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Abstract: Laser-based methods are widely used techniques for thermonuclear plasma diagnostics,
since they can probe the internal of the plasma, being contactless and non-invasive. The
interferometer, the polarimeter and Thomson scattering are the most widespread techniques,
providing line-integral information of the electron density and the magnetic field (interferometer—
polarimeter) and local information of the electron density and temperature (Thomson scattering).
The design of the diagnostics is a fundamental step, which usually requires an iterative process to
maximise the performances of the diagnostics and their durability. In the future reactors, such as
ITER and DEMO, the working environment will be much challenging, due to the various electro-
mechanical, thermal and nuclear loads which may affect the life of the components and degrade the
performances of the diagnostics. This work aims to present the modelling of plasma interferometry,
polarimetry and Thomson scattering applied to a ray optics code. The model, developed on the
COMSOL Multiphysics software, can be easily interfaced with multiphysics problems, allowing the
possibility to test the performances of the diagnostics in several conditions.

Keywords: plasma diagnostics; numerical simulations; interferometry; polarimetry; Thomson scattering

1. Introduction

Plasma diagnostics is one of the most important research fields in nuclear fusion,
since they are the inputs of the control system, which has the scope to control the
confinement stability of the plasma, and they are fundamental to understand and analyse
the plasma physics and equilibrium [1-5]. Contact measurements are prohibited for core
plasma investigations, because they are invasive, their life would be too short, and their
interactions with plasma would produce impurities, causing off-normal events, such as
disruptions. Magnetic diagnostics provide only boundary or integrated information,
causing a lack of knowledge of the interior of the plasma, making optical diagnostics one
of the best methods to probe the plasma interior [6,7]. For example, bolometers are widely
used to measure the total emission of the plasma [8]; fundamental for the power balance,
and, by tomographic inversion methods, they are able to evaluate the radiation pattern
on the poloidal plane [9-11]. Between the optical diagnostics, the laser-based ones found
many applications, where the most valuable are interferometry, polarimetry and
Thomson scattering (TS) diagnostics [12].

The interferometer, measuring the phase difference between the probing beam and
the reference beam, is used to measure the line-integrated electron density along the line
of sight. It is considered to be one of the most important plasma diagnostics [13,14]. For
example, the Joint European Torus (JET) mounts four vertical and four horizontal
interferometric lines of sight, which are used to probe the electron density of the plasma
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and control the plasma discharge. Plasma polarimetry is based on the birefringent
characteristic of magnetised plasmas, which involves two components of the electric field
of the probing beam propagate differently, involving a changing of the polarisation of the
beam. Measuring the polarisation variation effects (Faraday rotation and Cotton-Mouton
phase shift) of the beam, it is possible to obtain information about the line integrated
electron density and magnetic field [15-17]. Moreover, the polarimeter and the
interferometer can be performed on the same probing beam, as done at JET, making the
interferometer—polarimeter a unique, reliable, and informative diagnostic. At ITER, it is
expected to have different polarimeter-interferometer diagnostics, both toroidal and
poloidal, and both for the study and the control of the plasma. The Thomson scattering
analyses the scattering radiation of a probing beam. The scattered radiation intensity is
directly proportional to the local electron density, while the scattered spectrum is
dependent on the local electron temperature, because of the Doppler effect which occurs
due to the interaction of the electromagnetic radiation with the moving electrons [18,19].

The design of these diagnostics is a crucial point of the building process of a tokamak
since several factors must be considered. At first, since the interaction between the probing
radiation and the plasma are strongly influenced by the plasma properties, it is important
to simulate the effects at different plasma configuration and find the best setup which is
optimised for all scenarios. For example, the laser wavelength of the polarimeter at JET is
195 um, which is unusable for ITER or DEMO plasma scenarios [20-22]. Moreover, in the
present tokamaks, the environment is not critical in terms of neutron and heat fluxes, as
well as electromagnetic forces, while in the future tokamaks, these loads will be much
higher and they will play an important role on the design of the diagnostics, since they
may involve the degradation of the performances. The high neutron flux may change the
optical properties of the mirrors, windows, and other optics, while the heat fluxes and the
electromagnetic forces may vary the alignment, involving a decrease of the performances
of the diagnostics [23-25]. Thus, a preventive effort to find more reliable and resilient
solutions is fundamental to ensure the longest duration of the best performances. For
these purposes, numerical simulations are decisive in finding the best diagnostic design.
Given the various physics which need to be considered during the design of the
diagnostics (optics, thermodynamics, neutrons, electromechanics, etc.), a numerical
model able to easily implement multiphysics simulations will help in the development of
the diagnostics of the future tokamaks.

