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Abstract: Self-driving cars are a hot research topic in science and technology, which has a great
influence on social and economic development. Deep learning is one of the current key areas in
the field of artificial intelligence research. It has been widely applied in image processing, natural
language understanding, and so on. In recent years, more and more deep learning-based solutions
have been presented in the field of self-driving cars and have achieved outstanding results. This paper
presents a review of recent research on theories and applications of deep learning for self-driving cars.
This survey provides a detailed explanation of the developments of self-driving cars and summarizes
the applications of deep learning methods in the field of self-driving cars. Then the main problems in
self-driving cars and their solutions based on deep learning methods are analyzed, such as obstacle
detection, scene recognition, lane detection, navigation and path planning. In addition, the details of
some representative approaches for self-driving cars using deep learning methods are summarized.
Finally, the future challenges in the applications of deep learning for self-driving cars are given out.

Keywords: self-driving cars; deep learning method; obstacle detection; scene recognition; lane detection

1. Introduction

Recently, the rapid development of artificial intelligence has greatly promoted the progress of
unmanned driving, such as self-driving cars, unmanned aerial vehicles, and so on [1,2]. Among these
unmanned driving technologies, self-driving cars have attracted more and more attention for
their important economic effect [3]. However, there are lots of challenges in self-driving cars [4,5].
For example, the safety problem is the key technology that must be solved efficiently in self-driving
cars, otherwise, it is impossible to allow self-driving cars on the road. Deep learning is an important
part of machine learning and has been a hot topic recently [6,7]. Due to its excellent performances,
it has been applied by scientists in the research and development of self-driving cars. More and
more solutions based on deep learning for self-driving cars have been presented, including obstacle
detection, scene recognition, lane detection, and so on.

This paper provides a survey on theories and applications of deep learning for self-driving cars.
We introduce the theoretical foundation of the main deep learning methods used for self-driving
cars. On this basis, we focus exclusively on the applications of deep learning for self-driving cars.
Other relevant surveys in the field of deep learning and self-driving cars can be used as a supplement
to this paper (see e.g., [1,6,8,9]).

The main contributions of this paper are summarized as follows. (1) A comprehensive analysis and
review of the development of self-driving cars are presented. In addition, the challenges and limitations
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of current methods are enumerated. (2) A survey on the theoretical foundation of deep learning
methods is given out, which focuses on the network structure. (3) An overview of the applications in
self-driving cars based on deep learning is given out, and the details of some representative approaches
are summarized. At last, some prospects of future studies in this field are discussed.

This paper is organized as follows: In Section 2, a general introduction to the development
of self-driving cars is provided. A comprehensive analysis is given out on the development of the
hardware and software technologies in this field. Section 3 introduces the theoretical background
of some common deep learning methods used for self-driving cars. The main applications and
some representative approaches based on deep learning methods in the field of self-driving cars
are summarized in Section 4. Section 5 discusses the future research directions for the deep learning
methods in self-driving cars. Finally, conclusions are given out in Section 6.

2. Development of Self-Driving Cars

The rapid development of the Internet economy and Artificial Intelligence (AI) has promoted
the progress of self-driving cars. The market demand and economic value of self-driving cars are
increasingly prominent [3]. At present, more and more enterprises and scientific research institutions
have invested in this field. Google, Tesla, Apple, Nissan, Audi, General Motors, BMW, Ford, Honda,
Toyota, Mercedes, Nvidia, and Volkswagen have participated in the research and development of
self-driving cars [8].

Google is an Internet company, which is one of the leaders in self-driving cars, based on its solid
foundation in artificial intelligence [10]. In June 2015, two Google self-driving cars were tested on
the road (as shown in Figure 1a). So far, Google vehicles have accumulated more than 3.2 million km
of tests, becoming the closest to the actual use. Another company that has made great progress in
the field of self-driving cars is Tesla. Tesla was the first company to devote self-driving technology
to production. Followed by the Tesla models series, its “auto-pilot” technology has made major
breakthroughs in recent years. Although the tesla’s autopilot technology is only regarded as Level2
stage by the national highway traffic safety administration (NHTSA), as one of the most successful
companies in autopilot system application by far, Tesla shows us that the car has basically realized
automatic driving under certain conditions (see Figure 1b) [11].

(a) (b)

Figure 1. Self-driving cars of Google and Tesla: (a) Google’s self-driving car; (b) Tesla’s self-driving car.

In addition to the companies mentioned above, lots of Internet companies and car companies
worldwide are also focusing on the self-driving car field recently. For example, in Sweden, Volvo and
Autoliv established a joint company-Zenuity, which is committed to the security of self-driving
cars [12]. In South Korea, Samsung received approval from the South Korean government to test
its driverless cars on public roads in 2017. It should be noted that Samsung applied for the highest
number of patents in the world in the field of self-driving cars from 2011 to 2017 [13]. In China,
Baidu deep learning institute led the research project of self-driving cars in 2013. In 2014, Baidu
established the automotive networking business division and successively launched CarLife, My-car,
CoDriver and other products [14]. In 2016, Baidu held a strategic signing ceremony with Wuzhen
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Tourism, announcing that the unmanned driving at Level4 will be implemented in this scenic area
(see Figure 2a). Other information technology (IT) companies in China also have intensively studied
and made great progress in this field based on their technology in the field of artificial intelligence,
such as Tencent, Alibaba, Huawei, and so on [15]. For example, Tencent has displayed the red flag
Level3 self-driving car in cooperation with FAW (First Auto Work) (see Figure 2b).

(a) (b)

Figure 2. Self-driving cars of the companies in China: (a) Baidu’s self-driving car; (b) Tencent’s
self-driving car.

According to the autonomous driving level, a car in Level0 to Level2 needs a driver to mainly
monitor the environment. Advanced Driver Assistance Systems (ADAS) are intelligent systems that
reside inside the vehicles categorized from Level0 to Level2 and help the driver in the process of
driving [16,17]. The risks can be minimized based on the ADAS, such as the electronic stability control
system and forward emergency braking system, by reducing driver errors, continuously alerting
drivers, and controlling the vehicle if the driver is incompetent [18].

In this paper, we focus on self-driving cars which are categorized as level 3 or above. The overall
technical framework of self-driving cars that are equipped with a Level3 or higher autonomy system
can be divided into four parts, namely the driving environment perception system, the autonomous
decision system, the control execution system and the monitor system [19]. The architecture of it is
shown in Figure 3.
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Figure 3. The overall technical framework of self-driving cars with a Level3 or higher autonomy system.

