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Abstract: In this paper, we propose a novel method to estimate a goal of surround vehicles to perform
a lane change at a merging section. Recently, autonomous driving and advance driver-assistance
systems are attracting great attention as a solution to substitute human drivers and to decrease
accident rates. For example, a warning system to alert a lane change performed by surrounding
vehicles to the front space of the host vehicle can be considered. If it is possible to forecast the
intention of the interrupting vehicle in advance, the host driver can easily respond to the lane change
with sufficient reaction time. This paper assumes a mandatory situation where two lanes are merged.
The proposed method assesses the interaction between the lane-changing vehicle and the host vehicle
on the mainstream lane. Then, the lane-change goal is estimated based on the interaction under
the assumption that the lane-changing driver decides to minimize the collision risk. The proposed
method applies the dynamic potential field method, which changes the distribution according to the
relative speed and distance between two subject vehicles, to assess the interaction. The performance
of goal estimation is evaluated using real traffic data, and it is demonstrated that the estimation can
be successfully performed by the proposed method.

Keywords: goal estimation; lane change; trajectory prediction; autonomous driving

1. Introduction

Although the traffic accident rates are declining, they remain a main factor of mortality. According
to the conducted survey [1], nearly 90% of traffic accidents have been caused by human errors. To solve
this problem, many researchers have developed autonomous driving and advanced driver-assistance
systems (ADAS), and achievements to substitute or aid human drivers were obtained. For instance, a
predictive system for future actions of surrounding vehicles is strongly required to improve driving
safety. This system would support the cognition of the host driver and guarantees a sufficient reaction
time with respect to the behaviors of surrounding traffic participants. Notably, the system could
contribute to decreasing accidents that require an instant response, such as lane changes. If it is possible
to forecast lane changes performed by surrounding vehicles, the accident rate can be significantly
reduced.
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When a driver performs a lane change, there are two situations: mandatory and discretionary
lane changing. In mandatory lane changing (MLC), a driver must perform a lane change, such as
on-ramp or off-ramp. Conversely, discretionary lane changing (DLC) is usually performed when a
driver desires to gain speed and improve the driving condition. According to the previous survey, the
number of accidents caused by the MLC is twice compared to the DLC. For instance, in the merging
situation, drivers may show a tendency to drive aggressively, performing risky lane changes as the
end of the acceleration lane becomes closer. In contrast, the DLC does not force drivers to conduct lane
changes if it may lead to a collision with vehicles on the target lane. Therefore, an estimation method
for MLC is strongly required to improve driving safety. If it is possible to estimate a goal where the
lane-changing driver attempts to overtake in front of the host driver, the target lane driver can be ready
to react. Hence, the goal estimation of lane changing performed by other drivers may lead to better
driving safety.

The interaction between drivers is essential to forecast future actions [2,3]. Drivers control the
speed and direction of their own vehicles depending on surrounding vehicles. Surrounding drivers
also adjust their speed and direction according to the movement of the host vehicle. Figure 1 shows an
example of the interaction between drivers at the on-ramp. When the vehicle on the mainstream lane
is slowing down, it can be considered to give passage and allow a lane change to the front space of
that as shown in Figure 1a. Conversely, if the vehicle on the mainstream lane maintains the speed or
accelerates as shown in Figure 1b, the behavior can be interpreted as rejecting a lane change. Thus, the
lane-changing vehicle should aim to cut-in to the behind space of that vehicle. However, some drivers
may not abort the lane change in real circumstances. That driver accelerates further and forcibly
enters the mainstream lane. In this case, the vehicle on the mainstream lane is forced to decelerate and
give passage. Consequently, the interaction between drivers, who are on the acceleration lane and
mainstream lane, should be considered for appropriately anticipating the goal of lane-changing.

(a)

(b)

Figure 1. Examples of lane changes: (a) the vehicle on the mainstream lane is slowing down and gives
passage. Conversely, (b) the vehicle accelerates and rejects the lane-changing from the acceleration lane.

