A Human-Inspired Control Strategy for Improving Seamless Robot-To-Human Handovers
Abstract
:1. Introduction
2. Design of the Robotic Human-Inspired Control Strategy for HRH
2.1. Background of Human-Human Handover Strategy
2.2. Toyota HSR Platform
2.3. The Conceptual Framework for Human-Robot Handover
2.4. Kinematic Model of the HSR
2.5. Coordinate Registration in the HRH System
2.6. Robotic Hybrid Position/Force Control Strategy for the HRH Tasks
2.7. Dynamic Mechanical Model of the Physical Human-Robot Handover
2.8. Safety in HHH
3. Results and Discussion
3.1. Optimization of the Robotic PID Position Control
3.2. Evaluation of the Robotic Impedance Control Based on the HRH
- (1)
- How do you compare the qualitative performance of the HHH to that of the HRH using the parameter Set 1?
- (2)
- How do you compare the qualitative performance of the HHH to that of the HRH using the parameter Set 2?
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goodrich, M.; Schultz, A. Human-Robot Interaction: A Survey. Found. Trends Hum. Comput. Interact. 2007, 1, 203–275. [Google Scholar] [CrossRef]
- Shafkat Tanjim, M.S.; Rafi, S.A.; Oishi, A.N.; Barua, S.; Dey, H.C.; Babu, M.R. Image Processing Intelligence Analysis for Robo-Res 1.0: A Part of Humanoid Rescue-Robot. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 1229–1232. [Google Scholar]
- Zhao, J.; Gao, J.; Zhao, F.; Liu, Y. A Search-and-Rescue Robot System for Remotely Sensing the Underground Coal Mine Environment. Sensors 2017, 17, 2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardona, G.A.; Calderon, J.M. Robot Swarm Navigation and Victim Detection Using Rendezvous Consensus in Search and Rescue Operations. Appl. Sci. 2019, 9, 1702. [Google Scholar] [CrossRef] [Green Version]
- e Silva, L.C.; Daher, S.F.D.; Santiago, K.T.M.; Costa, A.P.C.S. Selection of an Integrated Security Area for locating a State Military Police Station based on MCDM/A method. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 1530–1534. [Google Scholar]
- Boisboissel, G. Is it sensible to grant autonomous decision-making to military robots of the future? In Proceedings of the 2017 International Conference on Military Technologies (ICMT), Brno, Czech Republic, 31 May–2 June 2017; pp. 738–742. [Google Scholar]
- Rosli, R.; Abdullah, M.; Siregar, N.C.; Hamid, N.S.A.; Abdullah, S.; Beng, G.K.; Halim, L.; Daud, N.M.; Bahari, S.A.; Majid, R.A.; et al. Exploring Space Science through the UKM-SIDn Outreach Program. In Proceedings of the 2019 International Conference on Space Science and Communication (IconSpace), Johor Bahru, Malaysia, 28–30 July 2019; pp. 253–256. [Google Scholar]
- Xing, Z.; Zhao, Y.; Zhu, S. Path Planning Method Design and Dynamic Model Simplification of Free-Flying Space Robot. In Proceedings of the 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, 9–13 November 2020; pp. 1501–1505. [Google Scholar]
- Islam, M.R.; Chowdhury, F.H.; Rezwan, S.; Ishaque, M.J.; Akanda, J.U.; Tuhel, A.S.; Riddhe, B.B. Novel design and performance analysis of a Mars exploration robot: Mars rover mongol pothik. In Proceedings of the 2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), Kolkata, India, 3–5 November 2017; pp. 132–136. [Google Scholar]
- Javaid, M.; Estivill-Castro, V. Explanations from a Robotic Partner Build Trust on the Robot’s Decisions for Collaborative Human-Humanoid Interaction. Robotics 2021, 10, 51. [Google Scholar] [CrossRef]
- Katsanis, I.A.; Moulianitis, V.C. An Architecture for Safe Child–Robot Interactions in Autism Interventions. Robotics 2021, 10, 20. [Google Scholar] [CrossRef]
- Mi, J.; Takahashi, Y. Whole-Body Joint Angle Estimation for Real-Time Humanoid Robot Imitation Based on Gaussian Process Dynamical Model and Particle Filter. Appl. Sci. 2020, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.E.; Won, E.-S. Systematic Review of Research Trends in Robotics Education for Young Children. Sustainability 2018, 10, 905. [Google Scholar] [CrossRef] [Green Version]