The environment perception system utilizes the prior knowledge of the environment to establish
an environmental model including obstacles, road structures, and traffic signs through obtaining
surrounding environmental information. The main function of the environment perception system is
to realize functions like lane detection, traffic signal detection, and obstacle detection, by using some
hardware devices such as cameras and laser radars.
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The main function of the autonomous decision system is to make some decisions for the
self-driving car, including obstacle avoidance, path planning, navigation, and so on. For example,
in the path planning, the autonomous decision system plans a global path according to the current
location and the target location firstly, then reasonably plans a local path for the self-driving car
by combining the global path and the local environment information provided by the environment
perception system.

The control execution system’s function is to execute the commands received from the autonomous
decision system, such as braking, steering, and accelerating to complete the speed control and
path-following control. The control execution system will perform some actions according to the
situations of the environment directly sometimes, without any commands from the autonomous
decision system, to deal with some emergencies, such as pedestrian avoidance.

The monitor system is responsible to check whether the car is making actual progress towards its
goal and reacts with recovery actions when meeting problems like unexpected obstacles, faults, etc.

The self-driving car is a complex autonomous system, which requires the support of the
theories and technologies. At the technical level, it is impossible to achieve such rapid development
of the self-driving car without the rapid development of the hardware and software. There are
various good hardware and soft platforms capable of rapid data analysis, as well as managing and
understanding of self-driving cars [20]. For example, the NVIDIA DRIVE PX2 driverless car platform
can perform 30 trillion deep learning operations per second and can achieve Level4 autopilot [21].
It supports 12-channel camera inputs, laser positioning, radar, and ultrasonic sensors, and includes
two new-generation NVIDIA Tegra processors (see Figure 4). When it comes to softwares, Tensorflow
is one of the main libraries for deep learning used in the field of self-driving cars [22].

Figure 4. The NVIDIA DRIVE PX2 driverless car platform.

At the theoretical level, some methods used in the robotic field can be applied in self-driving
cars for the similarity between them, including path planning, environmental sensing, autonomous
navigation and control, etc. [23,24]. Various artificial intelligence algorithms have been used in
self-driving cars, such as fuzzy logic, neural network, and so on. Among these methods, deep learning
methods have achieved great success in the self-driving field for their distinct advantages, such as
high accuracy, strong robustness, and low cost. This paper will focus on the deep learning methods
used in the field of self-driving cars.

Remark 1 (About the autonomous level of self-driving cars). The NHTSA has adopted the level
classification provided by the Society of Automotive Engineers, which ranges from Level 0 to Level 5 [25].
In this standard, Level 0 represents a vehicle without any autonomy. Level 1 has basic driving assistance such as
adaptive cruise and emergency braking. Level 2 has partial autonomy while the driver needs to supervise the
system and perform some tasks. At Level 3, the system has full autonomy under certain conditions, but the
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human operator is still required to take control if necessary. The vehicle at Level 4 is still a semi-autonomous
system, which has higher automation than Level 3. Vehicles in Level 5 are fully autonomous in all conditions.

Remark 2 (About Tensorflow). Tensorflow is a common deep learning platform that was created by Google.
The design of Tensorflow is intended to simplify the construction of deep neural networks and speed up the
learning process with a heterogeneous distributed computational environment [26]. Tensorflow provides lots
of Application Programming Interface (API) libraries to build and train deep learning models, which can
support Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and other deep neural
network models.

3. Theoretical Background of Deep Learning Methods Used for Self-Driving Cars

During the last decade, deep learning has demonstrated to be an excellent technique in the field
of AI. Deep learning methods have been used to solve various problems like image processing [27,28],
speech recognition [29,30], and natural language processing [31,32]. As deep learning can learn robust
and effective feature representation through layer-by-layer feature transformation of the original signal
automatically, it has a good capability to cope with some challenges in the field of self-driving cars.

To introduce the applications of deep learning in the field of self-driving cars clearly, the theoretical
background of four types of deep neural networks will be reviewed simply, which are the common
deep learning methods applied to self-driving cars.

3.1. Convolutional Neural Network

Convolutional Neural Network (CNN) is by far one of the most popular deep neural network
architectures, usually consisting of an input layer, one or more convolution and pooling layers, a full
connection layer, and an output layer at the top (see Figure 5).

Convolution

Convolution

Pooling

Pooling

Output

Fully

connected

Input

Figure 5. The network structure of Convolutional Neural Network.

Convolution layer is the core component of CNNs although the specific structures of CNNs may
be different. The convolution kernel (i.e., filter matrix) is convolved with a local region of the input
image, namely

yj = ∑ wij ∗ x + bj, (1)

where the operator ∗ represents two-dimensional discrete convolution operation; w represents the
filter matrix and b is the bias parameter; x is the input feature map and y represents the output of the
feature map. The convolution kernel is generally initialized as a small matrix of 3× 3 or 5× 5. In the
training process of the network, the convolution kernel will be constantly updated through learning
and finally get a reasonable weight.
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The output of the convolution operation is usually run by a nonlinear activation function.
The activation function can help better to solve the linear inseparable problem. Functions such as
Sigmoid, Tanh, and ReLU are usually used as activation functions, which are listed as follows:

Sigmoid : R = 1
1+e−y

Tanh : R = ey−e−y

ey+e−y

ReLU : R = max (0, y)
(2)

when the training gradient descends, ReLU is preferred as it has a faster convergence rate than
traditional saturated nonlinear functions. In addition, the output of the convolution operation is
modified by a pooling function. Mean-pooling and max-pooling are commonly used, which can keep
more information about the background and the texture of the image respectively.

The success of the Convolutional Neural Network is due to its three important characteristics:
local receptive fields, shared weights, and spatial sampling. The shared weight reduces the connection
between the layers of the network and reduces the possibility of over-fitting. The pooling layer
(i.e., subsampling layer) can reduce the dimension of the middle hidden layer and reduce the calculation
amount of the next layer, and provide rotation invariance.

The CNN has yielded outstanding results in computer image and general image classification tasks
recently. Because many self-driving cars technologies rely on image feature representation, they can be
easily realized based on CNNs, such as obstacle detection, scene classification, and lane recognition.

3.2. Recurrent Neural Network

As the self-driving car functions depending on the information from the perception of constantly
changing the surrounding environment, it is important to get a more complete representation of the
environment by storing and tracking all the relevant information obtained in the past. Recurrent Neural
Network (RNN) can be used to deal with this problem efficiently, which is mainly used to capture the
time dynamics of video fragments.

Recurrent Neural Network maintains the memory of its hidden state for a period of time through
a feedback loop and models the dependence relationship between the current input and the previous
state [33]. A special type of RNN is Long Short–Term Memory (LSTM), which controls the input,
output and memory state, to learn long-term dependencies [34] (see Figure 6).

