; Davoli, L.; Evangelista, S.; Garzanti, E.; Pugliese, F.; Valeri, P. Morpho-sedimentary characteristics and Holocene evolution of the emergent part of the Ombrone River delta (southern Tuscany). Geomorphology 2004, 61, 71–90. [Google Scholar] [CrossRef]
- Bini, M.; Brückner, H.; Chelli, A.; Da Prato, S.; Gervasini, L. Palaeogeographies of the Magra Valley coastal plain to constrain the location of the Roman harbour of Luna (NW Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 337, 37–51. [Google Scholar] [CrossRef]
- Bini, M.; Baroni, C.; Ribolini, A. Geoarchaeology as a tool for reconstructing the evolution of the Apuo-Versilian plain (NW Italy). Geogr. Fis. Din. E Quat. 2013, 36, 215–224. [Google Scholar]
- Reille, M. New pollen-analytical researches in Corsica: The problem of Quercus ilex L. and Erica arborea L., the origin of Pinus halepensis Miller forests. New Phytol. 1992, 122, 359–378. [Google Scholar] [CrossRef] [PubMed]
- Fontanilles-Laurelli, F. Vestiges historiques du Fium’Orbu. Rev. d’Etudes Corses 1961, 4, 5–21. [Google Scholar]
- Cesari, J.; Ottaviani, J.C. Inventaire des Documents Pouvant Servir à la Localisation des Etablissements Romains de Corse; Rapport d’étude, Université de Nice: Nice, France, 1971; p. 355. [Google Scholar]
- Mayewski, P.A.; Rohling, E.E.; Stager, J.C.; Karlen, W.; Maasch, K.A.; Meeker, L.D.; Meyerson, E.A.; Gasse, F.; Van Kreveld, S.; Holmgren, K.; et al. Holocene climate variability. Quat. Res. 2004, 62, 243–255. [Google Scholar] [CrossRef]
- Bond, G.W.; Broecker, W.; Johnsen, S.; McManus, J.; Labeyrie, L.; Jouzel, J.; Bonani, G. Correlations between climate records from North-Atlantic sediments and Greenland ice. Nature 1993, 365, 143–147. [Google Scholar] [CrossRef]
- Bond, G.W.; Showers, M.; Cheseby, R.; Lotti, P.; Almasi, P.; de Menocal, P.; Priore, P.; Cullen, H.; Hajdas, I.; Bonani, G. A pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates. Science 1997, 278, 1257–1266. [Google Scholar] [CrossRef]
- Tainter, J.A. The Collapse of Complex. Societies; Cambridge University Press: Cambridge, UK, 1990; p. 266. [Google Scholar]
- McAnany, P.; Norman Yoffee, N. (Eds.) Questioning Collapse. Human Resilience, Ecological Vulnerability and the Aftermath of the Empire; Cambridge University Press: Cambridge, UK, 2010; p. 392. [Google Scholar]
- Weninger, B.; Alram-Stern, E.; Bauer, E.; Clare, L.; Danzeglocke, U.; Jöris, O.; Kubatzki, C.; Rollefson, G.; Todorova, H.; Van Andel, T. Climate Forcing Due to the 8200 Cal yr BP Event Observed at Early Neolithic Sites in the Eastern Mediterranean. Quat. Res. 2006, 66, 401–420. [Google Scholar] [CrossRef]
- Hassan, F.A. Nile Floods and Political Disorder in Early Egypt. In Third Millennium BC: Abrupt Climate Change and the Old World Collapse; Dalfes, H.N., Kukula, G.H., Weiss, H., Eds.; Springer: Berlin, Germany, 1997; pp. 1–23. [Google Scholar]
- Weiss, H. Global megadrought, societal collapse and resilience at 4.2–3.9 ka BP across the Mediterranean and west Asia. PAGES Mag. 2016, 24, 62–63. [Google Scholar] [CrossRef] [Green Version]
- Cline, E.H. 1077 BC: The Year Civilization Collapsed; Princeton University Press: Princeton, NJ, USA, 2014; p. 264. [Google Scholar]
- Drake, B.L. The influence of climatic change on the Late Bronze Age collapse and the Greek Dark Ages. J. Archaeol. Sci. 2012, 39, 1862–1870. [Google Scholar] [CrossRef]
- Berger, J.F.; Brochier, J.L.; Vital, J.; Delhon, C.; Thiebault, S. Nouveau regard sur la dynamique des paysages et l’occupation humaine à l’Âge du bronze en moyenne vallée du Rhône. In Environnements et Cultures à l’âge du Bronze en Europe occidentale; Mordant, C., Richard, H., Magny, M., Eds.; Comité des travaux historiques et scientifiques (CTHS): Paris, France, 2007; Volume 21, pp. 260–283. [Google Scholar]
- Galop, D.; Carozza, L.; Marembert, F.; Bal, M.C. Activités agropastorales et climat durant l’Âge du Bronze dans les Pyrénées: L’état de la question à la lumière des données environnementales et archéologiques. In Environnements et Cultures à l’âge du Bronze en Europe Occidentale; Mordant, C., Richard, H., Magny, M., Eds.; Comité des travaux historiques et scientifiques (CTHS): Paris, France, 2007; Volume 21, pp. 107–119. [Google Scholar]
- Peche Quilichini, K. Chronologie, productions matérielles et dynamiques socio-culturelles: Le point sur le séquençage de l’âge du Bronze en Corse. In 13e Rencontres du Musée Départemental de l’Alta Rocca; Publications du musée de l’Alta Rocca: Levie, France, 2013; pp. 33–77. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghilardi, M. Geoarchaeology: Where Geosciences Meet the Humanities to Reconstruct Past Human–Environment Interactions. An Application to the Coastal Areas of the Largest Mediterranean Islands. Appl. Sci. 2021, 11, 4480. https://doi.org/10.3390/app11104480
Ghilardi M. Geoarchaeology: Where Geosciences Meet the Humanities to Reconstruct Past Human–Environment Interactions. An Application to the Coastal Areas of the Largest Mediterranean Islands. Applied Sciences. 2021; 11(10):4480. https://doi.org/10.3390/app11104480
Chicago/Turabian StyleGhilardi, Matthieu. 2021. "Geoarchaeology: Where Geosciences Meet the Humanities to Reconstruct Past Human–Environment Interactions. An Application to the Coastal Areas of the Largest Mediterranean Islands" Applied Sciences 11, no. 10: 4480. https://doi.org/10.3390/app11104480
APA StyleGhilardi, M. (2021). Geoarchaeology: Where Geosciences Meet the Humanities to Reconstruct Past Human–Environment Interactions. An Application to the Coastal Areas of the Largest Mediterranean Islands. Applied Sciences, 11(10), 4480. https://doi.org/10.3390/app11104480