This work aims to present the methodology implemented on the ray optics module
of COMSOL Multiphysics to simulate three of the most important laser-based diagnostics
in nuclear fusion reactors: interferometry, polarimetry, and Thomson scattering. The
solutions presented and employed in COMSOL are general, and the same methods can be
easily implemented in other ray optics models. The next section introduces the logic of
COMSOL, and the equations used to simulate the various effects, while Section 3 analyses
some numerical simulations with the aim to validate the logic implemented in the model.
The validation will be performed by comparing the expected (or imposed value) with the
measured one by the numerical simulation. At last, the most important issues and results
are resumed in the last section.

2. Modelling

This section discusses the numerical models used to simulate the propagation of
electromagnetic waves in a plasma. The numerical model has been implemented in
COMSOL Multiphysics, a numerical simulation software which allows an easy interface
of different physics. The model has been built over a standard COMSOL physics, the ray
optics, and it has been implemented to take into account the propagation of
electromagnetic properties in a thermonuclear plasma.
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2.1. Ray Optics

The propagation of electromagnetic waves in a medium can be approached in two
different ways, by the ray optics and the wave optics.

In the case of wave optics, or physical optics, the light propagates as a wave. Wave
optics allows simulating, without modelling approximations, the exact propagation of
electric and magnetic fields of light, and the major part of the optical phenomena, such as
interference and diffraction, which normally cannot be simulated by geometrical optics.
On the other hand, numerical models based on the wave optics are computationally
demanding, since the maximum mesh element size must be comparable with the light
wavelength. This issue limits the wave optics numerical simulations to applications with
geometries that have sizes comparable with the light wavelength, making this approach
unsuitable for thermonuclear diagnostics, where the ratio between the geometry size and
the radiation wavelength (L/A) is of the order of 107 for the TS, and a volumetric ratio
(L/A)? of 102! (considering only the vacuum vessel) [26].

Ray optics, also known as geometrical optics, describes the propagation of light as
rays. The propagation of these rays is based on the reflection, refraction, and absorption
equations. Ray optics is the common approach used to simulate the propagation of
electromagnetic waves when the geometry size is orders of magnitude larger than the
light wavelength, since the computational load required by the numerical simulation is
much lower. However, without proper modelling, some physical effects, such as
interference, diffraction and polarisation, cannot be simulated by ray optics [27].

The numerical model developed and presented in this work is based on a ray optics
approach, where any effect due to wave propagation and interaction with the plasma is
simulated as described in the following sections. The base model of ray optics simulates
the propagation of the electromagnetic wave by solving the equations of the position (g)
and wave vector (k) for each ray [27]:

d_q = 6_“) (1)
dt ok
dk  dw
&~ " @

where w is the angular frequency of the light and the local speed of rays is defined by the
speed of light (c) and the local refractive index of the medium (n), i.e., v = ¢/n. Thus, the
propagation of the ray position and wave vector is directly simulated once the refractive
index field and the light wavelength (or frequency) are known.

A magnetic plasma is birefringent and the refractive indexes of the “slow” (n1) and
“fast” (n2) waves can be described by the Appleton-Hartree Equation (the collision term
is neglected) [6,15,28] as follows:

-1
wp L w_cz sin?(6)

— ——S-(-1+ (1 +F?)" 3
w? w22(1_w_§)( + (1 +F%)%) 3)

w

where wy is the plasma frequency and w- is the electron cyclotron frequency:

Nee?

wp = \/_meEO 4)
B,

wo = 32 (5)

And Ne is the electron density, e and m. are the charge and mass of the electron, ¢o is
the dielectric permittivity and Bo is the module of the magnetic field. F is calculated as:

F- 20 L wp\ cosf .
T w, w? ) sin% 6 ©)
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And 0 is the angle between the magnetic field and the light propagation direction.
In thermonuclear plasmas, the effect of magnetic field on the ray propagation can be
neglected (to a first approximation) and the refractive index becomes [6]:

= 1-22 7)

The ray optics model is based on the continuous interaction between the rays and the
“environment”, i.e., the plasma, the vacuum, the air, the optics, etc. The ray properties are
stored in a vector which evolves according with the propagation of the ray itself, while
the environment properties are stored in the mesh of the numerical simulation. At the
beginning of the simulation, the initial status of the ray at the time fo is known and the
successive instant is calculated numerically with a specific numerical scheme (such as the
backward Euler method). The solution of the ray optics equations requires both properties
belonging to the ray and to the environment (such as the refractive index). The ray
properties, being stored in the ray vector, are known at each time step, while the
environment properties are calculated through the position of the ray at each time step.