O

H

X

U

V
W

Output Layer

Hidden Layer

Input Layer

Figure 6. The network structure of Recurrent Neural Network (RNN).

In the RNN network, the current state of each loop unit is determined by the input at this moment
and the previous state. Given the learning data input in sequence X = {x1, x2, · · · xt}, the hidden state
at the time t is updated by:

Ht = ϕ (UXt + WHt−1 + b) , (3)

where the weight matrices U and W determine the importance given to the current input Xt and to
the previous state Ht−1 respectively; ϕ (·) is an activation function and b is the bias matrix. Then the
output Ot is calculated by:

Ot = VHt + c, (4)
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where V is the weight matrix and c is the bias matrix.

3.3. Auto-Encoder (AE)

Large amounts of images obtained during the driving process lead to the explosive growth of
dimensionalities, which will reduce the effectiveness of the calculation. To deal with this problem,
Auto-Encoder (AE) is often applied, which is mainly used for dimensionality reduction and feature
learning. AE is mainly composed of an encoder network, and a decoder network (see Figure 7).

Input layer Hidden layer Output layer

W1 W2

Encoding Decoding

Figure 7. The structure of the traditional Auto-Encoder network (AE).

As shown in Figure 7, the encoder is used to convert the high-dimensional original data into a
low-dimensional vector representation, so that the compressed low-dimensional vector can retain the
typical characteristics of the input data. The decoder is used to restore the original data. The training
objective of AE is to minimize the error between the input and the output [35].

On the basis of the traditional AE, many improved methods are proposed to add some constraints
on the hidden layer, forcing the hidden layer to express difference from the input. For example,
the Convolutional Auto-Encoder (CAE) uses the convolution layer and pooling layer to replace the full
connection layer of traditional AE, which can retain the spatial information of the two-dimensional
signal. In the decoding process of CAE, deconvolution is used, which can be viewed as the inverse
operation of convolution. By building a deconvolution network, the low resolution of feature
representations can be mapped to the input resolution and the network generates accurate boundary
localization with pixel-wise supervision [36].

3.4. Deep Reinforcement Learning (DRL)

In recent years, the deep reinforcement learning method has been actively adopted to deal
with various control problems in the unmanned vehicle field [37]. In reinforcement learning (RL),
agents (like self-driving cars) can learn to modify their actions according to the rewards or punishments
when interacting with environments (see Figure 8). The work process of RL can be described as the
Markov Decision Process (MDP). In general, a MDP consists of a set of states s ∈ S, a set of actions
a ∈ A, a reward function R and a transition model P [38].

A self-driving car (agent) perceives the current environment with state st and performs an action
at, then receives a reward r (st, at) by the environment and transits to the next state st+1 according
to the transition function P (st+1 |st,at ). The self-driving car is able to obtain a policy π, which maps
every state st to action at. The objective in RL is to maximize the accumulated discounted reward Rt,
which is calculated by

Rt =
T

∑
i=t

γi−tr (si, ai), (5)

where γ is the discount factor that controls the importance of immediate and future rewards.
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Environment

Agent

Ac onRewardState 

Figure 8. The structure of the reinforcement learning (RL).

Q-learning is a model-free method of RL, where the action-value function Q (s, a) =

max
π

E[Rt |st, at, π] is used to represent the expectation of Rt for every action-state pair (st, at) and the

function E[·] denotes the expected value of a random variable [39,40]. Q-learning approach is based on
the optimization of the action-value function, which is calculated as follows:

Q∗ (st, at) = E

[
r (st, at) + γ max Q (st+1, at+1)

at+1

]
, (6)

where Q∗ is the optimal value of Q. The optimal policy π∗ is to maximize the value function, namely

π∗ = arg max
π

Q∗ (s, a) . (7)

Deep reinforcement learning (DRL) combines deep learning and reinforcement learning to solve
the problem of capacity limitation and sample correlation. DRL has both the perceptive ability of
deep learning and the decision-making ability of RL in a general form. DRL can learn a mapping
from the original input to the action output [41]. One of the DRL methods is Deep Q-Network (DQN),
which can utilize a deep neural network to map the relationships of actions and states, which is similar
to the Q-learning method [42]. The DQN uses a CNN as the function approximator with weights θ as
a Q-network, which is shown as follows:

yi = Q∗i (st, at) = E
[

r (st, at) + γ max
at+1

Q (st+1, at+1; θi−1) |st, at

]
, (8)

then the Q-network can be trained by updating the parameters θi in each iteration i by minimizing the
mean-squared error as follows:

Li (θi) = E
[
(yi −Q (st, at; θt))

2
]

. (9)

As introduced above, deep learning methods have many excellent characteristics that can meet the
needs of self-driving cars. In this paper, the deep learning methods used in the field of self-driving cars
can be classified based on their network structures, which are shown in Figure 9. The details of how
the deep learning methods applied to self-driving cars will be clearly introduced in the next section.
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Figure 9. The classification of the deep learning methods used in the field of self-driving cars.

4. Applications Overview of Deep Learning in the Field of Self-Driving Cars

As introduced in Section 3, deep learning has been used widely in the field of self-driving cars.
In this section, the detailed applications based on various deep learning methods will be introduced.
The main applications for self-driving cars based on deep learning summarized here are based on
what the authors are most aware of, which can demonstrate the key issues and the latest advances in
the field of self-driving cars. The main problems that must be addressed in self-driving cars include
obstacle detection, scene recognition, lane recognition, and so on, which will be introduced in detail
as follows.

4.1. Obstacle Detection

Obstacle detection technology is the most fundamental and core technical problem in self-driving
systems, which is used to detect the target area that may block the normal driving of the vehicle,
and guide the vehicle to avoid obstacles in time through the control system. In recent years,
various sensors have been developed and equipped on self-driving cars to realize obstacle detection
and recognition, such as the vision sensor, the ultrasonic sensor, the radar sensor, the lidar sensor,
and so on [43,44]. Compared with detection technology based on other sensors, the vision sensor-based
detection technology has many advantages, such as fast sampling speed, a large amount of information,
and relatively low price. Obstacle detection technology based on vision sensors mainly includes a
monocular vision and binocular vision [45].

The traditional monocular visual detection technology mainly relies on the manual design features
to construct the model, and the quality of the model depends on the prior knowledge of the designer,
so the recognition accuracy of this kind of algorithm is not high. The development of deep learning
has revolutionized machine vision, and there are lots of research results in this field. For example,
Mancini, et al. [46] proposed a CNN architecture, which can jointly finish the learning task for depth
estimation and obstacle detection. Chen [47] presented a monocular vision-based algorithm. It can
detect obstacles and identify obstacle-aware regions by implementing a deep encoder-decoder network.
Parmar, et al. [48] proposed an improved CNNs based on the addition of a range estimation layer,
which can accomplish obstacle detection, classification and ranking simultaneously.

