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Featured Application: Skull stripping is the most prevalent brain image analysis method. This
method can be applied to areas such as brain tissue segmentation and volumetric measurement,
longitudinal analysis, multiple sclerosis analysis, cortical and sub-cortical analysis, assessing
schizophrenia, and for the planning of neurosurgical interventions.

Abstract: Skull stripping in brain magnetic resonance volume has recently been attracting attention
due to an increased demand to develop an efficient, accurate, and general algorithm for diverse
datasets of the brain. Accurate skull stripping is a critical step for neuroimaging diagnostic systems
because neither the inclusion of non-brain tissues nor removal of brain parts can be corrected in
subsequent steps, which results in unfixed error through subsequent analysis. The objective of this
review article is to give a comprehensive overview of skull stripping approaches, including recent
deep learning-based approaches. In this paper, the current methods of skull stripping have been
divided into two distinct groups—conventional or classical approaches, and convolutional neural
networks or deep learning approaches. The potentials of several methods are emphasized because
they can be applied to standard clinical imaging protocols. Finally, current trends and future
developments are addressed giving special attention to recent deep learning algorithms.

Keywords: skull stripping; brain segmentation; brain extraction; deep convolutional neural
networks; U-Net

1. Introduction

Among the various medical imaging techniques, magnetic resonance imaging (MRI) of the brain
is one of the most prevalent image acquisitions performed in the diagnostic centers and hospitals.
The acquisition of a brain MRI scan is noninvasive and nondestructive. It involves yielding an
arbitrary cross-section of the brain without radiation exposure [1]. Brain MRIs demonstrate superior
soft-tissue contrast, high spatial resolution, and reveal the detailed anatomical structures of brains.
Generally, these are not found in other imaging protocols, such as X-ray or computed tomography
(CT) [2]. MRIis well-suited to investigate early brain development [3]; genetic effects on brain growth
[4]; and neuroprotective treatment effects in the context of high-risk events, such as birth asphyxia
[5] and preterm birth [6]. Using MRY], it is possible to generate markedly different types of tissue
contrast by changing excitation and repetition times that make it a very versatile tool for imaging
different structures of the body, particularly the brain. In the present clinical routine, various MRI
sequences and modalities are utilized for the diagnosis of brain tissues. These modalities include Ti-
weighted (T:W), T1 inversion recovery (T1IR), TiW with contrast (cT1W), T-weighted (T2W), proton
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density-weighted (PDW), and T:W with fluid-attenuated inversion recovery (FLAIR). However,
these modalities do not have standardized acquisition parameters [7]. TiW is the most extensively
used sequence for the brain and other cranial structural analysis, as it provides an easy annotation of
the healthy tissues.

Brain segmentation, also recognized as brain extraction or skull stripping, is a pipeline of
segmenting (generally) a TiW brain MRI volume into brain and non-brain regions [8], as portrayed
in Figure 1. This is an initial and important preprocessing step of most brain MRI studies, such as
brain tissue segmentation and volumetric measurement [9,10], longitudinal analysis [11], multiple
sclerosis analysis [12], and cortical and sub-cortical analysis [13]; assessing schizophrenia [14]; and
for planning of neurosurgical interventions [15]. Accurate skull stripping is a critical step for a
neuroimaging diagnostic system because neither the inclusion of non-brain tissues (skull, dura mater,
etc.) nor removal of brain parts (under segmentation) can be rectified in subsequent steps, which can
lead to the propagation of error through succeeding analysis. For instance, skull stripping is the first
stage in cortical reconstruction and brain volume measurement [16]. The inclusion of non-brain tissue
in brain region can leads to incorrect reconstruction of cortical surface and brain volume computation
in the later stages. Fein et al. [17] demonstrated that the complete initial skull stripping from brain
MRI results in a more accurate and sensitive analysis of voxel-based morphometry (VBM) in brain
morphology. Acosta-Cabronero et al. [18] has also investigated the impact of skull stripping on grey-
matter segmentation for VBM and proved that this preprocessing step has a major impact on the
VBM results. After the detailed structural and functional investigation, Fischmeister et al. [19]
revealed that skull stripping is the most important factor to improving the congruence between the
Montreal Neurological Institute (MNI) template and normalized brains.

Furthermore, many brain related imaging applications require (or benefit from) the ability to
precisely segment the brain from the skull. For example, registration robustness can be improved if
the non-brain tissues are automatically eliminated before registration of brain MRIs [17,18]. In
another brain atrophy estimation example in diseased subjects, brain volume is calculated with
respect to some normalizing volume (e.g., skull or head size) at a single time point after skull
stripping. In other words, brain images from two or more-time intervals from the same subject are
compared to assess how the brain has altered over time [20,21].

Manual skull stripping is a laborious task due to low contrast images, obscure boundaries of the
brain in the MRI, and the absence of intensity standardization [22]. Moreover, the whole brain
extraction becomes more challenging and limited in the presence of varying acquisition parameters
or when a brain MRI dataset presents a pathological disorder, such as a brain tumor [23].
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Figure 1. Skull stripping in brain MRIs. (a) Input 2D brain image in three orientations (coronal, axial,
and sagittal), and (b) respective skull stripping in each image. (c,d) Similarly, the skull stripping in
brain MRI volume (data from NFBS dataset [24]).

For skull stripping in brain MRIs, manual brain and non-brain segmentation methods are
considered more robust and accurate than semi or fully automatic methods. The aim of manual skull
stripping is to draw the boundaries on brain MRIs and isolate the brain tissue from the skull (or other
non-brain regions). Generally, manual delineation of the brain tissue is treated as the “ground truth”
or “gold standard” and is commonly utilized to validate other semi-automatic and automatic skull
stripping methods. However, there are several reasons which prevent it from being a feasible solution
in most biomedical and neuroimaging applications. Primarily, it is a laborious, error-prone, and time-
consuming process. For instance, manual delineation of the brain takes approximately 15 min to 2 h for
a single 3-dimensional (3D) volume of brain MRI [25]. It requires urbane knowledge of brain
anatomy, appropriate training, and care during the whole process; even an untrained clinical
researcher will likely fail in differentiating between the lower cerebellum and neighboring veins
[25,26]. Furthermore, manual segmentation of the brain is known to vary among brain anatomy
experts and be susceptible to both inter- and intra-variabilities. Thus, manual skull stripping,
although doable, is insufficient and inefficient. Therefore, intelligent and effective methods (e.g., semi
or fully automatic) are required to address these issues.

In the last two decades, numerous research papers that considered the problem of brain
extraction and skull stripping in brain MRI have been written and are continually being developed
to tackle these limitations and complications. However, they often work well on certain datasets but
fail on new or other ones and sometimes involve case-specific parameter tuning. Every algorithm has
its constraints, strength, and weakness due to the variability of the dataset of brain MRI. These
algorithms can be widely classified into three distinct groups; first is the manual technique, the
second group contains classical approaches, and the third group comprises the recent approaches
that employed a convolutional neural network (CNN) and deep learning, as displayed in Figure 2.