Among all the estimation model for MLC, a gap acceptance model (GAM) is the most widely used
technique [4–6]. This model evaluates the probability of lane-changing performed by a vehicle located
on the acceleration lane. The probability is derived by comparing the current gap with a critical gap
distance, which is the minimum distance required to conduct lane changes. If the current gap is larger
than the critical gap distance, the probability of lane-changing increases. However, this model does not
consider the interaction between drivers. There are some drivers who perform a lane change even if the
required gap distance is not ensured. Moreover, there is a possibility that the driver on the mainstream
lane rejects the lane-changing and suddenly shortens the distance. This indicates the possibility of an
accident when not considering the interaction between drivers. In [7], the game theory was applied
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for considering an interaction model at intersections. This model assesses an interaction between the
lane-changing vehicle and vehicles on the target lane based on a time-to-collision (TTC). The interaction
is defined as a reward, and the model decides according to the reward. A large value of TTC represents
a safe condition compared to a small value. However, there is a problem that the TTC has a large
value despite the insufficient distance between the two vehicles when the relative speed is small. It has
been reported that the TTC cannot appropriately assess driving safety under some conditions [8,9].
Consequently, a new index is required to assess the interaction with the surrounding vehicles.

Considering the above situations, we propose a novel method to estimate the goal of MLC based
on the interaction between drivers. The proposed method applies the dynamic characteristic potential
method to evaluate the interaction [10]. Surrounding vehicles are defined as moving obstacles, and
the distribution of potential field is determined according to the acceleration of the subject vehicle,
relative speed, and distance with respect to surrounding vehicles. Then, the space which has the
minimum repulsive energy is selected as the goal for lane-changing. This selection assumes that the
high repulsive potential energy represents a high collision risk. After that, the collision risk while
performing lane-changing is assessed based on the trajectory prediction. If the collision risk with
vehicles on the mainstream lane exists during the lane-changing, it is decided that the subject vehicle
would maintain the current lane until the collision risk is eliminated. Through the above process, the
proposed method realizes the goal estimation and overcomes the limitation of previous methods.

The following three points can be discussed as the contributions of this paper:

• This paper proposes a novel approach to estimate the goal of lane-changing. To the best of our
knowledge, there is no paper to handle the goal estimation since most previous studies have
discussed only the possibility of lane-changing.

• For considering the interaction between drivers, the dynamic potential field method is applied.
The advantage of using the method is a description ability about discontinuous conditions. Since
the potential field is continuously distributed on the lanes, it can prevent the unstable estimation,
caused by using the relative distance or speed, even the corresponding vehicle changes a lane or
overtakes other vehicles.

• The proposed method guarantees the best performance even the previous method is applied to
the goal estimation. By extracting the novel features and checking the collision risk based on the
trajectory prediction, the great accuracy of goal estimation can be ensured.

This paper is organized as follows. Section 2 describes the problem definition in this paper.
Section 3 explains the details of the proposed method. Section 4 presents the experiments, results, and
discussion. Finally, Section 5 describes the conclusions of this paper.

2. Problem Definition

Although both estimations of MLC and DLC are crucial tasks, this paper focuses on the MLC
performed at on-ramp as shown in Figure 1. As the driver on the acceleration lane must perform
lane-changing before reaching the end of the lane, it is expected that dangerous lane changes can
sometimes occur even when the driving safety is not ensured. Moreover, drivers on the mainstream
lane recognize that vehicles on the acceleration lane must perform a lane change. Therefore, the
interaction between drivers should be thoroughly discussed focusing on MLCs at the on-ramp.

Figure 2 depicts our target situation. The lane-changing vehicle is defined as the target, and it
is represented in red. The proposed method monitors the closest vehicle in the front and behind the
target on the mainstream lane. The preceding vehicle on the mainstream lane is defined as the lead,
and the following vehicle on the mainstream is defined as the rear. The two vehicles are indicated in
blue. The target vehicle should conduct lane-changing to the mainstream lane before reaching the
end of the acceleration lane. Drivers may perform a lane change after they decide the goal where the
vehicle cuts-in. In this paper, the front space of the lead vehicle is defined as A, the space between the
lead and rear vehicles is B, and the behind space the rear vehicle is indicated as C as shown in Figure 2.



Appl. Sci. 2020, 10, 3289 4 of 12

Lastly, D indicates that the target vehicle maintains the current lane. When the D is estimated as a goal,
it means that the target driver keeps the current lane until the driving safety is ensured. The target
driver should consider the interaction with the lead and rear vehicles and assess the collision risk
with them. The proposed method starts the goal estimation when the target vehicle appears on the
acceleration lane. The estimation is performed at each time step until the target vehicle crosses the
center line between the acceleration and mainstream lanes.