- Aa Diyas, Y.; Brakk, D.; Aimambetov, Y.; Sandygulova, A. Evaluating peer versus teacher robot within educational scenario of programming learning. In Proceedings of the 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Christchurch, New Zealand, 7–10 March 2016; pp. 425–426. [Google Scholar]
- Stuhlenmiller, F.; Weyand, S.; Jungblut, J.; Schebek, L.; Clever, D.; Rinderknecht, S. Impact of Cycle Time and Payload of an Industrial Robot on Resource Efficiency. Robotics 2021, 10, 33. [Google Scholar] [CrossRef]
- Tao, Y.; Chen, C.; Wang, T.; Chen, Y.; Xiong, H.; Ren, F.; Zou, Y. A Re-Entry Path Planning Method for Service Robots Based on Dynamic Inver-Over Evolutionary Algorithm. Appl. Sci. 2020, 10, 305. [Google Scholar] [CrossRef] [Green Version]
- Kupcsik, A.; Hsu, D.; Lee, W.S. Learning Dynamic Robot-to-Human Object Handover from Human Feedback. In Robotics Research; Bicchi, A., Burgard, W., Eds.; Springer Proceedings in Advanced Robotics; Springer: Berlin/Heidelberg, Germany, 2018; Volume 2, pp. 161–176. [Google Scholar]
- Neranon, P. Implicit force control approach for Safe physical Robot-to-Human object handover. Indones. J. Electr. Eng. Comput. Sci. 2020, 17, 615–628. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Sidobre, D. Improving human-robot object exchange by online force classification. J. Hum. Robot Interact. 2015, 4, 75–94. [Google Scholar] [CrossRef]
- Strabala, K.; Lee, M.K.; Dragan, A.; Forlizzi, J.; Srinivasa, S.S.; Cakmak, M.; Micelli, V. Toward Seamless Human–Robot Handovers. J. Hum. Robot Interact. 2013, 2, 112–132. [Google Scholar] [CrossRef] [Green Version]
- Emmelmann, M. Influence of velocity on the handover delay associated with a radio-signal-measurement-based handover decision. In Proceedings of the VTC-2005-Fall. 2005 IEEE 62nd Vehicular Technology Conference, Dallas, TX, USA, 28–30 September 2005; pp. 2282–2286. [Google Scholar]
- Neranon, P. Human-to-Robot Object Handover using a Behavioural Position-based Force Control Approach. In Proceedings of the First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), Bangkok, Thailand, 16–18 January 2019; pp. 5–8. [Google Scholar] [CrossRef]
- Huber, M.; Radrich, H.; Wendt, C.; Rickert, M.; Knoll, A.; Brandt, T. Evaluation of a novel biologically inspired trajectory generator in human-robot interaction. In Proceedings of the RO-MAN 2009—The 18th IEEE International Symposium on Robot and Human Interactive Communication, Toyama, Japan, 27 September–2 October 2009; pp. 639–644. [Google Scholar]
- Kajikawa, S.; Okino, T.; Ohba, K.; Inooka, H. Motion planning for hand-over between human and robot. In Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburgh, PA, USA, 5–9 August 1995; pp. 193–199. [Google Scholar]
- Chan, W.P.; Parker, C.A.; Van der Loos, H.F.; Croft, E.A. Grip forces and load forces in handovers: Implications for designing human-robot handover controllers. In Proceedings of the 7th Annual ACM/IEEE International Conference on Human-Robot Interaction, Boston, MA, USA, 2–5 March 2012; pp. 9–16. [Google Scholar]
- Baier, T.; Zhang, J. Reusability-based semantics for grasp evaluation in context of service robotics. Robotics and Biomimetics. In Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics (ROBIO’06), Kunming, China, 17–20 December 2006; pp. 703–708. [Google Scholar]
- Nemlekar, H.; Dutia, D.; Li, Z. Object Transfer Point Estimation for Fluent Human-Robot Handovers. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 2627–2633. [Google Scholar] [CrossRef]
- Lemic, F.; Behboodi, A.; Famaey, J.; Mathar, R. Location-Based Discovery and Vertical Handover in Heterogeneous Low-Power Wide-Area Networks. IEEE Internet Things J. 2019, 6, 10150–10165. [Google Scholar] [CrossRef]
