Surface Modification of Flax Yarns by Enzymatic Treatment and Their Interfacial Adhesion with Thermoset Matrices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Biochemical Enzymatic Treatment
2.3. Characterization of Wetting Properties
2.4. Tensile Characterization of Flax Yarns
2.5. Fourier Transform Infrared Spectroscopy Analysis (FT-IR)
2.6. Thermogravimetric Analysis (TGA)
2.7. Single Yarn Fragmentation Test
2.8. X-Ray Microtomography
2.9. Optical and FE-SEM Observations
3. Results and Discussion
3.1. Characterization of Flax Yarns After Enzymatic Treatment
3.2. Fibre/Matrix Interfacial Assessment by Single Yarn Fragmentation Test
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bourmaud, A.; Beaugrand, J.; Shah, D.U.; Placet, V.; Baley, C. Towards the design of high-performance plant fibre composites. Prog. Mater. Sci. 2018, 97, 347–408. [Google Scholar] [CrossRef]
- Karger-Kocsis, J.; Mahmood, H.; Pegoretti, A. Recent advances in fiber/matrix interphase engineering for polymer composites. Prog. Mater. Sci. 2015, 73, 1–43. [Google Scholar] [CrossRef]
- Bledzki, A.; Mamun, A.; Lucka-Gabor, M.; Gutowski, V. The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym. Lett. 2008, 2, 413–422. [Google Scholar] [CrossRef]
- Huo, S.; Thapa, A.; Ulven, C.A. Effect of surface treatments on interfacial properties of flax fiber-reinforced composites. Adv. Compos. Mater. 2013, 22, 109–121. [Google Scholar] [CrossRef]
- Amiri, A.; Ulven, C.; Huo, S. Effect of chemical treatment of flax fiber and resin manipulation on service life of their composites using time-temperature superposition. Polymers 2015, 7, 1965–1978. [Google Scholar] [CrossRef] [Green Version]
- Tserki, V.; Zafeiropoulos, N.E.; Simon, F.; Panayiotou, C. A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1110–1118. [Google Scholar] [CrossRef]
- Bozaci, E.; Sever, K.; Sarikanat, M.; Seki, Y.; Demir, A.; Ozdogan, E.; Tavman, I. Effects of the atmospheric plasma treatments on surface and mechanical properties of flax fiber and adhesion between fiber-matrix for composite materials. Compos. Part B Eng. 2013, 45, 565–572. [Google Scholar] [CrossRef]
- Seghini, M.C.; Touchard, F.; Sarasini, F.; Chocinski-Arnault, L.; Tirillò, J.; Bracciale, M.P.; Zvonek, M.; Cech, V. Effects of oxygen and tetravinylsilane plasma treatments on mechanical and interfacial properties of flax yarns in thermoset matrix composites. Cellulose 2019, 1–20. [Google Scholar] [CrossRef]
- Yuan, X.; Jayaraman, K.; Bhattacharyya, D. Plasma treatment of sisal fibres and its effects on tensile strength and interfacial bonding. J. Adhes. Sci. Technol. 2002, 16, 703–727. [Google Scholar] [CrossRef]
- Oliveira, F.R.; Erkens, L.; Fangueiro, R.; Souto, A.P. Surface modification of banana fibers by DBD plasma treatment. Plasma Chem. Plasma Process. 2012, 32, 259–273. [Google Scholar] [CrossRef]
- Yuan, X.; Jayaraman, K.; Bhattacharyya, D. Effects of plasma treatment in enhancing the performance of woodfibre-polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2004, 35, 1363–1374. [Google Scholar] [CrossRef]
- Wang, W.; Xian, G.; Li, H. Surface modification of ramie fibers with silanized CNTs through a simple spray-coating method. Cellulose 2019, 26, 8165–8178. [Google Scholar] [CrossRef]