The numerical simulations in COMSOL are principally divided into parameters,
variables, geometry, domains, boundaries, physics and materials. The parameters are the
constants of the simulation, which do not change during the simulation while the
variables are solved during the numerical simulations at each time step. The geometry is
used to design the environment, and it can be divided into domains. Each domain may
have unique characteristics, such as plasma, air, vacuum, etc. The boundaries are used to
simulate discontinuities, such as a wall, mirror, material change, etc. The physics defines
the model equations and different physics can be used together for multiphysics purposes.
For example, the mechanical deformation of a mirror due to a heat load on the structure
can be simulated, and the variation of the ray reflection can be simulated as well, using
mechanical, thermal and geometrical optics physics. Materials are used as libraries of
material properties which can be assigned to the domains.

2.2. Interferometry

The interferometer is based on measuring the refractive index of the plasma by
probing it through a laser beam. The phase of the electric field of the beam is [6]:

¢ = fn%dz ®)

and by comparing it with the phase of a reference beam, the phase shift can be directly
linked with the plasma electron density [6]:

w w w} w N,
c

where N is called the cut-off density, defined as N, = w?m,g;/e?. When N. is much
smaller than N, and after taking into account the series development of the binomial, the
equation can be approximated as [6]:

w
A¢ = —TmfNedZ (10)

If the electron density is larger than the cut-off density, the probing beam is strongly
absorbed by the plasma and the interferometer ceases to work (n? is negative, thus n is
imaginary).

In a wave optics approach, the base equations of the model would automatically
compute the phase shift, while in the ray optics model, the phase shift must be modelled.
In our model, an auxiliary variable, called ¢, which computes the phase of each ray has
been introduced. This variable is computed using Equation (8), where the refractive index
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of the plasma has been written as Equation (9). Thus, for any time instant ti, the position
of the ray is x’, y’ and z’ in the laboratory frame of the reference are known and the
refractive index of the propagation medium (plasma, air, vacuum, glass, etc.) is calculated.
The integration of Equation (8) is performed considering that dz is vdt, where dt is the time
step.

2.3. Polarimetry

While the presence of the magnetic field can be neglected to evaluate the propagation
of the ray, it is important for the evolution of the polarisation of the electromagnetic wave.
In fact, the presence of the two refractive indexes, even if similar, changes the polarisation
of the beam crossing the plasma. Plasma polarimetry is based on measuring the change of
the polarisation to obtain some integral parameters directly correlated with the electron
density and the magnetic field.

The Stokes notation has been used to model the polarisation variation in plasma
[15,29]. The reduced Stokes vector has three components that are directly correlated to
four polarisation angles: the phase shift ¢, the electric field component ratio tan(«), the
ellipticity tan(x) and the ellipse orientation 1, as follows [15]:

S1 cos2)cos2y cos (2a)
s = [Sz] = |cos2ysin2y| = [sin(2a) cos (¢) (11)
S3 sin2y sin(2a) sin (¢)

The evolution of the Stokes vector in a magnetised plasma can be evaluated by the
following differential vector equation [15]:

ds(z)
dz

The vector ( takes into account the properties of the plasma and magnetic field [15]:

= 02(2) x s(2) (12)

0, C1A°N.(BZ — B))
2(z) = |2,| = | 2C, 2°N,B,B, (13)
23 C322N,B,

where By is the component of the magnetic field along the beam propagation direction,
while Bx and By are the orthogonal components, the constant Cz is 2.45 10" and Cs is 5.26
10-13[15].