- Cakmak, M.; Srinivasa, S.; Lee, M.K.; Forlizzi, J.; Kiesler, S. Human preferences for robot-human hand-over configulations. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Francisco, CA, USA, 25–30 September 2011; pp. 1986–1993. [Google Scholar]
- Chan, W.P.; Pan, M.K.; Croft, E.A.; Inaba, M. Characterization of handover orientations used by humans for efficient robot to human handovers. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 1–6. [Google Scholar]
- Aleotti, J.; Micelli, V.; Caselli, S. An affordance sensitive system for robot to human object handover. Int. J. Soc. Robot. 2014, 6, 653–666. [Google Scholar] [CrossRef]
- Sutiphotinun, T.; Neranon, P.; Vessakosol, P.; Romyen, A.; Hiransoog, C.; Sookgaew, J. A Human-Inspired Control Strategy: A Framework for Seamless Human-Robot Handovers. J. Mech. Eng. Res. Dev. 2020, 43, 235–245. [Google Scholar]
- Kato, S.; Yamanobe, N.; Venture, G.; Yoshida, E.; Ganesh, G. The where of handovers by humans: Effect of partner characteristics, distance and visual feedback. PLoS ONE 2019, 14, e0217129. [Google Scholar] [CrossRef]
- Chien, M.H.; Maya, C.; Bilge, M. Adaptive Coordination Strategies for Human-Robot Handovers. In Proceedings of the Robotics: Science and Systems, Rome, Italy, 13–17 July 2015; pp. 1–10. [Google Scholar]
- Sisbot, E.A.; Alami, R. A human-aware manipulation planner. IEEE Trans. Robot. 2012, 28, 1045–1057. [Google Scholar] [CrossRef]
- Glasauer, S.; Huber, M.; Basili, P.; Knoll, A.; Brandt, T. Interacting in time and space: Investigating human–human and human–robot joint action. In Proceedings of the 19th International Symposium in Robot and Human Interactive Communication, Viareggio, Italy, 13–15 September 2010; pp. 252–257. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Hwang, Y.K.; Lee, M. Advanced Grasp Planning for Handover Operation Between Human and Robot: Three Handover Methods in Esteem Etiquettes Using Dual Arms and Hands of Home-Service Robot. In Proceedings of the 2nd International Conference on Autonomous Robots and Agents, Palmerston North, New Zealand, 12–14 December 2004; pp. 34–39. [Google Scholar]
- Huber, M.; Rickert, M.; Knoll, A.; Brandt, T.; Glasauer, S. Human-robot interaction in handing-over tasks. Robot and Human Interactive Communication, 2008. RO-MAN 2008. In Proceedings of the 17th IEEE International Symposium, Munich, Germany, 1–3 August 2008; pp. 107–112. [Google Scholar]
- Jae-Bong, Y.; Taewoong, K.; Dongwoon, S.; Seung-Joon, Y. Unified Software Platform for Intelligent Home Service Robots. Appl. Sci. 2020, 10, 5874. [Google Scholar] [CrossRef]
- Denavit, J.; Hartenberg, R.S. A kinematic notation for lower-pair mechanisms based on matrices. J. Appl. Mech. 1955, 22, 215–221. [Google Scholar]
- Yamamoto, T.; Terada, K.; Ochiai, A. Development of Human Support Robot as the research platform of a domestic mobile manipulator. Robomech. J. 2019, 6. [Google Scholar] [CrossRef]
- Jaroonsorn, P.; Neranon, P.; Smithmaitrie, P.; Dechwayukul, C. Robot-assisted transcranial magnetic stimulation using hybrid position/force control. Adv. Robot. 2020, 34, 1559–1570. [Google Scholar] [CrossRef]
- Raibert, M.H.; Craig, J.J. Hybrid Position/Force Control of Manipulators. J. Dyn. Syst. Meas. Control 1981, 103, 126–133. [Google Scholar] [CrossRef]
- Volpe, R.; Khosla, P. A theoretical and experimental investigation of explicit force control strategies for manipulators. IEEE Trans. Autom. Control 1993, 38, 1634–1650. [Google Scholar] [CrossRef]
- Neranon, P.; Bicker, R. Force/position control of a robot manipulator for human-robot interaction. Therm. Sci. Int. Sci. J. 2016, 20, 537–548. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Ikeura, R.; Mizutani, K. Investigation of the impedance characteristic of human arm for development of robots to cooperate with humans’. JSME Int. J. Ser. C 2002, 45, 510–518. [Google Scholar] [CrossRef] [Green Version]