- Sarker, F.; Karim, N.; Afroj, S.; Koncherry, V.; Novoselov, K.S.; Potluri, P. High-performance graphene-based natural fiber composites. ACS Appl. Mater. Interfaces 2018, 10, 34502–34512. [Google Scholar] [CrossRef]
- Wang, H.; Xian, G.; Li, H. Grafting of nano-TiO2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite. Compos. Part A Appl. Sci. Manuf. 2015, 76, 172–180. [Google Scholar] [CrossRef]
- Foruzanmehr, M.; Vuillaume, P.Y.; Elkoun, S.; Robert, M. Physical and mechanical properties of PLA composites reinforced by TiO2 grafted flax fibers. Mater. Des. 2016, 106, 295–304. [Google Scholar] [CrossRef]
- Pickering, K.L.; Li, Y.; Farrell, R.; Lay, M. Interfacial Modification of Hemp Fiber Reinforced Composites Using Fungal and Alkali Treatment. J. Biobased Mater. Bioenergy 2007, 1, 109–117. [Google Scholar]
- Gulati, D.; Sain, M. Fungal-modification of natural fibers: A novel method of treating natural fibers for composite reinforcement. J. Polym. Environ. 2006, 14, 347–352. [Google Scholar] [CrossRef]
- Schirp, A.; Loge, F.; Aust, S.; Swaner, P.; Turner, G.; Wolcott, M. Production and characterization of natural fiber-reinforced thermoplastic composites using wheat straw modified with the fungusPleurotus ostreatus. J. Appl. Polym. Sci. 2006, 102, 5191–5201. [Google Scholar] [CrossRef]
- Gustavsson, M.T.; Persson, P.V.; Iversen, T.; Martinelle, M.; Hult, K.; Teeri, T.T.; Brumer, H. Modification of cellulose fiber surfaces by use of a lipase and a xyloglucan endotransglycosylase. Biomacromolecules 2005, 6, 196–203. [Google Scholar] [CrossRef]
- George, M.; Mussone, P.G.; Alemaskin, K.; Chae, M.; Wolodko, J.; Bressler, D.C. Enzymatically treated natural fibres as reinforcing agents for biocomposite material: Mechanical, thermal, and moisture absorption characterization. J. Mater. Sci. 2016, 51, 2677–2686. [Google Scholar] [CrossRef]
- George, M.; Mussone, P.G.; Bressler, D.C. Surface and thermal characterization of natural fibres treated with enzymes. Ind. Crops Prod. 2014, 53, 365–373. [Google Scholar] [CrossRef]
- Francois, C.; Placet, V.; Beaugrand, J.; Pourchet, S.; Boni, G.; Champion, D.; Fontaine, S.; Plasseraud, L. Can supercritical carbon dioxide be suitable for the green pretreatment of plant fibres dedicated to composite applications? J. Mater. Sci. 2020, 55, 4671–4684. [Google Scholar] [CrossRef]
- Seghini, M.C.; Touchard, F.; Chocinski-Arnault, L.; Placet, V.; François, C.; Plasseraud, L.; Bracciale, M.P.; Tirillò, J.; Sarasini, F. Environmentally friendly surface modification treatment of flax fibers by supercritical carbon dioxide. Molecules 2020, 25, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Prez, J.; Van Vuure, A.W.; Ivens, J.; Aerts, G.; Van de Voorde, I. Effect of enzymatic treatment of flax on fineness of fibers and mechanical performance of composites. Compos. Part A Appl. Sci. Manuf. 2019, 123, 190–199. [Google Scholar] [CrossRef]
- De Prez, J.; Van Vuure, A.W.; Ivens, J.; Aerts, G.; Van de Voorde, I. Flax treatment with strategic enzyme combinations: Effect on chemical fiber composition and ease of fiber extraction. Biotechnol. Rep. 2019, 23, e00358. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Meyer, A.S.; Fernando, D.; Silva, D.A.S.; Daniel, G.; Thygesen, A. Effect of pectin and hemicellulose removal from hemp fibres on the mechanical properties of unidirectional hemp/epoxy composites. Compos. Part A Appl. Sci. Manuf. 2016, 90, 724–735. [Google Scholar] [CrossRef]