Histogram Thresholding with Mathematical
Morphology

Deformable Surface Model-Based Methods ]

Classical Approaches Atlas or Library-based Approaches ]

A1

Region Growing and Watershed Methods

Meta-algorithms and Hybrid Methods ]
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Figure 2. Skull stripping algorithms can be widely classified into three distinct groups; first is the
manual technique, the second group contains classical approaches, and the third group comprises the
recent approaches that employed CNN and deep learning.

As mentioned earlier in the preceding paragraph, generally, manual skull stripping of the brain
in MRI volume is treated as the “ground truth” or “gold standard,” and is commonly utilized to
validate other semi-automatic and automatic skull stripping methods. However, manual delineation
of the brain MRIs is a laborious and time-consuming process, and not feasible to perform on a huge
scale. Classical or conventional approaches mostly comprise the use of low-level image processing
techniques; e.g., thresholding, histogram analysis, region growing, mathematical morphology, and
edge detection. [27].
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CNN and deep learning-based methods turned into frequently used algorithms to solve
neuroimaging problems and challenges [28], after the pioneering CNN “AlexNet” on the image
recognition by Krizhevsky et al. [29]. Deep learning methods are required to train efficiently with
properly labeled data and to learn the underlying mathematical characteristics involved for brain
tissue segmentation [30]. Consequently, these algorithms demand a lot of known labeled data to train.
However, neuroimage datasets are usually extremely small and insufficient to cope with these
challenges. Difficulties often arise because the significant manual effort required from experts of brain
anatomy in order to annotate or label the scratch data [31].

The remaining paper is originated as follows: in Section 2, publicly available datasets have been
summarized. Section 3 reports a detail discussion of the conventional methods and Section 4
describes recent deep learning-based skull stripping methods. The last section, Section 5, contains the
conclusions and outlook of the skull stripping methods described in the paper.

2. Publicly Available Brain MRI Datasets

Different brain MRI datasets have been utilized for training and evaluation of skull stripping
algorithms. We have described some of the publicly available datasets in the proceeding subsections.

2.1. ADNI

The ADNI dataset was first obtained in 2004 and developed in three stages. In the first stage,
ADNI1 (2004-2009) [32] was obtained with a 1.5 T scanner using TiW- and dual-echo T>-W sequences,
one-quarter of which essentially scanned the same protocol with a 3 T scanner. The second stage was
ADNI-GO/ADNI2 (2010-2016) [33,34] in which images were scanned in 3 T with TiW and dual-echo
T2W sequences similar to ADNI1. TiW and dual-echo T:W sequences were added at the location of
the dual-echo T:W image in ADNI1. Advanced image scanning is now possible with the addition of
GE scanners, Philips scanners, and Siemens scanners. ADNI3 [35] was only scanned with 3 T
scanners.

2.2. Oasis

The Oasisl [36] dataset consists of 416 subjects between the ages of 18 and 96. Subjects were all
right-handed, including both men and women; 100 subjects over 60 years old were diagnosed with
Alzheimer’s disease (AD). In addition, a dataset of 20 dementia subjects made during subsequent
visits, within 90 days of the initial session, has been included.

The Oasis2 [37] dataset consisted of 150 subjects between 60 and 96 years of age. It includes a
total of 373 bran MRI volumes. The MRI of each subject was taken once at least one year. Two or more
scans were taken for each subject. Subjects were all right-handed, including both men and women.
Seventy-two of the subjects were suffering from dementia, and 64 of them were diagnosed with non-
dementia in the initial visit but diagnosed with dementia in the second. Another 14 subjects were
diagnosed with dementia on the first visit but turned out not to have dementia on the second visit.

Oasis3 [38] is retrospective data for more than 1000 participants collected over several years of
ongoing projects through the Washington University in St. Louis (WUSTL) Knight ADRC for 30
years. Of the participants, 609 were cognitively normalized adults and 489 were 42 to 92 years old,
who were at various stages of cognitive decline. The dataset contains over 2000 MRI sessions
including T1W, TaW, FLAIR, Arterial Spin Labeling (ASL), Susceptibility Weighted Imaging (SWI),

time of flight, resting-state Blood Oxygen Level-Dependent (BOLD), and Diffusion Tensor Imaging

(DTI) sequences. Many MRI sessions involve volume segmentation files created through FreeSurfer
[39] processing.

2.3. LPBA40

The LPBA40 [40] dataset shows the construction of digital brain atlases composed of brain MRI
data delineated manually. The brains of 40 healthy normal volunteers were scanned, and a total of
56 MRI volumes were collected. The labeling was done according to the protocol developed for the
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project, where a pair of evaluators were tasked with processing each brain, and trained the protocol
for each brain. Each evaluator pair was processed and tested for six out of 40 brains. Therefore, when
they reached the standard level of reliability, they shared the task of describing the remaining 34
brains. In the paper, three different algorithms were used to generate three variants of the atlases,
each consisting of 40 data points available for analysis. The mean was calculated at each voxel
location to estimate the probability that the voxel would belong to each of the 56 structures.

2.4. IBSR

The Internet Brain Segmentation Repository (IBSR) [41] provides manually segmented results
by experts along with brain MRI data. This dataset contains 18 subjects from 7 to 71 years of age at
1.5 mm voxel data resolution. For each subject, it includes a “positionally normalized” Th\W
volumetric image (rotation only) in the Talairach direction and the segmentation of 43 individually
labeled major gray matter and white matter structures.

2.5. MRBrainS13

In the MRBrainS13 [42] dataset, 20 subjects (mean age + standard deviation = age, 10 men, 10
women) were selected as functionally independent individuals aged 65-80 years without a history of
stroke or other brain diseases. In order to test the robustness of the segmentation algorithm in relation
to age-related pathology, they selected subjects having various degrees of atrophy and white matter
lesions. Scans with major artifacts were excluded. Brain MRI scans were acquired on a 3.0 T Philips
Achieva MR scanner at University Medical Center Utrecht Netherlands.

2.6. NAMIC

The National Alliance for Medical Image Computing (NAMIC) dataset was developed by Kitware
and is available online. The dataset consists of 20 different T-W images with skull-stripped data.

2.7. NFBS

The Neurofeedback Skull-stripped (NFBS) repository [24] is a publicly available dataset. There
is a total of 125 brain MRI scans with skull stripped volume in the data (48 are from men and 77 from
women). The age of the subjects’ ranges from 21 to 45 years old. The matrix size of a volume is 256 x
256 x 192 (The first two dimensions constitute size of each slice. Thus, they are the number of pixels.
The last dimension represents the number of slices present in each scan.), and the voxel size in each
volumeis 1 x1x1mm?