The Faraday rotation (Ay) and the Cotton-Mouton phase shift (A¢) can be directly
correlated to the line integral of the electron density and magnetic field. The most common
approximation, known as type 1, links the polarisation effects with the plasma parameters
as follows [17]:

1
A = f 7sdz = 2.63107132 f N,B, dz (14)

Ap = fﬂldz = 245 10—1113f1ve(3,3 — B2)dz (15)

The propagation of the Stokes vector in the model has been considered by means of
three new auxiliary variables, one for each reduced Stokes component (s, s2 and s3), using
Equation (12). Attention must be paid to the reference frame used to describe the Stokes
vector and the magnetic field. In nuclear fusion plasmas, the magnetic field is usually
given in terms of a toroidal field (By), radial field (Br) and vertical field (B-), where r is the
horizontal direction and z is the vertical direction on the poloidal section, while the Stokes
propagation, described by Equation (12), is written in the reference frame of the probing
beam. The direction of propagation of each beam is described by its unit vector as:
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L
== [”W] (16)
Tlp‘t

One of the two orthogonal unit vectors, defined as the “x” direction, is calculated as
n

p.t
_np,r], which is always orthogonal to the #ny unit vector. The last vector, which
n

D,z
describes the “y” direction, is calculated by the cross-product between n, and nx. Thus, the
magnetic field is rotated from the reference frame of the reactor to the reference frame of
the electromagnetic wave. Given the magnetic field on the reference frame of the
electromagnetic wave, the electron density field and the laser wavelength, the Q is
calculated. The reduced Stokes auxiliary variables are calculated by an explicit backward
Euler numerical scheme:

n, =

51(z +dz) = 5,(2) + (22(2)s5(2) — 23(2)s,(2))dz
S,(z+dz) = s,(2) + (.(23 (2)s1(z) — 2,(2)s5 (z))dz 17)
s3(z+dz) = s3(2) + (91(2)52(2) - Qz(z)sl(z))dz

2.4. Thomson Scattering (TS)

Thomson scattering consists in measuring the scattered radiation of a laser beam. The
electromagnetic wave, interacting with the charged particles, forces them to oscillate
accordingly to the electromagnetic field, causing the emission of radiation at the same
frequency of the incident wave. The thermal motion of an electron in a thermonuclear
plasma makes the scattered spectrum broader than the incident radiation spectrum due
to the Doppler effect. Moreover, due to the relativistic aberration (or headlight effect), the
spectrum is blue shifted.

The spectral power, Ps (R, ws), of the Thomson scattering radiation due to electrons
can be written as follows [19]:

W \2

(18)

2w
P,(R, ws)dRdws = PirégN,L dn (1 + —) |s x (s X E;p)|? dw,

e \ka

w; n/2ka
where ws is the frequency of the scattered radiation, Pi is the power of the incident
radiation, ro is the classical radius of the electron, L is a typical length associated with the
scattering volume, N. is the electron density, dQ2 is the scattering solid angle, w is the
difference between the scattered and the incident radiation frequencies, s is the unit vector
of the scattered radiation direction, Ei is the electric field vector of the incident
wavelength, and k is equal to 2kisin(6/2), where ki is the wavenumber of the incident
wavelength and 0 is the scattering angle. The variable a is the mode velocity of the
electrons in the scattering volume, defined as a = (2kvTe/m.)'2, where kv is the Boltzmann
constant, T.is the electron density and m. is the electron rest mass. In practical application,
the scattering spectrum is usually written in terms of radiation wavelength, using the
scattered wavelength As and incident wavelength Ai, with AA = As — Ai. Equation (18), for
probing a beam linearly polarised at ¢ =0, becomes [19]:
AA%c? 1

2 ATt 1
PirgNeL c 1 e A2 azz(l_cosg)dﬂdls (19)

P.(R,A,)ddAg, = corr ) = cosB) 12 p=vy

The corr variable is used to consider the effect of the relativistic aberration. The
complete correction, describe by Matoba et al. [29], can be written as:
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747 c?A23 a? /39 1 5 AX?
corr = 1- EA_L * 2a223(1 — cos6) B @(T B SCOSH) * 5(29 * 1- COSQ)?
1 1 c A2* c? AN° (20)
a 16(1 — cosB) (28 + 1- cosH) E/'l—? + 8a2(1 — cosH)? A_?

The numerical simulation of Thomson scattering is based on performing two steps.
The first step simulates the propagation of the incident radiation while the second step
simulates the scattered one. In the first step, four different accumulated variables are
computed. These variables are the output of the first step and the input of the second step,
allowing to determine all the characteristics of the scattered radiation. From Equation (19),
it can be observed that the scattered spectrum is a function of the incident power,
wavelength and scattering angle. The incident wavelength is defined as an input of the
model. Three accumulated variables measure respectively the f, r and z directions
(reference frame of the tokamak). The fourth accumulated variable measures the number
of rays which crosses the mesh element (and thus the amount of incident power).