- Vukobratovic, M.; Surdilovic, D.; Ekalo, Y. Dynamics and Robust Control of Robot-environment Interaction. In New Frontiers in Robotics; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2008; Volume 2. [Google Scholar]
- Matthias, B.; Reisinger, T. Example Application of ISO/TS 15066 to a Collaborative Assembly Scenario. In Proceedings of the 47th International Symposium on Robotics: ISR 2016, Munich, Germany, 21–22 June 2016; pp. 1–5. [Google Scholar]
- Vasic, M.; Billard, A. Safety Issues in Human-Robot Interactions. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 197–204. [Google Scholar] [CrossRef] [Green Version]
- Duchemin, G.; Poignet, P.; Dombre, E.; Peirrot, F. Medically safe and sound [human-friendly robot dependability]. IEEE Robot. Autom. Mag. 2004, 11, 46–55. [Google Scholar] [CrossRef]
- Kulic, D.; Croft, E.A. Real-time safety for human–robot interaction. Robot. Auton. Syst. 2006, 54, 1–12. [Google Scholar] [CrossRef]
- Ruslan, F.A.; Haron, K.A.; Samad, M.; Adnan, R. Multiple Input Single Output (MISO) ARX and ARMAX model of flood prediction system: Case study Pahang. In Proceedings of the 2017 IEEE 13th International Colloquium on Signal Processing & Its Applications: CSPA, Penang, Malaysia, 10–12 March 2017; pp. 179–184. [Google Scholar] [CrossRef]
- Rabbani, F. Model Identification and Validation for a Heating System using MATLAB System Identification Toolbox. In Proceedings of the 1st International Conference on Sensing for Industry, Control, Communications, & Security Technologies (ICSICCST 2013), Karachi, Pakistan, 24–26 June 2013. [Google Scholar]
(s) | (s) | ||||||
---|---|---|---|---|---|---|---|
25 | 0 (N/A) | 1.19 | 2.14 | 0 (N/A) | 50 | 0.97 | 3.03 |
50 | 0 (N/A) | 1.16 | 2.22 | 0 (N/A) | 100 | 1.00 | 2.99 |
75 | 0 (N/A) | 1.12 | 2.32 | 0 (N/A) | 150 | 1.04 | 2.92 |
100 | 0 (N/A) | 1.09 | 2.41 | 0 (N/A) | 200 | 1.07 | 2.90 |
125 | 0 (N/A) | 1.05 | 2.49 | 0 (N/A) | 300 | 1.16 | 2.84 |
150 | 0 (N/A) | 1.00 | 2.61 | 0 (N/A) | 400 | 1.20 | 2.80 |
(s) | (s) | ||||||
---|---|---|---|---|---|---|---|
50 | 0 | 0.96 | 1.85 | 75 | 0 | 1.21 | 1.62 |
50 | 50 | 1.24 | 2.02 | 75 | 50 | 1.31 | 1.86 |
50 | 100 | 1.19 | 1.73 | 75 | 100 | 1.11 | 2.06 |
50 | 200 | 1.31 | 1.36 | 75 | 200 | 1.32 | 2.14 |
50 | 300 | 1.25 | 1.51 | 75 | 300 | 1.41 | 1.93 |
50 | 400 | 1.11 | 1.42 | 75 | 400 | 1.30 | 1.37 |
Paired Samples Statistics | |||||||||
---|---|---|---|---|---|---|---|---|---|
Mean | N | SD | SD Error Mean | ||||||
Pair 1 | Impedence1 | 3.80 | 20 | 0.768 | 0.172 | ||||
Impedence2 | 4.20 | 20 | 0.616 | 0.138 | |||||
Paired Samples Correlations | |||||||||
N | Correlation | Sig. | |||||||
Pair 1 | Impedence1 & Impedence2 | 20 | 0.757 | 0.000 | |||||
Paired Samples Test | |||||||||
Paired Differences | t | df | Sig. (2-tailed) | ||||||
Mean | SD | SD Error Mean | 95% Confidence of the Difference | ||||||
Lower | Upper | ||||||||
Pair 1 | Impedence1 & Impedence2 | −0.400 | 0.503 | 0.112 | −0.635 | −0.165 | −3.559 | 19 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neranon, P.; Sutiphotinun, T. A Human-Inspired Control Strategy for Improving Seamless Robot-To-Human Handovers. Appl. Sci. 2021, 11, 4437. https://doi.org/10.3390/app11104437
Neranon P, Sutiphotinun T. A Human-Inspired Control Strategy for Improving Seamless Robot-To-Human Handovers. Applied Sciences. 2021; 11(10):4437. https://doi.org/10.3390/app11104437
Chicago/Turabian StyleNeranon, Paramin, and Tanapong Sutiphotinun. 2021. "A Human-Inspired Control Strategy for Improving Seamless Robot-To-Human Handovers" Applied Sciences 11, no. 10: 4437. https://doi.org/10.3390/app11104437
APA StyleNeranon, P., & Sutiphotinun, T. (2021). A Human-Inspired Control Strategy for Improving Seamless Robot-To-Human Handovers. Applied Sciences, 11(10), 4437. https://doi.org/10.3390/app11104437