2.8.CC359

This dataset consists of healthy adults from 29 to 80 years old, the total number of data points is
359. Datasets are evenly distributed by age and gender. Among them, twelve manual segmented
results are provided by experts. They call them Calgary-Campinas-12 (CC-12) [22]. Twelve TitWbrain
MRIs were obtained from different vendors (Philips, General Electric (GE), Siemens) and magnetic
field strengths (1.5 T and 3 T), respectively. The size of each voxelis 1 x 1 x 1 mm?. The dataset consists
of six male and six female subjects. A total of 12 volumes were segmented twice, Manual 1 and Manual
2.

All the above-mentioned datasets are summarized in Table 1 with the online links, and some
sample images from different datasets have been portrayed in Table 2.

Table 1. Summary of publicly available datasets.

Dataset Name Comments Link
BrainWeb BrainWeb simulator http://www.bic.mni.mcgill.ca/brainweb/
IBSR1-2 20 and 18 TiW MRI http://www.cma.mgh harvard.edu/ibsr/

Volume
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MRBrainS-5
SVE

ADNI

Oasis

LPBA40

IBSR
MRBrainS13

NAMIC

NFBS

CC-12

5 TiW and T:W FLAIR
40 TWW

TiW and T-W

2000 T:W, T-W, FLAIR,
ASL, SWI, time of flight,
resting-state BOLD, and
DTI sequences (Oasis3)

56 MRI images

18 subjects
20 subjects

40 T-W
125 MRI images

12 MRI images

http://mrbrains13.isi.uu.nl/
https://www nitrc.org/projects/sve/

http://adni.loni.usc.edu/data-samples/access-
data/

https://www.oasis-brains.org/

https://resource.loni.usc.edu/resources/atlase
s-downloads/
https://www nitrc.org/projects/ibsr/
https://mrbrains13.isi.uu.nl/
https://www.insight-
journal.org/midas/collection/view/34
http://preprocessed-connectomes-
project.org/NFB_skullstripped/
https://sites.google.com/view/calgary-
campinas-dataset/home/download

Table 2. Figures visualizing anatomical planes of publicly available datasets.

Anatomical Plane

raw

Coronal

skull-
stripped

raw

sagittal

skull-
stripped

raw

axial

skull-
stripped

IBSR LPBA40

Qasis

NAMIC CC-12

NFBS

3. Classical or Conventional Skull Stripping Approaches

3.1. Histogram Thresholding with Mathematical Morphology

Thresholding with mathematical morphology-based algorithms utilizes thresholding using

histogram analysis, edge detection, and a series of morphological operations—erosion, dilation,

opening, closing, etc.—to isolate the brain and the non-brain regions. For instance, one of the most
commonly used methods based on this technique was made by Brummer et al. [43]. It discriminates
the skull from the brain by exploiting histogram thresholding followed by mathematical morphology
filters. Atkins et al. [44] developed a multistage approach that utilizes anisotropic filters, histogram
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thresholding, a morphology filter, and snakes contouring techniques for segmenting the brain. Shan
et al. [45] presented a similar histogram-based brain segmentation (HBRS) method based on
histogram and morphological operations. Galdames et al. [46] proposed an automatic skull stripping
method called SMHASS (simplex mesh and histogram analysis skull stripping) based on deformable
models and histogram analysis. Initially, a rough segmentation step building on thresholds and
morphological operations is used to find the optimal starting point for the deformation. The simplex
mesh deformation is controlled by the local gray levels of the image and the information achieved on
the gray level modeling of the rough segmentation.

The brain extraction algorithm (BEA) was developed by Somasundaram and Kalaiselvi [47,48]
using diffusion, morphological operations, and connect component analysis (CCA) for T1W and T-W
brain MRIs. Two-dimensional (2D) brain extraction was proposed by Gambino et al. [49] based on
fuzzy c-means and morphological operations. The Brain Surface Extractor (BSE) is a well-known and
publicly available tool for skull stripping devised by Shattuck et al. [50]. It employs the combination
of anisotropic diffusion filtering, a Marr-Hildreth edge detector, and a series of morphological
operations to identify the brain and non-brain regions. The BSE is extremely fast and generates highly
explicit whole brain segmentation. It took only 3.5 (+ 0.4) s for the whole brain extraction. BSE is also
a part of BrainSuite [51] that affords a user interface that permits for human interface. The key
deficiency of this technique is that it usually involves parameter tuning to work on a particular brain
MRI dataset. The method based on grayscale transformation and morphological operations was
presented by [52].

Similar to other approaches, the method devised by Suresh et al. [53] applies the grayscale level
(or intensity) thresholding followed by the elimination of thin connections to acquire a fine brain
mask. A graph cut technique was considered to smooth the contours of the brain instead of
morphological filters. Balan et al. [54] proposed HEAD (human encephalon automatic delimiter), an
automatic skull stripping method combining an efficient histogram analysis procedure and binary
morphological operations to achieve accurate brain segmentation. Chiverton et al. [55] developed
SMSS (the statistical morphology skull stripper), which employs statistical self-similarity and
morphological operations to delineate the brain in an MRI. However, their algorithm produces skull
stripping with minor amounts of over- and under-segmentation of the brain. Roy, S. et al. [56]
introduced a robust skull stripping algorithm based on rough-fuzzy connectedness, termed ARoSi.
Recently, Kavitha Srinivasan et al. [57] proposed an intelligent and robust mathematical morphology-
based algorithm. The other latest methods include [58,59]. The major drawback of these approaches
is that morphological operations depend on many fixed parameters, such as the shapes and sizes of
structuring elements (for erosion, dilation, opening, etc.), which can only be found by empirical
experimentation. For initial segmentation, the human (user) is normally involved in choosing the
threshold value from a variety of starting thresholds. Another problem with these algorithms is that
it is very hard to develop a general algorithm for diverse datasets of brain MRIs. It has proved
challenging to automatically cope with a range of brain MRI resolutions and sequences [25]. In part,
this is because it is very difficult to implement the problem-specific logical constraints (e.g., prior
knowledge about brain MRIs, intensity/gray level, etc.) with these approaches.

3.2. Deformable Surface Model-Based Methods

Deformable surface model-based approaches normally evolve and deform a self-regulating
dynamic curve (an active contour) to fit towards the brain surface based on the energy functions.
Initially, a surface model is defined (e.g., a tessellated mesh of triangles) and then “fitted” to the
surface of the brain in the image. Generally, there are two major parts of constraints to the fitting. The
first part imposes some form of smoothness on the brain surface to keep it well-conditioned and
match the actual smoothness value of the brain surface. The second part of constraints fits the model
to the accurate region (or segments) of the brain surface. The fitting (sometimes referred to as curve
evolution) is usually accomplished by iteratively deforming the active contour model from its starting
position until an appropriate solution is achieved. These algorithms highly rely upon the initial
position of the fitting curve and the image intensity variation (i.e., the image gradient). These
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parameters can betray the actual boundary of the brain and produce over/under the segmentation of
the brain. For instance, Suri [60] utilized an active contour to segment the cerebrospinal fluid (CSF)
and the white matter (WM) in brain MRIs using a fuzzy membership function, an image gradient
detector, and a deformable model.