The second simulation releases the rays from the scattering volume with properties
which are defined by the local properties of the plasma, the accumulated variables of the
first simulation and the direction of the released rays. In order to have a spectral
measurement, it is needed to use several rays at different wavelengths. Given a chosen
wavelength, and the elements of the solid angle, a ray has the average power contained
in these bins:

Piray,; = Py(Ry, A5;)A0;42; (21)

where the index i defines the i-th direction and the index j the j-th wavelength element. A
small number of the elements does not involve errors that are very large. Consider that in
tokamaks the spectrum measurements are performed by a limited amount of spectral
channels (from 3 to 5) and the temperature fit is obtained with a very small spectral
resolution [18].

In practical applications, the electron temperature is calculated by fitting the
spectrum data with the theoretical curves at different temperature and the best fit selects
the temperature measured. Moreover, by measuring the total scattered intensities, it is
possible to measure the local electron density, being known the scattering cross-section of
one electron. However, because of the effect of optics, which may have a propagation
spectrum that is not perfectly wide, the TS effect is usually calibrated [30].

The scattered radiation also has a change of polarization with respect to the input
polarisation. This effect is strictly proportional to plasma temperature and a polarimetric
TS could be used to measure the electron temperature of the plasma. However, the
depolarisation of the TS radiation is a relativistic effect and it has not yet been
implemented, since the temperature of the plasma obtained in present Tokamaks
(relativistic depolarisation becomes interesting for electron temperatures higher than 15
keV.) The polarisation of the scattered radiation has been modelled considering the
relativistic effects described in the literature [31-34]. Given the incident Stokes vector (Six)
and the plasma TS Mueller matrix (Mrs), the scattered Stokes vector is [34]:

Sour = Mrs-Sin (22)
where the TS Mueller matrix is defined as [34]:
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MooMo1 (o O
Mmyemy; g O

Mrs = C 0 0 my O
0 0 0 mg
16
Mmooy = 1+ u?—26(w) (uz+4u—3)+ﬁ(1—u)2
m01 = mlo = 1_u2
12
my, = 1+uz+26(u)(uz—4u+1)+P(1—u)2 (23)

12
My, = 211—46(}1)(112—u-l-l)—#—z(l—u)2

8
Mgz = 2u—46G(Wuu—1) — P(l —u)?

e EgiN
2r?

where u = cos 6, p = % = myc?/T, and G(u) = K, (u)/(uK, (1)), where K1 and K are
the modified Bessel functions of the second kind. The definition of the scattered Stokes
vector needs the accumulation of three other variables from the first step: the Stokes vector
components (Sino is the total energy, yet calculated from the ray density). Please note that
this is the frequency integrated Mueller matrix, which does not take into account the
different polarisations at different wavelengths. This problem could be solved just using
the frequency-resolved Mueller matrix [33]. However, theoretical studies showed that, for
wavelength relevant for nuclear fusion, the polarisation difference is very small and
completely negligible for the measurement purposes. Once the incident Stokes vector and
the local properties of the plasma are known, the scattered Stokes vector is calculated
accordingly with Equation (22). The propagation of the polarisation vector is computed
through the model in Section 2.3.

C0=

2.5. Interactions with the Boundaries and Other Elements

The interaction of the ray with boundaries is governed by specific equations which
depend on the type of boundaries. The most common and relevant for this work are walls,
material discontinuities, mirrors, inlets and ray detectors. Walls have different
possibilities. The ray may freeze, stick, disappear, have a specular reflection, have a
diffuse scattering, pass through, etc. The disappear function is used to remove from the
simulation the rays which touch the walls. The freeze function retains the ray position and
direction (since they no longer change over time), while stick retains the ray position but
resets all other variables to zero. The other wall functions are general cases of the
following more specific boundary conditions. Material discontinuities are used to
simulate Snell’s law when a ray passes from one material to another. In this case, it is
possible to require that both the refracted and reflected rays are generated (the incident
ray becomes the refracted while the reflected is a new ray, called secondary). Mirrors
specularly reflect the rays at the boundary. Inlets allow releasing rays with different
properties. It is possible to set any ray feature, such as release time, the number of rays,
initial direction, ray frequency and wavelength, initial phase, initial intensity and
polarisation, and the initial values of the auxiliary variables. The ray detector returns a
Boolean variable which describes if the ray has reached the ray detector, mostly used for
post-processing. The boundary condition which involves a continuation of the ray
propagation, such as material discontinuities and mirrors, allows defining the value of
auxiliary variables after the interaction with the boundary condition. For example, the
reduced Stokes vector components after the interaction with a mirror are defined by the
incident Stokes vector components and the Mueller matrix of the mirror.
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3. Validation on a Case Study