The advantage of binocular vision over monocular vision is that 3D information of the scene
can be directly obtained, and the geometric relationship between obstacles and road surface can
be supplemented, so as to serve as the segmentation basis to realize obstacle detection. The flow
chart of obstacle detection using binocular vision technology is shown in Figure 10. First, binocular
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images are acquired by the binocular camera, and a disparity map is obtained by the stereo matching
algorithm. Then the calculation of the disparity map determines whether it is an obstacle point. Finally,
the obstacle area is extracted.

Image acquisi�on

Matching cost

Cost aggrega�on

Disparity computa�on

Disparity image

Obstacle determina�on

Stereo  

matching

Figure 10. Binocular visual obstacle detection flow chart.

Typical stereo matching algorithms include the following four steps: matching cost computation,
cost aggregation, disparity computation, and disparity refinement [49]. There are many research results
on the binocular vision obstacle detection based on deep learning. For example, Žbontar, et al. [50]
designed a twin convolution structure MC-CNN (Matching Cost-Convolutional Neural network),
where the CNN was applied to the image similarity measure and matching cost calculation.
The structure of this MC-CNN is shown in Figure 11.
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Left image patch

Right image patch Convolution
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 s
co

re

Fully-connected

Convolution

Figure 11. The structure of MC-CNN proposed in [50].

In the twin convolution structure of MC-CNN, there are many convolutional layers in the
networks. Each layer is followed with a rectified linear unit. Then the obtained two vectors are
connected in series and propagated by the fully-connected layers. At last, a single number is produced
by the last fully-connected layer. This number denotes the similarity rate between the input patches.
In the method of [50], the matching cost is directly initialized from the output of the network:

CCNN (p, d) = −s
(
< PL (p) , PR (p− d) >

)
, (10)

where s (·) is the output function; PL (p) and PR (p− d) are the input patches from the left image and
the right image respectively; p denotes the position (x, y), and d is the correct disparity at this position.

The cost aggregation process of stereo matching in MC-CNN is as follows:

C0
CBCA = CCNN (p, d)

Ci
CBCA = 1

|Ud(p)| ∑
q∈Ud(p)

Ci−1
CBCA (q, d), (11)
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where, Ud (p) denotes the combined support region for p; i is the number of iterations.
The final matching cost CSGM is defined as the average across of the four directions r, namely:

CSGM (p, d) =
1
4 ∑

r
Cr (p, d) (12)

Cr (p, d) = C4
CBCA (p, d)−min

k
Cr (p− r, k) + min


Cr (p− r, d) ,
Cr (p− r, d− 1) + P1,
Cr (p− r, d + 1) + P1,
min

k
Cr (p− r, k) + P2

 , (13)

where P1 and P2 are the penalty parameters. Then the disparity image D is calculated by finding the
disparity d that minimizes C (p, d), which is as follows:

D (p) = arg min
d

C (p, d) . (14)

After the disparity is calculated, the obstacle area can be detected, which makes it possible to
detect the obstacle in the self-driving car. The experiment examples of disparity results using MC-CNN
are shown in Figure 12.

(a)

(b)

Figure 12. Examples of the disparity results by MC-CNN in [50]: (a) error of 3.73%; (b) error of 2.36%.

The solution of the stereo matching algorithm lays a solid foundation for obstacle determination.
There are other methods based on deep learning used in the obstacle detection for self-driving cars.
For example, Nguyen, et al. [51] presented a network structure, which is constructed by a wide
context learning network and stacked encoder-decoder 2D CNNs. Zhang, et al. [52] proposed an
end-to-end multidimensional residual dense attention network, which focuses on more comprehensive
pixel-level feature extraction. The network includes a two-dimensional residual dense attention
network for feature extraction and a three-dimensional convolutional attention network for matching.
Kendall, et al. [53] presented a deep learning network for regressing the disparity of a pair of stereo
images, where the context is incorporated directly from the data employing 3D convolutional network.
Dairi, et al. [54], proposed a method where a deep-stacked auto-encoders (DSA) model is used. In this
DSA model, the greedy learning features are combined with the dimensionality reduction capacity.
In addition, an unsupervised k-nearest neighbor algorithm is employed to detect the obstacles.

A summary of the deep-learning-based obstacle detection algorithms is illustrated in Table 1,
where the main methods used in the obstacle detection are given out and the corresponding references
are also listed.
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Table 1. A summary of the deep learning method-based obstacle detection algorithms.

Category Reference Method Remarks Performances

Monocular vision Mancini, et al.
(2015) [46] CNN

The input of the proposed network is an RGB image and the features are extracted
by the VGG19 module. Then these features are used to obtain the dense depth maps
and obstacles bounding boxes based on CNNs.

Recall of 90.85% on
UnrealDataset dataset.

Parmar, et al.
(2019) [48] CNN The range of the object in meters and class labels for each detected object are

produced based on the proposed feed-forward CNN.
mAP of 96.92% on
KITTI dataset.

Mancini, et al.
(2016) [55] FCN A fully convolutional network (FCN) is proposed, which is used to obtain depth

estimation based on both images and optical flows.
RMSE of 6.863 on
KITTI dataset.

Jia, et al.
(2016) [56]

CNN and
DBN

The local information of a candidate block is generalized by CNN, and the global
information of the whole image is generalized by DBN. Then all the features are
transferred to the final classifier together for obstacle detection.

Block accuracy of 90.64% on
KITTI dataset.

Binocular vision Žbontar, et al.
(2016) [50]

2D-CNN A CNN architecture is presented for measuring the similarity of image patches,
which is used to deal with the problem of stereo matching.

Misclassified pixels error of
2.43% on KITTI dataset.

Nguyen, et al.
(2019) [51] 2D-CNN

A wide context learning network is used to extract global context information. Then
a stacked encoder-decoder 2D CNNs performs contextual aggregation followed by
a regression step to predict the disparity map.

2PE of 4.35%, 3PE of 2.74%
on KITTI dataset.

Zhang, et al.
(2019) [52] 3D-CNN

There are two parts in the proposed network, namely the 2D residual dense
attention net and the 3D convolutional attention net. They are used for feature
extraction and matching respectively.

2PE of 3.21%, 3PE of 2.09%
on KITTI dataset.

Kendall, et al.
(2017) [53] 3D-CNN

The proposed method learns context in the disparity cost volume using 3-D
convolutions and regresses sub-pixel disparity values from the disparity cost
volume using a soft Argmin function.