Figure 2. Problem definition: the lane-changing vehicle is defined as the target, and it is represented in
red. The preceding vehicle on the mainstream lane is defined as the lead, and the following vehicle on
the mainstream is defined as the rear. The two vehicles are indicated in blue. There are four classes as
goals for the target vehicle. The A class indicates the front space of the lead vehicle, the B class is the
space between the lead and rear vehicles. Furthermore, the C class represents the behind space of the
rear vehicle. Lastly, the D class indicates that the target maintains the current lane.

This paper excludes the case that there is no vehicle on the mainstream lane since there is no
interaction in this situation. The reference distance from the target is set to 50 m. If there is no vehicle
within the distance from the target, the case is excluded. However, if either vehicle exists, the case is
included in the consideration.

3. Proposed Method

The proposed method consists of three parts: feature extraction for the interaction between drivers,
SVM-based goal estimation, and collision check based on the trajectory prediction. Figure 3 shows
the schematic of the proposed method. It is assumed that all vehicles have sensing systems, thus, the
position, speed, and acceleration of surrounding vehicles can be obtained. Using this information, the
features are extracted. The proposed method considers the interaction between drivers by using the
dynamic potential field method. In addition, the distance between the target vehicle and the end of the
acceleration lane is extracted as a feature. Using these features, the goal estimation is performed based
on SVM (support vector machine) [11]. The goal of lane-changing conducted by the target is output
among the four candidates: A, B, C, and D as shown in Figure 2. After the estimation, the collision
check is conducted. If there is a possibility that the target vehicle would collide with the lead or rear
vehicle, the D is determined as the goal even other spaces are estimated in the previous step. Details of
each part are described in the following subsections.

The feature extraction for the interaction, SVM-based goal estimation, and collision check based
on the trajectory prediction are novel proposals compared to our previous paper [10]. In addition, the
objective and the target situation are different with [10].

3.1. Feature Extraction for the Interaction

The proposed method applies a potential field method, which is a general method in the robotics
field, for assessing the interaction between drivers [12–14]. A potential field method considers two
types of potential energies: attractive and repulsive. The attractive potential energy is generated from
the goal, whereas the repulsive potential energy is generated from an obstacle. The total energy that a
robot has can be derived as follows.

Utotal = Ua + Ur, (1)

where Utotal denotes the sum of potential energies, Ua is the attractive potential energy from the goal,
and Ur is the repulsive potential energy. The proposed method does not consider attractive potential



Appl. Sci. 2020, 10, 3289 5 of 12

Figure 3. Schematic of the proposed method. The proposed method is comprised of three parts. As the
output, the goal of lane-changing performed by the target is estimated among the four candidates: A,
B, C, and D.

energy since the goal is independent of the interaction between drivers. In this paper, the lead and rear
vehicles are defined as obstacles. Consequently, the repulsive energy is emitted from each vehicle, and
the potential field is generated by combining the two energies. As a navigation method for robots, the
repulsive energy is represented as

Ur =
1

2πσ2 exp
[
− r

2σ

]
, (2)

where r denotes the distance from a robot to an obstacle, and σ is its standard deviation. However,
as this model assumes a static obstacle, it cannot handle the environment where dynamic obstacles
exist such as traffic conditions. Considering this limitation, Hoshino and Maki proposed a dynamic
characteristic potential field method [15]. This method uses the von Mises distribution and generates
a potential field which changes the distribution according to the moving direction of the obstacle.
Figure 4 shows the generated potential fields based on the dynamic model.

(a) (b)

Figure 4. Aspects of dynamic characteristic potential field method: the potential field changes the
distribution according to the moving direction of obstacle. (a) if the obstacle is not moving, the potential
field is generated as the uniform distribution. Conversely, (b) if the obstacle is moving, the potential
field is drifted to the moving direction.

Vehicles are dynamic obstacles, and their acceleration is significant information for assessing the
interaction between drivers. At on-ramp of the highway, the lead or rear vehicle may decelerate when
the driver intends to give passage for the target vehicle. Conversely, the target vehicle may accelerate
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to guarantee a safe distance from the lead and rear vehicles. In addition, the target vehicle may
decelerate when the driver plans to change a lane after the lead or rear vehicle will pass. Based on this
driver tendency, the proposed method generates the potential field drifted to the accelerating direction.
The dynamic characteristic potential field method is applied, and the distribution is determined
according to the level of acceleration (deceleration). If the level of acceleration is high, the potential
field is largely drifted to the accelerating direction. In contrast, if the acceleration is low, the potential
field has low bias. If the vehicle maintains constant speed without acceleration (deceleration), the
potential field has uniform distribution.