The algorithm brain extraction tool (BET), developed by Smith, S. M. [25], is the most prevalent
and freely available algorithm of this category. In this method, the center of gravity and a rough
brain/non-brain threshold of the brain MRI are found using a “robust” lower and upper grayscale
values of the brain image. Then, it imposes locally adopted model forces to fit the surface of the brain
employing a triangular tessellation of a sphere’s surface. This is also very fast and needs no
preprocessing or other preregistration before being applied. BET was unsuccessful used to extract
the brain region in the inferior brain slices (slices with the neck) when the center of gravity of the
brain MRI volume lay outside the brain [61].

A new model-based level set (MLS) algorithm to separate intracranial tissues and the skull
encircling the brain MRI was developed by Zhuang et al. [62]. The two terms (whose values represent
the forces that influence the speed of the evolving curve) in the level set equation control the evolution
of the curve. The first term was inferred from the mean curvature of the curve and the second was
obtained from the intensity characteristics of the cortex in the brain MRIs. The combination of these
two terms (forces) in the level set framework evolved the curve toward the brain surface. Liu et al.
[63] presented a robust and automated brain extraction technique that utilizes an implicit deformable
model to represent the contours of the brain and to segment the brain region. A set of Wendland’s
radial basis functions (RBFs) described the model that has the advantages of low computational
complexity and a compact support property. The contours of the brain are identified separately on
2D coronal and sagittal brain slices. The results from these two views are integrated to get a whole
3D brain MRI volume. A very recent article based on improved BET [25] was proposed by Wang et
al. [64]. It evolves a 3D active mesh model to fit the brain surface in brain MRIs. A polygon fill
algorithm has been used to generate a brain mask. Finally, a ray-casting volume rendering algorithm
is utilized to visualize the brain surface from these generated brain masks.

One of the advantages associated with these techniques is that they can recognize both the
exterior and interior boundaries of the brain simultaneously. Normally, deformable surface model-
based approaches have the potential to achieve more precise and accurate skull stripping in brain
MRIs than methods based on histogram thresholding, mathematical morphology, and edge
detestation. However, these methods are highly susceptible to noise and fail to segment the brain in
low contrast and noisy brain MRI datasets.

3.3. Atlas or Library-Based Methods

Atlas or library-based methods achieve brain labeling on the brain images using expert
delineations of the brain MRIs. The labeled images subset is known as the atlas, training, or library
set. These approaches rely on the target brain images being adequately analogous to the training set
for the algorithm to transfer expert knowledge. Unlike other skull stripping methods, these
algorithms often require significant preprocessing, such as intensity and spatial normalization [65].
These algorithms can isolate the brain from non-brain tissues when there is no well-defined
relationship present between the respective brain region and the skull pixels’ intensities in the brain
MRIs.

Dale et al. [66] designated a brain segmentation algorithm as a preprocessing step in the cortical
surface reconstruction process by applying a tessellated ellipsoidal template. Leung et al. [67]
proposed a template library-based segmentation technique called multiple-atlas propagation and
segmentation (MAPS) that produces a segmentation of the brain utilizing a template library and non-
linear atlas registration. It generates multiple segmentations from the best-matched templates with a
manually segmented library and integrates them using an algorithm known as simultaneous truth
and performance level estimation (STAPLE). The method has been developed and validated against
manual measures employing subsets from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).
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Leung et al. [68] also presented a method named “Brain MAPS” that compares the brain segmentation
of the template library-based technique with BET [25], BSE [50], and HWA [69].

Similarly, Eskildsen et al. [70] developed BEaST, an automatic brain extraction technique, based
on nonlocal segmentation incorporated in a multiresolution framework. Principally, this method is
inspired by patch-based segmentation [71] where the sum of squared differences (SSD) has been
exploited as the metric for the distance between patches. BEaST is much faster than the other label
fusion methods and needed a smaller library of priors. Only a library of 50 priors was semi-
automatically created from the data in the National Institutes of Health Pediatric Database (NIHPD)
[72] the International Consortium for Brain Mapping (ICBM) database [73], and the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) [74]. The intensity and spatial normalization were
performed before constructing the library of priors. The ground truth (or gold standard) of brain
masks for library priors have been constructed using a semi-automatic method that includes manual
correction. To enhance accuracy while reducing the computation time, an improved nonlocal label
fusion scheme based on BEaST is proposed by Manjon et al. [75]. A new multi-atlas library
construction pipeline has been introduced for better normalization between the template library
subjects. The addition of bilateral patch similarity measure, a blockwise labeling approach, and a
regularization constraint have aided the methods to increase accuracy and significant savings in
computational cost.

Multi-atlas skull stripping has been presented in [76]. It is based on a multi-atlas registration
framework to confront the challenges originating from the variability of imaging characteristics
among different studies. After choosing a set of templates, they used a study-specific template
selection strategy that best constitutes the anatomical variation within the dataset. To overcome the
problems associated with the registration of brain images with the skull, an adapted registration
algorithm was considered which adaptively aligned different regions of brains based on similarity
and reliability of matching measures. In the last step, a spatially adaptive weighted voting strategy
(ranking of Jacobian determinant values) has been used for joining the co-registered template masks.

Heckemann et al. [65] developed pincram, an automatic, versatile algorithm for accurately
labeling 3D TiW brain MRIs in an adult. The algorithm applies an iterative refinement approach to
transfer labels from multiple atlases to a specified target brain image utilizing image registration. A
consensus label was generated at each refinement level of the algorithm. The search for brain
boundary was confined to the neighborhood of the boundary of this consensus label at the successive
level. This algorithm (Pincram) is also publicly available at [77] as free software.

Recently, a new multi-atlas brain segmentation (MABS) base brain masking technique was
implemented by Del Re et al. [78]. In contrary to other atlas-based algorithms, MABS allows flexibility
by assigning weights to the atlases with respect to their resemblance to the target image and
circumvents the issue of atlas selection. The atlases most closely resembling the target image are given
more weight in a set of heterogeneous atlases, than the atlases with less resemblance. Moreover, the
MABS technique decreases the risk of averaging out individual differences by the inclusion of both
pathological and control images in the training set. The authors also compare their results with
FreeSurfer (FS; version 5.3) [39], BET [25], and Brainwash [79]. Ahmed Serag et al. [80] developed a
novel method named ALFA (accurate learning with few atlases) for brain extraction of multimodal
neonatal brain MRIs. The algorithm is combined with a new sparsity-based atlas selection strategy
with a machine learning-based label fusion technique that requires a very limited number of atlases
in low dimensional data space. Another recent method, “sparse patch-based multi-contrast brain
stripping method (MONSTR),” published by Roy et al. [81] is also used non-local patch information
from multiple atlases and integrate them to produce a final brain mask. This algorithm is also publicly
available and insensitive to pathology. Other recent algorithms include [65,82].