2PE of 3.46%, 3PE of 2.30%
on KITTI dataset.

Dairi, et al.
(2018) [54] SAE A deep stacked auto-encoders (SAE) model and an unsupervised k-nearest

neighbor algorithm are used to detect the obstacles.
AUC of 0.91 on MSVUD and
DUSD datasets.

Zhong, et al.
(2018) [57] RNN

The input of the proposed RNN is a continuous stereo video. Then, a depth-map at
each frame is predicted directly. There is no pre-training process, and no need of
ground-truth disparity maps in the proposed method.

RMSE of 4.451 on
KITTI dataset.

Jie, et al.
(2018) [58] RNN A left-right comparative recurrent model is proposed to perform left-right

consistency checking jointly with disparity estimation.
Error rates of all the pixels of
3.03% on KITTI dataset.

Note: MAE means the mean absolute error; mAP means the mean average precision; RMSE means the root mean square error; 2PE means the 2-pixel-error for all pixels; 3PE means the 3-pixel-error for
all pixels; and AUC means the area under the receiver operating characteristic curve.
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4.2. Scene Classification and Understanding

The classification and understanding of autonomous driving scenes refer to judge the current
traffic scene and environment information of the vehicle. It realizes the distinction among different
scenes relying on the record of visual environment data around the vehicle with an on-board camera.
There are some differences between the scene classification and understanding. Scene classification
outputs holistic scene categories by integrating information of a whole image including local objects,
global structure and their relationships. Scene understanding partitions meaningful regions in a
scene image and then labels these regions with different semantic classes. However, the distinction
between the scene classification and scene understanding is not strict. They both belong to the scene
recognition. Since the self-driving system relies on the results of environmental perception to make
driving behavior decisions, the output results of scene recognition will have a profound and huge
impact on the driving behavior of self-driving cars.

At present, great progress has been made in the recognition of driverless scenes, but there is
still a lot of work to be done for self-driving cars to realize safe and autonomous driving in the
complex traffic environment in real life. The instantaneity, robustness, and accuracy of road scene
recognition are affected by multiple factors such as light variation, complex road environment and
severe weather (as shown in Figure 13). Therefore, it is urgent to develop more mature and stable
algorithms. Common outdoor scenes for the self-driving car include expressway, street, urban area,
suburb, mountain, school, coast, etc (as shown in Figure 14) [59] . In order to achieve a higher level of
intelligent driving, autonomous cars should know high-level semantic information in their places to
make driving strategy and path planning decisions wisely. For example, cars should slow down near
schools, pay attention to the use of anti-slippery mode/function during rain and snow and keep high
speed through the highway, and so on.

(a) (b)

Figure 13. The impacts of weather: (a) bad weather; (b) good weather.

Deep learning shows obvious advantages in scene recognition. In recent years, the theoretical
research and application of deep networks in scene recognition are also rich. For example,
Wang, et al. [60] proposed a multi-resolution CNN network model, which won the first prize in
the LSUN competition that year. This model includes coarse resolution CNNs and fine resolution
CNNs, which are used to capture the visual structures at a large scale and a relatively smaller scale
respectively. The architecture used in [60] takes two different resolution images as input (see Figure 15),
so that it can be used for the scene understanding with different scales.
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(a) (b)

(c) (d)

Figure 14. The examples of various scenes: (a) urban main road; (b) suburban road; (c) mountain road;
(d) city street.
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Figure 15. The structure of multi-resolution CNN proposed in [60].

In the multi-resolution CNN in Figure 15, the coarse resolution architecture starts from two
convolution layers and the max-pooling layer which converts a 224 × 224 input image into a
28× 28 feature maps. The subsequent ten inception layers fast process the small size of feature maps.
Because the coarse resolution CNNs focus on the global arrangements or objects at a larger scale,
they capture visual appearance and structure at a relatively coarse resolution. The fine resolution
CNNs use the 336× 336 image region as input. Three extra convolutional layers are added on top of
the inception layer. The purpose of this structure is to capture the visual content in a finer resolution
and enhance local detailed information.

In addition, the authors in [60] proposed a knowledge-based disambiguation method to deal
with the problem of label ambiguity. Firstly, the knowledge of extra networks is exploited to provide
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supervised information for each image. Then the knowledge is used to guide the training process of the
CNN networks. In the training process, the CNN networks can predict the hard labels (the ground-truth
scene labels) and the soft labels (the predicted scene labels) simultaneously. The objective function
used in [60] is as follows:

l (D) = −
(

∑
Ii∈D

K1

∑
k=1

∏ (yi = k) log pi,k + λ ∑
Ii∈D

K2

∑
k=1

qi,k log fi,k

)
, (15)

where Ii denotes the i-th image in the training dataset D; yi and pi are the hard label (with K1 dimension)
and the soft label (with K2 dimension) respectively; fi is the soft code produced by an extra knowledge
network; qi is the predicted soft code of Ii; and λ is a balancing parameter.

The results of experiments on different datasets based on the proposed method in [60] are listed
in Table 2, which shows that the multi-resolution learning framework can improve the generalization
ability by the knowledge obtained from extra networks. Furthermore, this framework can reduce the
over-fitting during the training process.

Table 2. The classification error on different datasets based on multi-resolution CNN in [60].

Method
ImageNet-1k Places205 Places365 Places401

(Top1/Top5) (Top1/Top5) (Top1/Top5) (Top1/Top5)

Two-Resolution CNN 21.8%/6.0% 36.4%/10.4% 42.8%/13.2% 47.4%/16.3%

In addition to the above multi-resolution CNN method, there are lots of research results in
scene recognition based on deep learning methods. In terms of scene classification, Chen et al. [59]
proposed a road scene recognition method based on a multi-label neural network. This network
architecture integrates different classification modes into a cost function for training. Tang et al. [61],
employed the GoogLeNet model for scene recognition, which is divided into three parts of layers
from bottom to top and the output features from each of the three parts are fused to generate the
final decision for scene recognition. When it comes to scene understanding, Fu et al. [36] presented
a contextual deconvolution network embedding channel contextual module and spatial contextual
module. The decoder network uses hierarchical supervision for multi-level feature maps to improve
the representation of the scene semantic information. Byeon et al. [62] proposed a 2D-LSTM network
to learn surrounding context information and model spatial dependencies of scene labels. The final
layer outputs the class probabilities of each image patch.

A summary of the deep learning method-based scene recognition algorithms is illustrated in
Table 3, where the network structures of the corresponding methods are given out.