Drivers generally show a tendency to maintain sufficient distance from the preceding vehicle
when their vehicle is at high speed because of safety. Consequently, the proposed method is designed
to generate potential energy according to the speed of the subject vehicle. If the vehicle drives with high
speed, the large repulsive potential energy is generated. Summarizing the philosophies of our design,
the drift direction of the potential field is determined according to the acceleration (deceleration) of the
subject vehicle. In addition, the level of potential energy is determined according to the speed of the
subject vehicle and its distance from the vehicle. The repulsive potential energy of vehicle i at point j
can be derived from

Uij = α f
(
ai, θ(∆xij, ∆yij)

)
h
(
r(∆xij, ∆yij)

)
vi, (3)

f
(
ai, θ(∆xij, ∆yij)

)
=

1
2π I0(βai)

exp
[
βai cos θ(∆xij, ∆yij)

]
, (4)

h
(
r(∆xij, ∆yij)

)
=

1
2πσ2 exp

[
−

r(∆xij, ∆yij)

2σ

]
, (5)

r(∆xij, ∆yij) =
√

∆x2
ij + ∆y2

ij, (6)

θ(∆xij, ∆yij) = arctan
(∆xij

∆yij

)
, (7)

where f
(
ai, θ(∆xij, ∆yij)

)
denotes the von Mises distribution, h

(
r(∆xij, ∆yij)

)
is the repulsive potential

model, α is a coefficient, ai represents the acceleration of vehicle i, vi is the speed of vehicle i, ∆xij and
∆yij denotes the distance j from the vehicle i, I0 represents the Vessel function, and σ is the standard
deviation of the distance between the point j and the vehicle i. The von Mises distribution adjusts the
level of drift according to the value of ai. When ai is zero, the potential field has uniform distribution.
Figure 5 depicts the aspect of generated potential fields by the proposed method. Figure 5a shows the
potential field when the vehicle i is rapidly accelerated, in contrast, Figure 5b represents the distribution
when the vehicle i is rapidly decelerated. The red color indicates a high energy level whereas the blue
color indicates a low level. Figure 5c shows the potential field when the vehicle i is slightly accelerated.
Furthermore, Figure 5d represents the distribution when the vehicle i is slightly decelerated. It can be
confirmed that the potential field is drifted according to the accelerating direction. In addition, the
energy level is determined by the value of acceleration (deceleration).

The advantage of using the dynamic potential field method is a description ability about
discontinuous conditions. Most previous methods use the relative distance and speed as the features,
however, it can cause the unstable estimation since the information is discontinuously changed if the
corresponding vehicle changes a lane or overtakes other vehicles. On the other hand, the potential
field is continuously changed since that is distributed on the whole lanes. Therefore, discontinuous
changes do not occur by using the dynamic potential field.

The proposed method calculates the difference of potential energies between the target and
adjacent vehicles as the feature to describe the interaction between drivers. It is assumed that vehicles
run along the lane. Consequently, the potential energy field generated from each vehicle has a square
distribution with the same lane width, as shown in Figures 5. Especially, the proposed method focuses
on the region where two potential fields are overlapped as shown in Figures 6. Since the region can be
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considered as the interaction between two drivers, the proposed method calculates the difference of
potential energies within the region and uses the value as the feature. The feature, p, can be derived as

p = Utgt −Uadj, (8)

where Utgt represents the sum of potential energy within the field from the target, and Uadj depicts
that of adjacent vehicle. The adjacent vehicle can be the lead or rear.

(a)

(b)

(c)

(d)

Figure 5. Aspects of potential fields through the proposed method: (a) shows the potential field when
the vehicle is rapidly accelerated. In contrast, (b) represents the distribution when the vehicle is rapidly
decelerated. (c) shows the potential field when the vehicle is slightly accelerated. (d) represents the
distribution when the vehicle is slightly decelerated.