- De Prez, J.; Van Vuure, A.W.; Ivens, J.; Aerts, G.; Van de Voorde, I. Enzymatic treatment of flax for use in composites. Biotechnol. Rep. 2018, 20, e00294. [Google Scholar] [CrossRef]
- Stuart, T.; Liu, Q.; Hughes, M.; McCall, R.D.; Sharma, H.S.S.; Norton, A. Structural biocomposites from flax-Part I: Effect of bio-technical fibre modification on composite properties. Compos. Part A Appl. Sci. Manuf. 2006, 37, 393–404. [Google Scholar] [CrossRef]
- Li, Y.; Pickering, K.L. Hemp fibre reinforced composites using chelator and enzyme treatments. Compos. Sci. Technol. 2008, 68, 3293–3298. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Mamun, A.A.; Jaszkiewicz, A.; Erdmann, K. Polypropylene composites with enzyme modified abaca fibre. Compos. Sci. Technol. 2010, 70, 854–860. [Google Scholar] [CrossRef]
- Seghini, M.C.; Touchard, F.; Sarasini, F.; Chocinski-Arnault, L.; Mellier, D.; Tirillò, J. Interfacial adhesion assessment in flax/epoxy and in flax/vinylester composites by single yarn fragmentation test: Correlation with micro-CT analysis. Compos. Part A Appl. Sci. Manuf. 2018, 113, 66–75. [Google Scholar] [CrossRef]
- Joffe, R.; Andersons, J.; Wallström, L. Interfacial shear strength of flax fiber/thermoset polymers estimated by fiber fragmentation tests. Proc. J. Mater. Sci. 2005, 40, 2721–2722. [Google Scholar] [CrossRef]
- Kelly, A.; Tyson, W.R. Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum. J. Mech. Phys. Solids 1965, 13, 329–350. [Google Scholar] [CrossRef]
- Boisset, C.; Petrequin, C.; Chanzy, H.; Henrissat, B.; Schulein, M. Optimized mixtures of recombinant Humicola insolens cellulases for the biodegradation of crystalline cellulose. Biotechnol. Bioeng. 2001, 72, 339–345. [Google Scholar] [CrossRef]
- De Prez, J.; Van Vuure, A.W.; Ivens, J.; Aerts, G.; Van de Voorde, I. Flax treatment with strategic enzyme combinations: Effect on fiber fineness and mechanical properties of composites. J. Reinf. Plast. Compos. 2020, 39, 231–245. [Google Scholar] [CrossRef]
- Abdel-Halim, E.S.; Konczewicz, W.; Zimniewska, M.; Al-Deyab, S.S.; El-Newehy, M.H. Enhancing hydrophilicity of bioscoured flax fabric by emulsification post-treatment. Carbohydr. Polym. 2010, 82, 195–201. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, X.; Gao, W.; Chen, J. Characterization of bioscoured cotton fabrics using FT-IR ATR spectroscopy and microscopy techniques. Carbohydr. Res. 2006, 341, 2170–2175. [Google Scholar] [CrossRef]
- Haque, M.M.; Hasan, M.; Islam, M.S.; Ali, M.E. Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresour. Technol. 2009, 100, 4903–4906. [Google Scholar] [CrossRef]
- Abidi, N.; Manike, M. X-ray diffraction and FTIR investigations of cellulose deposition during cotton fiber development. Text. Res. J. 2018, 88, 719–730. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.; Wang, Z.; Zheng, C.; Dong, X.; Su, Z.; Sun, P.; Wang, D.; Han, C.C.; Xu, D. Morphology and mechanical behavior of isotactic polypropylene (iPP)/syndiotactic polypropylene (sPP) blends and fibers. Polymer (Guildf.) 2005, 46, 5956–5965. [Google Scholar] [CrossRef]