The accuracy of Atlas or library-based Methods depends on the quality of brain masks, atlas
registration, intensity and spatial normalization in each brain MRI volume. Furthermore, these
approaches are generally computationally intensive.

3.4. Region Growing and Watershed Methods
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Region growing (RG) and watershed methods inspect pixels in the brain MRIs and form separate
connected regions based on a similarity criterion by merging neighborhood image pixels with
uniformity properties. These methods start with at least one image pixel known as the seed that
belongs to the region of interest (ROI). Seed neighbors’ pixels are examined against a similarity
criterion that is defined prior to the start, and those neighbors’ pixels satisfying the criterion are
included in the ROI (seed’s region). The criteria for similarity can be assessed and specified by
intensity (or grayscale value) of the brain MRI pixels and other features in the brain image. Seed(s)
can be (are) selected manually or by an automatic procedure based on the image’s properties (or prior
knowledge). The RG process is repeated until a stopping criterion is reached. Hohne et al. [83]
devised an interactive 3D segmentation of CT and brain MRI volumes based on RG and
morphological filters. Justice et al. [84] are also proposed a 3D SRG (seeded region growing) method
for brain MRI segmentation. Park and Lee [85] formulated an efficient and robust method based on
2-dimensional (2D) RG for brain TiW MRIs. In the first step, background voxels of brain MRI volume
have been eliminated with histogram analysis. Next, seed regions, one for the brain and the other for
the non-brain region, are identified utilizing a mask generated by morphological operations. Finally,
the brain region is expanded by emerging neighborhood pixels of brain image with a 2D RG
algorithm based on general brain structure information. This method can only be used for the coronal
orientation of the brain MRIs. Roura et al. [86] eliminated this limitation and enabled their algorithm’s
use in both axial views and low-quality brain images, and presented a new RG-based approach
known as the multispectral adaptive region growing algorithm (MARGA) for skull stripping. It
exploited the complementary information provided by brain MRIs and acquired a seed region that
expanded using a 2D RG. Wang, L. et al. [87] developed a level set approach in a multistage
formulation based on local Gaussian distribution fitting energy for brain extraction in MRI having
intensity inhomogeneity. The intensities of the image are modeled by Gaussian distribution with
various means and variances. Somasundaram et al. [48,88] proposed skull stripping techniques based
on region labeling, clustering, and 2D RG. Hahn et al. [89] presented a simple and robust algorithm
based on a modified 3D fast watershed transform to locate the brain tissues and remove the non-
cerebral tissue in a T1W brain MRI. Segonne et al. [90] combined a deformable surface model [66] and
the watershed algorithm [89] to form a new hybrid watershed algorithm (HWA) for brain
segmentation. Sadananthan et al. [53] argued that the above two algorithms (Hahn et al. [89] and
Segonne et al. [90]) diverge in their errors in the dissimilar region; thus, the intersection of the two
algorithms would provide more robust skull stripping results.

The partial volume effect (PVE) [91] blurs and distorts the intensity distinctions between the
various cerebral tissues of brain MRIs and confines the accuracy of the RG method. Furthermore,
watershed algorithms typically suffer from over-segmentation of the brain tissue.

3.5. Meta-Algorithms and Hybrid Methods

An individual algorithm often will not sufficiently perform the whole brain extraction or skull
stripping in every subject across an entire brain MRI dataset. Specifically, many different procedures
must be tried or manual intervention utilized to attain satisfactory results. A simple way to access
and test various approaches is an environment that presents many similar algorithms. A meta-
algorithm or hybrid method that allows the requirement of a general procedure and achieves a valid
result, regardless of input data, would permit the task of interpreting the results from many
algorithms and selecting the best procedures to be fully automated. Each of the aforementioned skull
stripping algorithms for brain MRIs possesses pros and cons that alter with the image characteristics;
scanning protocol, such as image signal-to-noise ratio, contrast, and resolution; and subject-specific
characteristics, such as age and atrophy [92,93]. Furthermore, the algorithms can also deviate in their
accuracy in different brain anatomic regions [94]. The development of a hybrid algorithm that
intelligently exploits the advantages of the contributing sub-algorithms should attain brain extraction
results that are, typically, superior to any individual method.

Hybrid methods integrate the advantages of two or more approaches to enhance the precision
and accuracy of skull stripping in brain MRlIs. For example, Bauer et al. [95,96] combined atlas-based
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geodesic active contour brain segmentation with the level set-based algorithm and implemented it
using the Insight Segmentation and Registration Toolkit (ITK) which they named
“itk::StripTsImageFilter.” This hybrid algorithm successfully segments the brain in Ti-contrast, T1W,
and T-W-MRIs; computed tomography (CT); and FLAIR images. David E. Rex et al. [97] developed
the brain extraction meta-algorithm (BEMA) by executing four different brain extractors (including
BSE [50], BET [25], 3dIntracrnial [98], and Watershed from FreeSurfer [66]) and a registration
procedure in parallel to integrate the brain extraction results in an intelligent way and achieve
improved results over any of the individual algorithms. The algorithm performs a voxel-wise
analysis of training data to find the optimal Boolean grouping of extraction algorithms to generate
the most precise segmentation results for a given voxel.

Segonne et al. [69] combined a deformable surface model [66] and the watershed algorithm [89]
to form a new hybrid watershed algorithm (HWA) for brain segmentation. The deformable surface
model effectively incorporates the geometric information of the brain MRI but cannot have access to
the intensity information of the interior region of the brain. Similarly, watershed algorithms ignore
the geometric information. By combining both approaches, their hybrid algorithm obtained
improved results over either one individually. Another hybrid method based on the expectation-
maximization algorithm, mathematical morphology, connected component analysis, and geodesic
active contours was presented by Huang et al. [99]. A well-known learning-based algorithm “robust
brain extraction (ROBEX)” was presented by Iglesias et al. [100]. It incorporates a discriminative
(random forest) and a generative model (point distribution) with the graph cuts for whole-brain
extraction. The brain boundary is identified using a random forest (RF) classifier. A triangular mesh,
constrained by a point distribution model, is evolved to fit the probabilistic output of RF. The
deformation (contour) is refined and optimized using graph cut. It exhibited improved performance
without any parameter settings. ROBEX is publicly available as the "TROBEX1.2” package available at
[101].