4.3. Lane Recognition

Lane detection is an important function of self-driving cars. Stable and accurate lane detection is
the foundation of deviation warning, collision prevention, path planning, and other tasks. At present,
there is no uniform definition for the baseline of lane detection, including the formation as lines,
point sets or instances of lanes. So the lane detection methods discussed in this paper are not limited
to a specific type of lane detection method. The traditional lane detection method uses the image
processing algorithm, including the extraction of the possible lane areas, edge enhancement, extraction
of the lane line feature and the lane. However, traditional image processing methods have higher
demands to experience and are more sensitive to the interference of light, shade, and other external
factors, which lead to a decrease in the adaptability and accuracy of the algorithms.
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Table 3. A summary of the deep learning method-based scene recognition algorithms.

Structure Reference Method Remarks Performances

GoogLeNet Chen et al. (2019) [59] CNN
A multi-label neural network is proposed for road scene recognition, where single
and multiple class classification modes are incorporated into a multi-level cost
function for training with imbalanced categories.

mAP of 83.1% on their
own dataset.

GoogLeNet Tang et al. (2017) [61] CNN GoogLeNet is partitioned into three parts, which are used to extract the features.
Then these features are fused for the final recognition based on the product rule.

Accuracy of 92.90% on
Scenel5 dataset.

ResNet Zhang et al. (2019) [63] CNN
The separate predictions are carried out based on the features obtained from
multiple levels of the network. Then the final prediction is made by the ensemble
learning within the network.

Top5 accuracy of 98.7%
on UMC dataset.

ResNet Liu, et al. (2019) [64] CNN
A transfer learning model based on the ResNet is proposed, where the multi-layer
feature fusion is utilized. The interlayer discriminating features are fused for
classification by Softmax regression.

Accuracy of 94.05% on
MIT67 dataset.

VGGNet Cheng, et al. (2018) [65] CNN
The correlations of object configurations among different scenes are exploited
through the co-occurrence pattern of all objects across scenes, and then the
representative and discriminative objects in the scene can be chosen.

Accuracy of 94.37% on
Scene15 dataset.

Bn-Inception Wang, et al. (2017) [60] CNN
The proposed multi-resolution CNN architecture is composed of coarse resolution
CNNs and fine resolution CNNs, which can capture visual content and structure at
multiple levels.

Top5 error of 13.2% on
Place365 dataset.

2D-LSTM Byeon et al. (2015) [62] RNN
In this approach, segmentation, classification, and context integration are all carried
out by 2D LSTM RNNs, and the texture and spatial model parameters can be
learned within a single model.

Pixel accuracy of 78.56%
on Stanford Background
dataset.

DenseNet Fu et al. (2020) [36] CAE
A contextual deconvolution network is proposed by embedding two types of
contextual modules. The channel and the spatial contextual module utilize global
and local features respectively.

Mean IoU of 80.5% on
Cityscapes dataset.

CNN and
RNN Sun et al. (2019) [66] Hybrid

network

Deep features are extracted from the information of object semantics, global
appearance, and contextual appearance. Then these features are fused for scene
recognition based on a comprehensive representation.

Accuracy of 89.51% on
MIT67 dataset.

Note: IoU means intersection over union.
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To deal with the disadvantages of the traditional image processing methods in lane detection,
many scholars have applied deep learning to lane recognition. For example, John et al. [67] proposed
a lane detection algorithm, where the semantic road lane is estimated using the regression and
classification framework based on the extra tree. The input of this framework is extracted from the
deconvolutional network. The training and testing process of the method proposed in [67] is shown
in Figure 16.
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Figure 16. The training and testing process of the method in [67].

As shown in Figure 16, in the training phase of the method in [67], Stage A is used to fine-tune
the deconvolution network. The input of the deconvolution network is the combination of the hue,
saturation, and depth (HSD). This deconvolution network is trained to extract the features of the road
scene. Stage B is used to train the extra trees-based classifier for modeling the relationship between the
road scene and the labels. Then this classifier is used to predict the scene labels based on the color and
depth features of the road scenes. In Stage C, for each road scene label, a separate extra tree regressor
is trained using the image-based deep features and the lane marker locations annotated manually.
This extra tree regressor can be used to predict the lane marker position.

In the testing phase of the method in [67] (see Figure 16), the trained deconvolution network is
used to predict the road surface and output the features of the road surface. Then, these features are
input to the classifier model to get the scene label. At last, the estimated scene labels and the road
features are input to the corresponding regression model, to predict the lane locations and the semantic
information. Results of the algorithm proposed in [67] are shown in Figure 17.



Appl. Sci. 2020, 10, 2749 18 of 29

Figure 17. The results of lane prediction based on the method presented in [67].

In order to deal with complex noises and scenes in the lane detection for self-driving cars, lots
of methods based on deep learning have been proposed. For example, Xiao, et al. [68] proposed an
accurate and fast deep CNN, which combined self-attention and channel attention in lane marking
detection. Kim, et al. [69] proposed a stacked ELM (extreme learning machine) architecture for CNNs,
which was applied to lane detection. This method can reduce learning time and produce accurate
results. Liu [70] designed a gradient-guided deep convolution network to detect the presence of lane,
where the gradient cues and geometric attributes are used. In this method, the spatial distribution of
detected lanes is represented by a recurrent neural layer.

Lane detection based on deep learning can be divided into two categories: one-stage method and
two-stage method. The one-stage method refers to the method that directly outputs the parameters
about the lane through the deep network. The two-stage method means that it is divided into two
steps: Firstly, semantic segmentation is carried out through the deep network to output the pixel
collection of the lanes; Secondly, a curve through these pixels is fitted to get the lane parametrization.
A summary of the lane detection methods based on deep learning is illustrated in Table 4.

4.4. Other Applications

In addition to the applications mentioned above, there are many other applications of deep
learning methods in self-driving cars, such as path planning, motion control, pedestrian detection,
and traffic sign and light detection.
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Table 4. A summary of the lane detection methods based on deep learning.

Category Reference Method Remarks Performances

One-stage
method John et al. (2018) [67] CNN

The road scene features are extracted by the fine-tuned Deconvnet filters. Then
scene features are used to estimate the road lanes based on a extra trees-based
classification and regression framework.

Accuracy of 98.42% on
TTI dataset.

Kim et al. (2017) [69] CNN The proposed framework combined CNN and a stacked extreme learning machine
architecture, which can reduce computation time dramatically.

Accuracy of 98.7% on
Caltech-cordova1 dataset.

Li et al. (2017) [71] CNN and
RNN

The proposed framework processes an input image as a sequence of the region of
interests (ROIs), and applies two steps of feature extraction on each ROI by CNNs
and RNNs.

AUC of 0.99 on
Caltect dataset.