- Abidi, N.; Cabrales, L.; Haigler, C.H. Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr. Polym. 2014, 100, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Tajvidi, M.; Takemura, A. Effect of fiber content and type, compatibilizer, and heating rate on thermogravimetric properties of natural fiber high density polyethylene composites. Polym. Compos. 2009, 30, 1226–1233. [Google Scholar] [CrossRef]
- Van de Velde, K.; Baetens, E. Thermal and mechanical properties of flax fibres as potential composite reinforcement. Macromol. Mater. Eng. 2001, 286, 342–349. [Google Scholar] [CrossRef]
- Bateman, D.F.; Basham, H.G. Degradation of Plant Cell Walls and Membranes by Microbial Enzymes. In Physiological Plant Pathology; Springer: Berlin/Heidelberg, Germany, 1976; pp. 316–355. [Google Scholar]
- Brebu, M.; Vasile, C. Thermal degradation of lignin-a review. Cellul. Chem. Technol. 2010, 44, 353–363. [Google Scholar]
- Saleem, Z.; Rennebaum, H.; Pudel, F.; Grimm, E. Treating bast fibres with pectinase improves mechanical characteristics of reinforced thermoplastic composites. Compos. Sci. Technol. 2008, 68, 471–476. [Google Scholar] [CrossRef] [Green Version]
- Gassan, J.; Bledzki, A.K. Alkali treatment of jute fibers: Relationship between structure and mechanical properties. J. Appl. Polym. Sci. 1999, 71, 623–629. [Google Scholar] [CrossRef]
- Sawpan, M.A.; Pickering, K.L.; Fernyhough, A. Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Compos. Part A Appl. Sci. Manuf. 2011, 42, 888–895. [Google Scholar] [CrossRef] [Green Version]
- Mwaikambo, L.Y.; Ansell, M.P. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials II. Sisal fibres. J. Mater. Sci. 2006, 41, 2497–2508. [Google Scholar] [CrossRef]
- Fraser, W.A.; Ancker, F.H.; Dibenedetto, A.T.; Elbirli, B. Evaluation of surface treatments for fibers in composite materials. Polym. Compos. 1983, 4, 238–248. [Google Scholar] [CrossRef]
- Kim, B.W.; Nairn, J.A. Observations of fiber fracture and interfacial debonding phenomena using the fragmentation test in single fiber composites. J. Compos. Mater. 2002, 36, 1825–1858. [Google Scholar] [CrossRef]
Enzyme Solution | Biological Source | Main Activities | Enzyme Load [wt %] | Time [h] | T [°C] | pH |
---|---|---|---|---|---|---|
Feedlyve AXC 1500 L | Trichoderma longibrachiatum | Endo 1,4-β xylanase | 0.5–2.5–5 | 2–3–6 | 50 | 5.5 |
Peclyve EXG | Aspergillus niger | Pectinase Xyloglucanase | 0.5–2.5–5–7.5–10 | 2–3–4.5–6 | 50 | 5 |
Flax Fabric | Absorption Time t [s] | Absorption Time t after 2 h Treatment [s] | Absorption Time t after 3 h Treatment [s] | Absorption Time t after 6 h Treatment [s] |
---|---|---|---|---|
Neat | T < 1 | - | - | - |
Peclyve 0.5 wt % | - | 1 | 1.2 | 5.5 |
Peclyve 2.5 wt % | - | 1.4 | 2.2 | 1.5 |
Peclyve 5 wt % | - | 1.5 | 35 | 50 |
Feedlyve 0.5 wt % | - | t < 2 | t < 1 | 1 |
Feedlyve 2.5 wt % | - | t < 2 | 1 | t < 1 |
Feedlyve 5 wt % | - | 1 | t < 1 | t < 1 |
Flax Yarn | Treatment Time | Cellulose Crystallinity index (CI) |
---|---|---|
Neat | - | 1.01 |
Peclyve 2.5 wt % | 3 h | 1 |
Peclyve 2.5 wt % | 4.5 h | 1.15 |