(a)

(b)

Figure 6. The ROI (region of interest) for the interaction between drivers: the proposed method focuses
on the region where two potential fields are overlapped. (a) shows the case that the target vehicle
accelerates whereas the lead vehicle decelerates for giving passage. Conversely, (b) represents the
case when the target vehicle is slowing down and cuts-in to the behind space of the lead vehicle. It is
confirmed that the potential fields have the different distribution within the ROI.
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When the value of p is higher than zero, it indicates that the target vehicle shows the aggressive
behavior to accelerate the speed compared to that of the adjacent vehicle. Hence, the value can be
considered as the target vehicle forces the adjacent vehicle to give passage. Conversely, the value of p
indicates that the adjacent vehicle shows the intention to reject lane-changing when the value is lower
than zero. In this case, since the target vehicle is not allowed to enter the front space of the adjacent
vehicle, the driver would decrease speed and enter the behind space of the adjacent vehicle.

The proposed method uses the distance from the target to the end of the acceleration lane as
shown in Figure 7. It is assumed that the target driver accelerates if there is a small distance to the
end of the acceleration lane. In this case, the driver would show an aggressive tendency to cut into
the mainstream lane even if there is an adjacent vehicle nearby. Therefore, the remaining distance is
considered significant information, and it is defined as the second feature to describe the interaction
between drivers.

Figure 7. Definition of the proposed features: the proposed method uses two features for the goal
estimation. The first feature is the difference of potential energies of the two lanes within the ROI. The
second feature is the remained distance of the acceleration lane.

3.2. SVM-Based Goal Estimation

For the goal estimation where the target vehicle cuts-in, the proposed method defines the
estimation as the multiclass classification problem using SVM. The two features are input to SVM, and
the goal of lane-changing is output as a class. Figure 2 represents how to define a goal as a class. There
are four classes as a goal of the target vehicle. The A class represents the front space of the lead vehicle,
B class is the space between the rear and lead vehicles. Moreover, the C class depicts the behind space
of the rear vehicle. Lastly, D represents that the target vehicle maintains the current lane. The goal
estimation is performed at each time step.

The proposed method uses the radial basis function as known that normally shows the best
performance. The radial basis function is defined by

K(x, x′) = exp (−γ||x− x′||2), (9)

where γ is the kernel parameter. The proposed method uses a simple approach for the multiclass
extension of the binary SVM using a one-versus-one strategy. In addition, LIBSVM, which is a library
for SVM, was applied to implement the classification [16].

3.3. Collision Check Based on Trajectory Prediction

To assess the collision risk during the lane-changing, the proposed method predicts the trajectories
of all vehicles for a time horizon of 4.6 s. According to a previous survey, the duration of lane changes
was 4.6 s, on average [17]. Then, the sinusoidal model is applied to predict the lateral movement [18].
This model generates a trajectory such as a sine curve. The acceleration in the lateral movement can be
derived as follows.

alat(t) =
2πH
t2
lat

sin
2π

tlat
t, (10)
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where alat represents the lateral acceleration, t is the time from the beginning of lane-changing, H is the
lane width, and tlat is the lane-changing duration. The proposed method determines the lane-changing
duration, tlat, as 4.6 s. Through the above equation, the lateral movement of the target vehicle can be
predicted. The sinusoidal model has no parameter which requires the optimization. Conversely, the
lateral movement of the lead and rear is ignored, and it is assumed that the two vehicles move while
maintaining the center position of the mainstream lane. The details are explained in our previous
work [19]. For the longitudinal position, it is assumed that all drivers maintain the current acceleration
until the trajectory prediction is over.

The collision risk is assessed based on the predicted trajectories. If the future trajectory of the
target is overlapped with that of the lead or rear, the proposed method decides that a collision would
occur. Then, the estimated goal is reversed as D despite the previous result was A, B, or C in the goal
estimation part. This decision lies on the assumption that drivers generally maintain the current lane
until the driving safety is ensured.