The models described in the previous section are used here in a simple case, to
demonstrate the functioning and validate the model by comparing the model results with
the expected ones. Three different numerical simulations have been performed, one for
diagnostics.

3.1. Geometry, Domain, Boundary Conditions and Mesh

The geometry of the numerical simulations consists of an ITER-like vessel. The major
radius of the Tokamak is 6.2 m, while the minor radius is 2 m [35]. The internal vessel has
been built according to the poloidal section of ITER, while the external structure has been
placed just to represent a solid approach and it does not play any role in the numerical
simulation. The geometry of the numerical simulation is shown in Figure 1.

Figure 1. Geometry schematics of the numerical simulation.

The plasma used for the numerical simulation has been built applying a circular
equilibrium type, widely used in the literature for the investigation of polarimetry
performances. The electron density and temperature of the plasma have a parabolic
profile. Defined by the dimensionless minor radius p(r,z) = (% + z2)%°/a, where r is the
minor radius coordinate and 7 is the minor radius of the plasma, the electron density can
be written as N,(r,z) = No(1 — p(r,2)?) and the electron density is T,(r,z) = To(1 —
p(r,z)?%), where Nois the electron density on the magnetic axis of the plasma. The toroidal
field, defined by its value Bo on the major radius Ro, has the form B,(R) = B, %. The
profile of the plasma current density has a parabolic profile as well and it is calculated
from the plasma current (Iy) as j(r,z) = % (1 — p(r,2)?). The poloidal field is calculated

—(1- 2)?
from the integration of the current density and it is B,(r,z) = tolp 1-(1-p(r2)7) Then, the
2ma p(r.z)
refractive index field is computed (see Section 2, Equation (7)). Figure 2 shows the field of
the electron density, toroidal and poloidal magnetic field, and of the differential refractive

index, defined as the vacuum refractive index minus the plasma refractive index.
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Electron Density [m?] Toroidal Field [T] Poloidal Field [T] Differential refractive index []
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A% 2.0x10%
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1.5%10 L2 1.5x10°
1.0

1.0x1020 0.8 1.0x10°
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z 0.0 -/ — 0.0 S 0.0

Figure 2. Property field of the plasma used for the numerical simulation.

3.2. Interferometer Simulations

The numerical simulations of the interferometer have been performed by placing
three vertical lines of sight, as shown in Figure 3. Three lasers emit beams with a
wavelength of 20 um and each laser emits 100 rays. Each beam interacts with a 50-50
beam-splitter. Thus, half of the rays are reflected, while the others are transmitted. The
transmitted rays interact with the mirrors on the top of the tokamak and enter in the
vessel, probe the plasma, exit from the vessel and are reflected by the mirrors placed
below the vessel. Then, they pass through the beam mixers and are collected by the
detectors. The reflected rays from the beam-splitters represent the “reference” beams,
used to measure the differential phase. They are reflected by the mixers and collected by
the detectors.

Mirrors Beam splitters Lasers
7 e —_
4 7 —_

Line of sight 1
Line of sight 2
Line of sight 3

\\ \\ E
N AN =]

Mirrors Mixers Detectors

Figure 3. Interferometer simulation geometry.

Nine numerical simulations were performed changing the electron density to
simulate different plasma conditions, from the absence of the plasma to the flat top
condition. The electron density (No) goes from 0 to 2x102° m=3. Figure 4 shows the results
of the numerical simulations. The figure on the left represents the ray trajectories from the
laser to the detector, where the ray colour shows the calculated phase according to
Equation (8). Since the “reference” and the “plasma” beams run different distances, the
interferometer must be calibrated in the absence of plasma (numerical simulation number
1). Thus, knowing the phase difference in the absence of plasma, the phase difference due
to the plasma is calculated and the electron density as well, from Equation (10). The figure
on the right-top represents the calibrated differential phase for all lines of sight, where the
phase for No =0 m=has been placed equal to zero (calibration). The figure located at the
right-bottom shows the true electron density, calculated as the integral on the line of sight
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= H12.0x10%
Q
=
&
(23
2 1 1.5x10°
8
; 1.0x10°
£
5
= M 0.5x10°
(=)
0.0

of the electron density field, and the electron density calculated by the interferometer,
through the phase difference. The comparison clearly shows that the methodologies
implemented to model the interferometer in COMSOL work properly.
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Figure 4. Interferometer results.