Peclyve 2.5 wt % | 6 h | 1.24 |
Peclyve 10 wt % | 3 h | 1.36 |
Peclyve 10 wt % | 4.5 h | 1.54 |
Peclyve 10 wt % | 6 h | 1.54 |
Maximum Degradation Temperature [°C] | Temperature of 10% Weight Loss [°C] | |
---|---|---|
Flax yarn (neat) | 357.2 | 311.3 |
Peclyve 10 wt %-4.5 h | 355.7 | 322.8 |
Peclyve 10 wt %-6 h | 356.7 | 325.5 |
Flax Yarn | Fmax [N] | Diameter [µm] | σf [MPa] | εf [%] | Characteristic Strength σ0 [MPa] | Weibull Modulus m |
---|---|---|---|---|---|---|
Neat | 19.8 ± 4.8 | 327 ± 95 | 236 ± 57 | 3.4 ± 0.42 | 257.4 | 5 |
Peclyve 2.5 wt %-4.5 h | 20.2 ± 3.5 | 376 ± 69 | 181 ± 31 | 3.55 ± 0.49 | 194 | 6.8 |
Peclyve 5 wt %-4.5 h | 16.9 ± 3.6 | 353 ± 59 | 172 ± 36 | 2.99 ± 0.47 | 186 | 5.5 |
Peclyve 7.5 wt %-4.5 h | 16.2 ± 4 | 348 ± 77 | 170 ± 41 | 2.95 ± 0.41 | 186 | 4.8 |
Peclyve 10 wt %-4.5 h | 14.8 ± 3.5 | 390 ± 78 | 123 ± 29 | 3.04 ± 0.47 | 134 | 5 |
Peclyve 2.5 wt %-6 h | 14.1 ± 3.4 | 382 ± 61 | 123 ± 29 | 3.03 ± 0.59 | 134 | 4.6 |
Peclyve 5 wt %-6 h | 13.7 ± 2.1 | 379 ± 63 | 121 ± 19 | 3.19 ± 0.55 | 129 | 7.6 |
Peclyve 7.5 wt %-6 h | 11.7 ± 3.6 | 370 ± 74 | 108 ± 33 | 2.93 ± 0.6 | 120 | 3.5 |
Peclyve 10 wt %-6 h | 11.1 ± 2.8 | 362 ± 63 | 107 ± 27 | 3.02 ± 0.54 | 118 | 4.3 |
Matrix | Flax Yarn | lc [µm] | ldebonding [µm] |
---|---|---|---|
Neat | 2687 ± 631 | 444 ± 49 | |
Epoxy | Peclyve 5 wt %-4.5 h | 2628 ± 531 | 353 ± 89 |
Peclyve 10 wt %-6 h | 2511 ± 203 | 365 ± 46 | |
Neat | 3942 ± 807 | 830 ± 343 | |
Vinylester | Peclyve 5 wt %-4.5 h | 3962 ± 243 | 628 ± 128 |
Peclyve 10 wt %-6 h | 3554 ± 776 | 529 ± 65 |
Matrix | Flax Yarn | σf(lc) [MPa] | IFSS [MPa] |
---|---|---|---|
Neat | 406 ± 18 | 19.3 ± 3.7 | |
Epoxy | Peclyve 5 wt %, 4.5 h | 283 ± 10 | 18.1 ± 2.7 |
Peclyve 10 wt %, 6 h | 203 ± 3 | 12.2 ± 1.1 | |
Neat | 376 ± 15 | 13.9 ± 2.8 | |
Vinylester | Peclyve 5 wt %, 4.5 h | 262 ± 2 | 10. 5 ± 1.4 |
Peclyve 10 wt %, 6 h | 188 ± 9 | 7.8 ± 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seghini, M.C.; Tirillò, J.; Bracciale, M.P.; Touchard, F.; Chocinski-Arnault, L.; Zuorro, A.; Lavecchia, R.; Sarasini, F. Surface Modification of Flax Yarns by Enzymatic Treatment and Their Interfacial Adhesion with Thermoset Matrices. Appl. Sci. 2020, 10, 2910. https://doi.org/10.3390/app10082910
Seghini MC, Tirillò J, Bracciale MP, Touchard F, Chocinski-Arnault L, Zuorro A, Lavecchia R, Sarasini F. Surface Modification of Flax Yarns by Enzymatic Treatment and Their Interfacial Adhesion with Thermoset Matrices. Applied Sciences. 2020; 10(8):2910. https://doi.org/10.3390/app10082910
Chicago/Turabian StyleSeghini, Maria Carolina, Jacopo Tirillò, Maria Paola Bracciale, Fabienne Touchard, Laurence Chocinski-Arnault, Antonio Zuorro, Roberto Lavecchia, and Fabrizio Sarasini. 2020. "Surface Modification of Flax Yarns by Enzymatic Treatment and Their Interfacial Adhesion with Thermoset Matrices" Applied Sciences 10, no. 8: 2910. https://doi.org/10.3390/app10082910
APA StyleSeghini, M. C., Tirillò, J., Bracciale, M. P., Touchard, F., Chocinski-Arnault, L., Zuorro, A., Lavecchia, R., & Sarasini, F. (2020). Surface Modification of Flax Yarns by Enzymatic Treatment and Their Interfacial Adhesion with Thermoset Matrices. Applied Sciences, 10(8), 2910. https://doi.org/10.3390/app10082910