Tian et al. (2018) [72] Fast-RCNN Multiple strategies, such as fast multi-level combination, context cues, and a new
anchor generating method are employed for lane markings detection.

Precision of 83.5% on their
own dataset.

Two-stage
method Neven et al. (2018) [73] CNN

The output of the proposed lane detection network is a lane instance map, which is
based on the label of each lane pixel with a lane ID. Then the lane pixels are
transformed using the transformation matrix, to finally get the lane.

Accuracy of 96.4% on
TuSimple dataset.

Yang et al. (2019) [74] CNN
Multiple level features are extracted based on the VGG16 encoder. Then these
features are utilized for the semantic segmentation of the lanes, which can predict
the high quality lane maps.

Accuracy of 93.8% on
TuSimple dataset.

Zou et al. (2020) [75] CNN and
RNN

In the proposed method, information of each frame is abstracted by a CNN block.
Then CNN features of continuous frames are input into the RNN block for feature
learning and lane prediction.

Accuracy of 97.3% on
TuSimple dataset.

Ghafoorian et al.
(2019) [76] GAN

In the proposed Generative adversarial networks (GANs), the source data, a
prediction map and a ground truth label are input into the discriminator together
for lane marking segmentation.

Accuracy of 96.39% on
TuSimple dataset.
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4.4.1. Path Planning

Path planning plays a significant role in autonomous driving and has been extensively studied
for decades. There are lots of methods used for path planning, such as Particle Swarm Optimization
(PSO), Genetic Algorithm (GA), and so on [77,78]. However, these conventional planning algorithms
are not very suitable for the path planning task of self-driving cars under complex environments.
Owing to impressive advantages in extracting features, deep learning is promising to overcome the
bottlenecks of conventional planning algorithms and learn to plan paths efficiently under various
conditions for self-driving cars. For example, Yu et al. [79] proposed a path planning method based
on deep reinforcement learning. This method can deal with the problem of the model training with
continuous input and output. Thus, it can output the control action and trajectory sequence directly.

The flow chart of the method proposed in [79] is shown in Figure 18. There are an actor policy
network and a critic evaluation network. The two neural networks are both based on DenseNet
(Dense Convolutional Network). The input of the actor policy network is sa = (s, v, aold), where s
are the states obtained by sensors, v is the speed and aold is the old action. Three fully connected
networks are used as the hidden layers of the actor policy network. Tanh function is used as the
activation function of this network’s last layer. The output of the actor policy network is the new action
anew. The input to the critic evaluation network is the union of the state sa and the new action anew.
Thus, the output of the critic evaluation network is the corresponding Q-value Q(sa, anew), which is
as follows:

y = kx + b, (16)

where y is the output Q-value; x is the input; k is the weight and b is the bias.
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Figure 18. The flow chart of the method proposed in [79].

In the method of [79], the Actor network includes an online policy network and a target policy
network. In this actor network, an action is gotten based on the deterministic strategy from the current
state. The online policy network of the actor is updated with sampling gradient:

∇θµ µ |si ≈
1
N ∑

i
∇aQ(s, a

∣∣∣θQ )
∣∣∣s=si ,a=µ(si)

∇θµ µ(s |θµ ) |si , (17)

where θQ and θµ are the parameters of critic online Q network and actor’s online policy network
respectively; N is the number of batches; and µ(si) denotes current strategy at the state si.
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The critic network includes an online Q network and a target Q network. In this critic network,
the Bellman equation is used to evaluate the quality of action. The online Q network in the critic
network is updated by:

L=
1
N ∑

i

(
yi −Q(si, ai

∣∣∣θQ
)2

. (18)

In the method proposed in [79], the reinforcement learning model is trained based on a deep
deterministic policy gradient and a vehicle dynamic model. So it has the advantages of deep Q network
and can ensure the convergence of the network. The performance of this method is better than the
traditional trajectory planning method.

4.4.2. Motion Control

Motion control of a vehicle is one of the most fundamental tasks in self-driving cars.
Deep learning-based methods are often used as the solutions in the end-to-end control system
for self-driving cars, which directly maps sensory data to steering commands. For example,
Eraqi, et al. [80] proposed a composite neural network, which is used to estimate the angle of the
steering wheel. This network includes a CNN and an LSTM network, which uses the camera as input.
The CNN is used to process the camera images frame by frame. The features of the driving scene are
extracted by the CNN and then passed into a stack of LSTM layers. The temporal dependence of these
features can be learned by the LSTM network. At last, the steering angle prediction is carried out by
the output layer. An overview of the block diagram of the system proposed in [80] is shown in Figure 19.
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Figure 19. A overview of the block diagram of the system proposed in [80].

During the training process of the method in [80], the ground-truth steering angle φ is encoded as
following sine wave function:

Yi = sin
(

2π (i− 1)
N − 1

− φπ

2φmax

)
, 1 ≤ i ≤ N, (19)

where Yi is the activation of the i-th output neuron and N is the number of output neurons. In this
method, a least squares regression is used in the classification layer, to fit the predicted function. In the
process of deployment, the steering angle is output based on the results of the least squares regression.

4.4.3. Pedestrian Detection

Pedestrian detection is very important for self-driving cars, which can be used to obtain the
location of individuals on the road. There are many advantages of the deep learning-based pedestrian
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detection methods in discriminative and representative feature learning. So, the pedestrian detection
methods based on deep learning have been studied extensively. For example, Shen et al. [81]
proposed a single-shot pedestrian detection method using a multi-receptive field-based framework.
The framework of the pedestrian detection in [81] is shown in Figure 20. First, the image is used as the
input of the Visual Geometry Group (VGG) network. Then, the multi-resolution and multi-receptive
field feature pyramid is built.
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Figure 20. The framework of the pedestrian detection in [81].

As shown in Figure 20, a multi-receptive pooling pyramid (MRPP) module is proposed to extract
feature maps. There are four max-pooling layers in this MRPP module, which are used to deal with
the spatial size of the final VGG feature maps. The MRPP module will output five feature maps with
different spatial resolutions. Then, a Graph CNN (GCN) module is used to handle the occlusion
problem based on the outputs of the MRPP module and one VGG feature. The final detection results
can be obtained based on the single-shot multi-box detection (SSD) algorithm and the non-maximum
suppression module.