4. Experiments

4.1. Dataset

The proposed method was trained and evaluated using a real traffic dataset published by the
Federal Highway Administration of the United States [20]. The dataset was collected on US-101
in Los Angeles. There are five mainstream lanes and one acceleration lane as shown in Figure 8.
The measurement area was 2100 feet long, and it was recorded every 0.1 s for 15 min, for three times.
In the dataset, the lane-changing vehicles which changed a lane from the acceleration lane to the
mainstream lane were selected as the target. It is possible to download the data as a text file format.
Among the information, vehicle ID, frame ID, local X, local Y, vehicle length, vehicle width, velocity,
and lane identification were used. However, information about lane markings is not recorded in this
dataset even though the proposed method requires that information for determining the moment in
which the target vehicle crosses the lane marking. Thus, the lane identification was used to acquire the
position of lane markings. The positions were collected when the lane identification was changed, and
approximate curves were estimated. As a result, the moment when the target vehicle crosses the lane
marking was extracted, and it was used for the goal estimation performance evaluation.

Figure 8. Description of measurement area: the proposed method was trained and evaluated using
a real traffic dataset acquired at US-101. The measurement area was 2100 feet long, and there are
five mainstream lanes. The acceleration lane is 698 feet long. On and off-ramps exist within the
measurement area. If drivers on the acceleration lane fail to perform the lane-changing until the end of
lane, they should go out through off-ramp.

The ground truth of goal estimation was manually labeled for each time step. Among the dataset,
117 vehicles were labeled. Then, 51 vehicles were used as the training data, and 66 vehicles were used
for the testing.
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4.2. Results

For the goal estimation evaluation, two performance criteria are considered: accuracy and
estimation speed. Accuracy represents how accurate the estimation can be performed, whereas
estimation speed depicts how early the goal is anticipated. It is impractical to correctly conduct the
estimation even if the goal is determined just before performing lane-changing. If the goal estimation
is correctly conducted in sufficient time, drivers of the mainstream lane have sufficient reaction time
with respect to the lane-changing of the target vehicle. The accuracy can be calculated by comparing
the estimation result and the ground truth manually labeled. The evaluation was performed until the
target vehicle crossed the center line in each case of testing data.

To evaluate the effectiveness of the interaction between drivers, the performance was compared
to the method excluding the interaction between drivers and only using the remaining distance to the
end of the acceleration lane. Figure 9 shows the comparison result. This graph shows the average
accuracy 4 s before the target vehicle crosses the center line using the entire testing data. The red line
indicates the accuracy with the proposed method, the blue line represents the method excluding the
interaction, and the green line shows the result with the GAM. First, the proposed method achieved the
outperformed performance compared to that of the GAM. As the GAM is designed to judge whether
the lane-changing to enter the space between the lead and rear vehicles is possible or not, this model
cannot handle the case that the target vehicle overtakes the lead vehicle or waits the rear vehicle
passing through. In addition, the GAM has the limitation caused by the variety of individual driving
styles [21]. Second, it can be confirmed that the proposed method outperforms the method that does
not consider the interaction. The accuracy of the method excluding the interaction did not reach 80%
even 1 s before. Most of the time, the accuracy was under 70% between 0 and 2 s before the crossing.
Conversely, the proposed method achieved accuracy with almost 80% between 0 and 2 s before the
crossing. The previous study reported that the reaction time of the driver is in the range of 0.92 and
1.94 s [22]. Hence, this range is significant when the goal estimation performance is evaluated. The
proposed method outperformed the method excluding the interaction in this range, and it indicates
that the approach to consider the interaction between drivers is significant for the goal estimation of
the lane-changing vehicle.

Figure 9. Comparison of accuracy: the red line indicates the accuracy with the proposed method, the
blue line represents the method excluding the interaction, and the green line shows the result with
GAM. It can be confirmed that the proposed method outperforms the method that does not consider
the interaction.

5. Conclusions

In this paper, we proposed a novel method to estimate a goal of surrounding vehicles to perform
a lane change at a merging section. The proposed method applied the dynamic potential field
method to assess the interaction between drivers and estimated a goal of lane-changing by using
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the SVM. In addition, the collision risk during the lane-changing is assessed based on the trajectory
prediction. It was demonstrated that our approach considering the interaction is effective to improve
the performance of goal estimation. Through the evaluation using a real traffic data, the estimation
accuracy was over 80% between 0 and 2 s before the target vehicle crosses the center line.

As future work, we plan to include the lateral movement of the lane-changing vehicle as a feature.
Vehicles move along the shape of the road while maintaining the center position of the current lane.
However, it is expected to show preliminary lateral movements with respect to the lane marking.
By including this additional information, it is expected to improve the accuracy of goal estimation.
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