William Speier et al. [102] extend the ROBEX skull stripping method and presented a technique
to extract the brain from glioblastoma multiform (GBM) images. They trained a shape model on
healthy brain MRIs which is relatively insensitive to lesions inside the brain. Adaptive thresholding
has been employed to search for potential resection cavities at the brain boundary, and random
walker (RW) [103] corrects for a leakage into ventricles. Another efficient algorithm formulated by
Aaron et al. [104] is known as the “simple paradigm for extra-cerebral tissue removal (SPECTRE)”; it
is for skull stripping. It integrates different techniques, such as elastic registration, bran tissue
segmentation, and morphological operations directed by the watershed principle. Primarily,
SPECTRE was designed for TiW brain MRIs. However, the authors mentioned that it can be
employed with other modalities (e.g.,, T-W and PDW) with a simple alteration. Shi et al. [105]
proposed a novel meta-algorithm, “brain extraction and labelling (LABEL),” for skull stripping,
especially for pediatric brain MRIs. Other recent and new skull stripping methods are [106,107]. One
of the disadvantages of meta-algorithms and hybrid methods is that they often demand extensive
training of the data to learn the particular brain features to accurately segment the brain MRIs.

Some well-known conventional skull stripping algorithms have been listed in Table 3.

Table 3. Notable conventional skull stripping algorithms.

lassical
Classica Authors Year Methods Dataset Performance Measures
Methods
Shattuck et al. [50] 2001 BSE TIW Jaccard, Dice Coefficient
. Shan et al. [45] 2002 HBRS W Jaccard, Dice Coefficient
Histogram Galdames et al Jaccard, Dice, Sensitivit
Thresholdi " 2012 SMHASS W e SensTEvIY
[46] Specificity
ng and
Somasundaram 2010 . e s
Morpholog . . T1iW and Jaccard, Dice, Sensitivity,
and Kalaiselvi ,201 BEA I
y-based 474 1 T-W Specificity
Methods [47,48]

Jaccard, Dice, Sensitivity,

Balanetal [54] 2012 HEAD TIW Specificity
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Chiverton et al. Adult and . -
[55] 2007 SMSS infant T1W Dice Coefficient
TW
Smith, S. M. [25] 2002 BET Tl‘%vvilnd Mean % error formulation
2
TiW Jaccard, Dice, Sensitivity,
Zhuang et al. [62] 2006 MLS (Including Specificity, False Positive
Pediatric) Rate
Dice, Hausdorff distance
Deformabl (HD), average symmetric
I f i ASSD
e Surface Wang et al. [64] 2019 mproved W su.r ace distance (' SSD),
Model- BET maximum symmetric surface
Based distance (MSSD), surface
Methods distance deviation (SDD)
Jaccard, Sensitivity,
Liu et al. [63] 2009 RBFs TIW Specificity and Extraction
Risk
Segonne et al. [90] 2004 HWA TIW Jaccard, Risk Evaluation
Lutkenhoff et al. i
utkenhoff et a 2014 optiBET TIW Median Sum of Square and
[108] Time
Leungetal. [67] 2010 MAPS TIW Jaccard,
Dice, False Positive Rate
Eskild t al. i
skildsen et a 2012 BEST TiW, T2W, (FPR) and False Negative
[70] and PDW Rate (FNR), leave-one-out
cross-validation (LOOV)
TiW, T-W Dice, ASSD, LOOV, Percent
Atlas or Roy et al. [81] 2017 MONSTR Including of erroneous boundary
library- Tumor voxels
based Heckemann et al. . Jaccard, Volume error,
Methods [65] 2015 Pincram W Sensitivity, ASSD
Dice, Absolute and Percent
Volume Differences,
Del Reetal. [78] 2016 MABS T\W, T-W . .
intraclass correlation
coefficients (ICCs)
Ahmed S t al. i itivi
med Serag et a 2016 ALFA TiW, T-W Dice, HD, .S.er.lSItIVIty,
[80] (neonatal) Specificity
Hohne et al. [83] 1992 Semi- MRI and CT Visual inspection
automated
MRI and
Justice et al. [84] 1997 3D SRG clinical short- -
Region axis cardiac
. 4. Di vt
Growing 1k and Lee [85] 2009 2D RG W Jaccard, Dice, Sensitivity,
Methods Specificity
2D RG
. 2014 TiW, T-W Di
Roura et al. [86] 0 (MARGA) 1 2 ice
Segonne et al. [90] 2004 HWA W Jaccard, Dice, Sensitivity,
Specificity
2013
Bauer et al. 201 itk::StripTsIm TiW, T2W, Dice
[95,96] ! N ageFilter and CT
Me.ta— Rex et al. [97] 2004 BEMA TW Dice, extractor error
algorithms Dice, Sensitivity, Specificit
and Iglesias et al. [100] 2011 ROBEX TIW ' &y, op Y
. HD, SSSD
Hybrid William et al Modified
. odifie
Method 2011 TiW (GBM Di D
ethods [102] 0 ROBEX 1W (GBM) ice, SSS
Di tai t Ind
Aaronetal. [104] 2011  SPECTRE TIW ice, Containment Index

(CI), paired t-test
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T T FPR, FNR
Shietal. [105] 2012 LABEL W, T:W Jaccard, FPR, FNR, mean
(Neonate) projection map
Segonne et al. [90] 2004 HWA TIW Jaccard, Risk Evaluation

4. CNN-Based or Deep Learning-Based Approaches

Brian MRIs can be captured at different angles, and under different magnetic strength
conditions. Therefore, the image parameters contain a lot of very diverse information. Consequently,
robustness to these changes is very crucial in the development of algorithms. In general, deep
learning-based skull stripping approaches are divided into two distinct groups: 2D skull-stripping
methods and 3D skull-stripping methods. Although 3D skull-stripping is thought to produce better
results because contextual information between adjacent slices can be additionally used, it is
computationally very expensive, so 2D skull-stripping has been more commonly adopted than the
3D method. 2D skull-stripping methods are categorized into two groups. The first group contains a
voxel-wise neural network and the second group comprises fully connected CNNs. The networks of
the first group predict the class of a voxel from multiple image patches, whose center the voxel is
located using multiple 2D CNNs and a fully connected network. The networks of the second group
adopt an encoder-decoder structure. The encoder part reduces the size of the image simultaneously
extracting features, and the decoder expands the image in order to get high resolution segmentation
results. One of the most used networks in medical image segmentation, U-Net [109], employes this
encoder-decoder structure. Generally, the second group’s methods are more efficient than the first
ones because fully convolutional networks can recognize both local and global features. Moreover,
the first group’s methods have the disadvantage that the size of the input image is fixed, but fully
convolutional networks are not limited to this condition and are also fast.