In the training process of the method in [81], there are two parts in the objective function,
namely the classification loss (denoted as Lcls) and the localisation loss (denoted as Lloc). Lcls is a
multiple classes Softmax loss, which is defined as follows:

Lcls = −
1
N

N

∑
i=1

k

∑
j=1

ti,j log
(

pi,j
)
= − 1

N

N

∑
i=1

y log
(

pi,j
)
, (20)

where ti,j denotes the indicator of the i-th sample in class j; pi,j is the predicted output; and y is the
class label of the ground truth. Lloc is a bounding box regression loss, which is defined as follows:

Lloc =
N

∑
i=1

ti,jsmoothL1 (pbox, gbox), (21)

where pbox and gbox are the parameters of the predicted and ground truth bounding box respectively.
The total loss function is defined as follows:

L = Lcls + λLloc, (22)

where λ is a balancing parameter of the two loss terms.
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4.4.4. Traffic Signs and Lights Recognition

Traffic signs and lights recognition is an important task in the self-driving system. The traffic signs
recognition can provide some helpful information for the navigation and safe driving (see Figure 21a).
The traffic lights perception at intersections and crosswalks is a necessary function for self-driving cars
to observe the traffic regulations and prevent fatal accidents (see Figure 21b). Deep learning methods
have demonstrated prominent representation capacity, and achieved outstanding performance in the
traffic sign and light recognition, which are reviewed simply as follows.

(a)

(b)

Figure 21. The examples of various traffic signs and lights: (a) traffic signs; (b) traffic lights.

In the traffic signs recognition, Xu et al. [82] proposed a traffic signs recognition approach based
on a CNN algorithm. First, the structural information of the traffic sign image is extracted based on the
hierarchical significance detection method. Then, a neural network model is used to extract the features
of the region of interest. Finally, the traffic sign is classified by the Softmax classifier to complete the
detection of the traffic sign. Alghmgham et al. [83] designed a deep-learning-based architecture and
applied it in the real-time traffic sign classification. The proposed architecture in [83] consists of two
convolutional layers, two max-pooling layers, one dropout layer and three dense layers.

In the traffic lights recognition, Lee and Kim [84] proposed a DNN-based method to detect traffic
lights in images. The detector in this paper has a DNN architecture of encoder-decoder. The encoder
is used to generate feature maps from the images by the ResNet-101. Then, the decoder is used to
generate a refined feature map from the results of the encoder, to output the final classification results
for the traffic lights. Kim et al. [85] proposed a traffic light recognition method based on deep learning,
which consists of a semantic segmentation network and a fully convolutional network. The semantic
segmentation network is employed to detect traffic lights and the fully convolutional network is used
for traffic light classification.

5. Future Directions

In recent years, deep learning has made a breakthrough in image recognition, and also promoted
the increasing development of self-driving cars technology. It can be seen from the achievements of
several scientific research organizations that the research on self-driving cars has made great progress.
However, the applications of deep learning for self-driving cars still have many challenges, which need
to be improved as follows:

(1) The samples problem of deep learning. The deep learning model is trained through samples.
In order to achieve the required accuracy in the recognition task, a large number of correct samples are
usually required to meet the needs of developers. The quantity and quality of data is still a problem
for good generalization capability [86]. In addition, the development of more realistic virtual datasets
is an open problem, which can be solved by recording real cases [87–89].
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(2) The complexity problem of deep learning. The complexity of deep learning algorithms is
described by the parameters of the model. The number of parameters in a deep learning model usually
exceeds millions [90]. The deep learning model is considerably complex with various functions to
realize, so it cannot be trained on simple equipment. Embedded hardware needs strong communication
and computing capabilities. So the hardware of self-driving cars needs to be improved, and the tradeoff
of the performance and the price should be considered.

(3) The robustness problem of deep learning. The applications of self-driving cars based on deep
learning methods rely on the images obtained during driving. However, the pictures acquired in the
process of moving are easy to be interfered with by occlusion and illumination, which decreases the
recognition accuracy. Robustness against influences is a key challenge.

(4) The real-time problem of deep learning. The processing ability of the human brain is still
beyond the range of current deep learning. The perception speed to surrounding environment
information of the autonomous driving model is far less than the speed of human response, so the
real-time requirement still needs to be further improved.

(5) The high-dimensional state-space problem of deep learning. Real-world problems usually
involve high-dimensional continuous state space (a large number of state or actions) [91]. When faced
with the overwhelming set of different states and/or actions, it will be difficult to solve optimization
problems and seriously restrict the development of practical applications based on deep learning.
An effective approach to deal with such problems remains a challenge.

(6) The 3D point cloud data processing based on deep learning. The methods focused on in this
paper are all based on image sensors. The range sensor is also the main sensor used in self-driving
cars. The 3D point clouds can be obtained based on range sensors (such as LiDAR), which are useful
for scene understanding [92], object detection [93], and so on. Deep learning is good at processing the
point cloud data too, however, it is faced with many problems like arraying irregularly in space. In the
future, there are still many challenges, including how to further solve the disorder problem of the point
cloud data, the sampling problem of non-uniform distribution and the noise problem of original data.

(7) The road support system based on deep learning. The road support system is a scheduling
and auxiliary system, which is often installed at the city traffic control center. So the tasks of the
road support system are different from those of self-driving cars introduced above, such as vehicle
detection and identification, pedestrian detection, and license plate recognition [94]. The road support
system can provide more accurate and effective assistance for self-driving cars. Because the road
support system can obtain much more information than the self-driving car, it is a new challenge for
the methods based on deep learning.

The ultimate goal for the development of self-driving cars is to build an automatic platform
capable of real-time, all-day and efficient driving service. Driverless technology can greatly improve
social productivity, generate huge social benefits, and improve the way people travel, to make a better
living environment. So there are lots of problems that need to be solved efficiently, which include two
sides, namely the applications of self-driving cars based on deep learning and the improvements of
deep learning algorithms. Thus, self-driving cars based on deep learning are still on the road.

6. Conclusions

In this survey, the latest advances in the development of autonomous driving systems based on
deep learning techniques were analyzed. This paper first introduced the development of deep learning
and self-driving cars in recent years, as well as the mainstream architecture of self-driving cars. Then the
most common network architectures in deep learning used for self-driving cars were described.
Furthermore, the current research and applications of deep learning in the field of self-driving cars
were elaborated and the details of some representative approaches in the applications of self-driving
cars were given out. Finally, the key problems and challenges in deep learning for self-driving cars
were analyzed. Because the number of the literature is large and is still growing in this area, many good
methods based on deep learning have not been included to focus on some of the key issues in this field.
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It is clear that deep learning methods will become one of the hottest research topics in the
self-driving car field, including theory and application research. The deep learning will be able to
further improve the intelligence and autonomy of self-driving cars, and can solve some bottle-necks of
traditional technologies, such as the accuracy, robustness, and safety. Currently, many basic problems
of self-driving cars based on deep learning have been explored and the results are exciting, which show
the potential of deep learning. However, there are still lots of problems that should be further studied,
such as real-time problems, reliability problems, and so on.
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