3.3. Polarimeter Simulations

Analogue numerical simulations were performed to test the polarimeter model,
where the plasma current scales accordingly to the electron density. The geometry is
similar to the interferometer one, where the reference beam is not needed. The three lasers
emit beams with a wavelength of 20 um, and each beam is reflected by a 45° mirror. Then,
they cross a linear polariser (Figure 5) which sets the polarisation of the probing beam (in
the numerical simulation, a linear polarisation with 45° has been used, since this
configuration maximizes the accuracy and the amount of information which can be
extracted from the polarimeter, as discussed in the literature [36]). The rays then cross the
plasma and their polarisation changes accordingly with Equation (17). The effect of the
mirror and linear polariser on the polarisation of the ray are considered implementing the
Mueller matrix of each component on the numerical simulation. The left plot of Figure 5
shows the ray trajectories, while the colour of the ray represents the local Cotton-Mouton
phase shift. Note that the influences of the mirrors are not represented in the figure, in
order to highlight the plasma effect, while for the proper calculation of the plasma
parameters from the polarimeter, a calculation of the Mueller matrix (or Jones matrix and
others) of the optics must be performed to ensure accurate results. For example, the
polarimeter of JET performs a polarisation calibration in the absence of plasma before each
plasma discharge. In these numerical simulations, the effects of the optics are calibrated
with the first numerical simulation, when there is no plasma.

The graphs on the right-top and right-bottom show, respectively, the Faraday
rotation and the Cotton-Mouton phase shift performed on the nine numerical
simulations. The Faraday rotation of the line of sight 1 and 2 are both positive, being the
magnetic field along the propagation direction concordant with the light propagation
direction, while the line of sight 3 has a negative rotation. Moreover, the Faraday increase
is parabolic since it is composed like the product of the electron density and poloidal
magnetic field. Contrariwise, the Cotton-Mouton phase shift is positive and increases
linearly in each line of sight since it is dominated by the (1 term, which is proportional to
the electron density and the toroidal field (the poloidal field influence is negligible in this
configuration).
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Figure 5. Polarimeter results.

Validation of the Stokes model can be performed by measuring the line integral of
the electron density with the Cotton—-Mouton phase shift, by using the type 1
approximation shown in Equation (15). Figure 6 shows the results of this comparison, also
demonstrating that the polarisation model works properly. Contrariwise, the Faraday
rotation also is proportional to the poloidal field (along the propagation direction),
making the direct measurement of the electron density difficult. However, being that the
Cotton-Mouton and the Faraday rotation are linked by the system of Equation (17), a
validation on the Cotton-Mouton directly involves the proper propagation of the Faraday
rotation.
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Figure 6. Validation of the Cotton—-Mouton phase shift by comparing the electron density line
integral with the CM electron density.

3.4. Thomson Scattering Simulations

The numerical simulations to validate the Thomson scattering model were
performed changing the geometry according to Figure 7. The light beam, generated by the
laser, crosses the plasma. The laser wavelength is 1064 nm, while the peak power is 5x 108
W (note that the TS diagnostic requires a pulsed laser with high peak power). Four
different scattering volumes were placed along the direction of the laser beam and
accumulate the variables needed for the scattering simulation. For each wavelength, the
scattering volumes release rays with a specific solid angle aperture. The rays cross the
plasma, exit the vacuum vessel, interact with the spherical mirror on the top of the
tokamak and the rays are collected by the spectrometers, one for each scattering volume.
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Figure 7. Thomson scattering geometry (left); Electron temperatures, ray trajectories of the
primary beam (green) and scattered radiation with the first scattered reduced Stokes component

Ssc,1 (right) .