4.1. 2D Skull-Stripping Method

2D semantic segmentation predicts the total volume by segmenting each slice independently
and by combining the results of 2D segmentation. Generally, 2D semantic segmentation is faster than
3D segmentation and there are many techniques for it compared to 3D semantic segmentation.
Because it is based on the 2D slice as input, it does not take advantage of the context of adjacent slices.
In order to overcome this limitation, 2D skull-stripping methods making use of adjacent information
have been introduced and some of them showed similar performances to the 3D based methods with
less computation.

Salehi et al. [110] proposed two methods: a voxel-wise network and a fully convolutional
network. The first is a parallel voxel-wise network and the second is a parallel 2D FCN U-Net. Each
network is followed by an auto-context CNN classifier. It was named Auto-Net. The authors pointed
out that the biggest problem with 3D CNN is its expensive computation and proposed to use two
networks. The first network consists of three 2D networks (axial, coronal, and sagittal) instead of the
computationally expensive 3D CNN. The 2D network receives the input image in three different sized
patches. The reason for using three different patches is to get both local and global information. This
network has much reduced the number of parameters compared to 3D CNN while showing as good
a performance as 3D CNN does. The second proposed network is a fully convolutional network based
on U-Net [109]. It integrates the contextual information by combining the low-level appearance
feature and the high-level appearance feature from an auto-context algorithm. Auto-Net needs a
trained model in each plane to utilize auto-context, so it is not an end-to-end form.

Lucena et al. [111] proposed a network consisting of two main parts. The first part is a network
having three 2D CNNSs, and the second part is a network handling context variation. The three 2D
CNNss handle three planes of space (axial, coronal, and sagittal). The authors call this CONSNet. The
authors showed a better performance than the one-way process by adopting this tri-planar approach.
3D segmentation is achieved by reconstruction of the output of 2D prediction through concatenation.
Interestingly, the authors used so-called silver standard masks instead of gold-standard masks as
ground truth. Silver standard masks mean the labels created through consensus that are the results
of publicly available non-deep learning-based skull-stripping methods. Gold standard masks are
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manual masks created by experts. In the paper, the authors reported that the proposed method
outperformed in the LPBA40 and OASIS datasets, despite training with only the CC-359 dataset.
Using silver-standards is a big advantage because it significantly reduces the cost of manual
annotation. Silver-standards masks were obtained by forming a consensus from eight automated
skull-stripping methods. Lucena et al. [112] also published papers using 2D FCN U-Net. The authors
used silver standard masks to train the model and claimed that it showed comparable generalization
performance when compared to gold standard masks. Furthermore, the results show that silver
standard masks can be used to augment the data to reduce the need for manual segmentation.
Inspired by this paper, Carmo et al. [113] performed hippocampus segmentation on three planes
using 2D FCN U-Net. However, they have proposed a better way than adding additional networks
to get a final consensus. They added the activation heatmap to each 2D FCN U-Net, applied a
predefined threshold, and performed 3D labeling. This method showed much better performance
than that of Lucena et al [112].

Yilmaz et al. [114] performed skull stripping using a cellular neural network called the
multistable cellular neural network on MRI for skull stripping (mCNN-MRI-SS). They proposed
using contrast enhancement for preprocessing by a linear image combinations algorithm. This leads
to less noise and improved contrast results. The parameter determination for all training is done by
the artificial bee colony (ABC) algorithm. The ABC algorithm is an optimization algorithm based on
swarm intelligence. They mentioned that the solution of coefficient parameters, templates, and
output functions requires a large multidimensional search space, so the authors proposed using the
ABC algorithm because it has a wide search space. The mCNN-MRI-SS algorithm shows similar or
worse performance than BET and BSE, especially on superior and inferior slices. This may be due to
calculation errors in the analysis process. The calculation speed is also slow compared to other
algorithms since the analysis algorithm is applied to all particles.

The next paper proposed skull stripping using a confidence segmentation convolutional neural
network (CSCNe) [115]. CSCNet adopted an encoder-decoder structure. The network is very similar
to SegNet [116], one of the most frequently used networks in semantic segmentation. The only
difference is that while the authors of SegNet adhered to use the activation function as a softmax
function, the author used the ReLU function. This ReLU function is used to produce a confidence
level in the pixels of the image. Using the fact that MR images are grayscale, the author created a
confidence level matrix as a bitmask and applied it to the original. The reason is that the author’s
model cannot output accurate brain tissue, so they use the results of the activation function trained
based on the target image. In other words, the higher the activated state, the higher the reliability.
CSCNet performs better than the other methods, but it is not robust with respect to artifacts.

Duy et al. [117] presented a method that combines both the advantages of the active shape model
(ASM) and CNN. ASM [118] is a statistical model that finds the desired object through an iterative
transformation of data to find the desired object in a new image. ASM is widely used in face image
analysis and medical imaging. To proceed with the ASM, the shape of the object should be searched
and attribute information indicated by each feature point of the object is required. There are some
points worth mentioning in this paper. First, instead of dealing with 3D structures, the brain image
is regarded as a continuous form of the sagittal planes which are symmetrical. It allows making more
sophisticated segmentation by predicting the second half with data from the first half. The brain is
divided into three groups according to the criteria set by the authors. The first group is the smallest
but has a very complicated structure, and the third group is the largest. In each group, slices have a
very similar form. Having a similar form allows the algorithm to achieve high accuracy segmentation.
Second, ASM is used to find the brain boundaries of the image using the prior information of each
group. ASM is applied in the second and third groups first. The contour generated from ASM is
refined using post-processing techniques, such as a CNN, a conditional random field, and a Gaussian
process, and some special other rules. Next, segmentation results of the second group are fed to CNN
that processes the first group, making it easier to deal with the first group that is difficult to process.
The ASM algorithm, however, only works well when the shape of the test image is similar to the
shape of the training image.
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The skull and the brain look very similar in MRI images, so it is difficult to differentiate them.
To solve this problem, Dey et al. [119] created a CompNet network using creative ideas. The network
employed encoder-decoder networks. It has two pathways, the first path learning the features of the
brain tissue and the second path learning the complementary part located outside the brain. This
technique provides a robust solution for brain extraction from MRIs. However, due to the lack of true
masks for complementary parts, the authors created a sub-encoder-decoder network that
reconstructs the original one based on the output of the two branches. Sub-encoder-decoder networks
provide direct feedback to networks processing brain parts and complementary parts to reconstruct
the original one. Optimal CompNet shows higher accuracy when compared with one of the most
popular networks such as U-Net and dense U-Net.