The numerical simulations were conducted changing the No, To and I,. The density
goes from 0 to 20 102 m3, the electron temperature from 0 to 20 keV and the plasma
current from 0 to 15 MA. Figure 8 compares the expected and the simulated spectral
density (defined as spectral power divided by the total power, considering the
wavelength step equal to 50 nm). For each channel, four different spectra are reported
using 0.25, 0.5, 0.75 and 1 times the maximum values of electron density, electron
temperature and plasma current. The simulated spectra are perfectly overlapped to the
expected spectra at the temperature of each scattering volume, showing that the model

works properly.
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Figure 8. Thomson scattering expected and simulated adimensional spectra of the four channels as a function of the

temperature.



Appl. Sci. 2021, 11, 434

14 of 16

Regarding the polarimetric Thomson scattering, the analyses were performed on the
same scattering volumes with the same electron, temperature, plasma current and
magnetic field. The reduced Stokes vector of the laser beam was placed equal to [1, 0, 0]
(linear polarisation with an angle at 0°), which is the polarisation normally used in TS
diagnostics. In Figure 7, the colour of the ray trajectories shows the first component of the
scattered Stokes vector, which decreases as a function of the local temperature. The
measurement of the temperature through the polarimetric TS can be performed by using
Equation (22). In the specific case of the numerical simulation, it can be demonstrated that
the following equation is valid:

472(1 —u)? Bk — 4) + 2t(u?sgcq + u? —4usgey +4u+k—3) +2(s4e1 —1) = 0 (24)

Thus, knowing the scattering angle and measuring the first component of the
scattered Stokes vector, the temperature can be directly measured. Figure 9 (left) shows
the first component of the reduced Stokes vector of the scattered light for the four channels
as a function of the electron temperature. Note that the points do not lie on the same line
because of the different scattering angle. The other two Stokes components are not shown
since they are equal to zero (as expected when the input polarisation has a Stokes vector
equal to [1, 0, 0]). Figure 9 (right) shows the expected electron temperature vs. the
“measured” temperature by Equation (24) using the first component of the reduced Stokes
vector. Even in this case, the measured temperature coincides with the expected one,
validating the proper functioning of the simulation.
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Figure 9. The first component of the reduced scattered Stokes vector as a function of the electron temperature on the four
scattering volumes (left) and expected vs. simulated electron temperature for each channel at each numerical

simulation(right).

4. Conclusions

The simulation of diagnostics is a fundamental step in the design process of
tokamaks, in order to ensure that the best performances are obtained, and that the
degradation due to electromechanical, thermal and nuclear effects is the most limited as
possible. These simulations require the use of multiphysics models which can take into
account all the effects of degradation and misalignment.

In this work, the modelling of interferometry, polarimetry and Thomson scattering
effects have been introduced and implemented on the ray optics module of COMSOL
multiphysics. COMSOL was chosen since it allows a very easy interface of the various
modules (thermal, mechanics, electromagnetic, etc.), reducing the efforts required to run
a multiphysics simulation. However, all the models can be implemented on other
platforms.

The validation of the models has been performed by comparing the expected value
with the simulated one. All the effects implemented in the model have been tested in an
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ITER-like geometry, using a simple circular plasma model (which does not affect the
functioning and the validation of the model) with properties comparable with the ones
expected in ITER. In the case of the interferometry, three lines of sight have been used.
The phase differences between the probing beams and the reference beams, and thus the
line integrated electron densities, were calculated. They were compared with the line
integral of the electron density of each line of sight, and it was shown that the data are
overlapped. In the case of plasma polarimetry, the same probing beams of the
interferometer were used, and the simulated Faraday rotation and Cotton-Mouton phase
shift were calculated. Then, the line integral density was been calculated using the type 1
approximation of the Cotton-Mouton phase shift. This value was been compared with
both the expected and the interferometer quantities, showing perfect accordance and also
validating the polarimetric model. The spectral Thomson scattering, since it provides local
information, was validated by just comparing simulated spectrum with the expected one,
calculated from the local values, while the polarimetric TS was validated calculating the
electron temperature from the simulated depolarisation of the scattered radiation and by
comparing it with the temperature of the scattering volumes.

This work aimed to analyse the possibility to accurately simulate the optical laser-
based diagnostics of thermonuclear plasma and to describe how the model can be
implemented in a ray optics code. The validation section clearly shows that the
phenomena can be simulated with no errors (between the expected or imposed and the
simulated values). In the future, these models may be used to design, test and evaluate
the performances of nuclear reactor diagnostics in several conditions, helping in
understanding the best setup of the instruments to ensure the best performances and their
longest lifetime.
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