NeuroNet [120] is a network that mimics state-of-the-art brain segmentation tools such as FSL
[121], SPM [122], and others [123]. The network was trained from 5000 T:-weighted brain MRI scans
that were automatically segmented from standard neuroimaging pipelines (FSL, SPM, and others).
The structure of the network is as follows. There is one encoder structure and multiple decoders that
receive the output of the encoder and extract the final result. Each decoder teaches the state-of-the-
art brain segmentation tool. Generating multiple outputs from a single model can be very powerful
due to overlapping label maps. Besides, it is very efficient because it outputs several results at once.
The authors also asserted that networks are very robust from changes in input data. Another
advantage is that Neuronet does not require typical preprocessing. In other words, the network can
produce output from raw images and no additional hyper-parameters are required.

Next, we briefly introduce the deep learning techniques that are widely used as general 2D
semantic segmentation and therefore can be applicable to the skull-stripping problem. Fully
Convolutional networks for semantic segmentation (FCN) [124] showed high improvements in the
field of semantic segmentation. What differentiates FCN from previous semantic segmentation
papers is that the fully connected layer is removed. Existing papers had the problem that the location
information was removed through the fully connected layer. Therefore, the authors of FCN replaced
the fully connected layer with a 1 x 1 convolution. Next, upsampling was performed to restore the
original size of the image. Instead of performing interpolation, the output from the encoder is
combined after interpolation to obtain the result of segmentation in detail. SegNet [116] came out in
2015. This network is similar to FCN in that it uses encoder-decoder architectures. However, the key
difference is that more shortcut connections are used, and instead of copying encoder functionality
as in FCN, Maxpooling’s indices are transitioned to increase memory efficiency.

U-Net [109] also forms a structure similar to the previous FCN and SegNet. U-Net is divided
into contracting path and expanding path. The contracting path is used to identify the global context
and the expanding path is used to identify the local details. The key point of U-Net is that it allows
for more accurate localization by concatenating the output of the contracting path prior to each
upconvolution of the expanding path. As a way to solve the semantic segmentation problem, the key
point of DeepLab is using atrous convolution. DeepLab V1 [125] first applied atrous convolution for
semantic segmentation. Atrous convolution is the novel method which makes the stride between
elements of a convolution filter. As the distance gets longer, the filter can cover a wider field of view
with the same number of parameters. In general, since the size of the receptive field determines the
performance of semantic segmentation, it is a big advantage to have a wide receptive field without
increasing the amount of computation.

DeepLab V2 [126] proposed the atrous spatial pyramid pooling (ASPP) technique for applying
multiscale contexts. The technique performs atrous convolution over various distances and then
concatenates the results. This technique allows for identifying all local and global features, making it
possible to identify multiscale contexts accurately. DeepLab V3 [127] proposed a more dense feature
map by using an atrous convolution in existing ResNet structures. DeepLab V3+ [128] proposed the
use of atrous separable convolution, which combines separable convolution and atrous convolution.
The decoder part which was taken simply by bilinear upsampling, was replaced with a decoder
similar to U-Net. As a result, separable convolution was utilized to maximize the performance in the
encoder, ASPP, and decoder. At the end of 2016, RefineNet [129] was submitted to Arxiv. RefineNet
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pointed out the limitations of dilated/atrous convolutions and suggested using existing encoder and
decoder networks. Before putting the result of the encoder into the decoder, the RefineNet block combines
multiresolution features by upsampling low-resolution features. This allows capturing contextual
information. The average precision of different deep learning algorithms can be seen on voc2012 [130]
dataset.

4.2. 3D Skull-Stripping Method

Unlike the 2D skull-stripping method, which does not utilize the context of adjacent slices, the
3D skull-stripping method can utilize all three-dimensional information, leading to better
segmentation results. However, it has the disadvantage of using a large amount of computation.
Kleesiek et al. [131] proposed the network structure which consists of seven 3D convolutional hidden
layers and one convolutional soft-max output-layer. The network was specially designed only for
skull stripping. The authors wanted to cover brains of various ages, brains with artifacts, and brains
of various shapes with minimal parameter tuning. Furthermore, the goal was to create a robust
network for any single modality or the combination of several modalities (T1W, T W, T>-FLAIR, etc.).
The author tested different structures by adding and removing various layers and found that the
proposed structure shows the best performance. When compared with the most popular
conventional methods (BET, BSE, Robex, etc.) on IBSR [41], LPBA40 [40], and OASIS [36] datasets,
Kleesiek’s [131] method showed the highest performance in terms of dice and specificity but average
performance in sensitivity.

Hwang et al. [132] suggested that 3D-UNet, the general 3D segmentation network, could be used
for skull-stripping problems. The authors showed that the performance is comparable to the method
developed by Kleesiek et al. [131]. The test result of the NFBS dataset showed that Kleesiek et al.’s network
has better performance in terms of dice and specificity and 3D-UNet shows better performance regarding
sensitivity.

Huo et al. [133] showed a technique that improves the performance by using both the classic
method and the deep learning method together. The authors point out that the network has
limitations because it learns spatial and contextual information from numerous image patches, and
the number of medical images is too small to train the network. To solve those two problems, the
author proposed the spatially localized atlas network tiles (SLANT) method. Multiple spatially
distributed networks were used to overcome the spatial limitation. Each network was trained from
fixed patches. Since multiple networks are used, each network can focus on finding the differences
from very similar patches. To enable this strategy, affine registration and intensity normalization
were used in advance. Finally, label fusion was used to produce the result from the network tiles. To
increase the number of training image sets, the authors made auxiliary labels from 5111 unlabeled
scans. The auxiliary labels were made through multi-atlas segmentation. However, the biggest
problem with the method is that it requires a lot of computational resources. If only one GPU is used,
the training time or the test time increases linearly whenever the network tile increases.

Isensee et al. [134] created their own network based on U-Net but upgraded its structure. The
authors attempted to create a network that is robust to the deformation of the brain tissue by disease
or treatment and is not affected by the deformation of MRI hardware. Their modification is as follows:
First, preactivation residual blocks were put in the encoder section of U-Net, and the results of the
block were concatenated with the original one. It deepens the network architecture and improves
gradient flow. The patch size was 128 x 128 x 128 voxels and the voxel resolution was 1.5 x 1.5 x 1.5
mm?3. It almost covers the entire brain. The large patch size allows the brain mask to be accurately
reconstructed, although any part of the brain can be lost due to an accident. Second, they created
auxiliary loss layers. The gradients in the deep part of U-Net are very small due to chain rules, making
it very difficult to train deep parts. Thus, the authors tried to solve this problem by putting auxiliary
loss layers into the deep part. Finally, the authors changed the activation function and the
normalization function. The authors found the ReLU function dying in the deep networks, so they
replaced it with the leakyReLU function. In the proposed method, the batch size is smaller than other
methods. Therefore, the batch means and the standard deviation are unstable. For this reason, the
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authors applied instance normalization instead of batch normalization. Instance normalization is that
each batch normalizes independently from the other batch. Although Isensee’s method was applied
to brains with tumors or normal brains, their HD-BET algorithm is expected to also work in a wide
range of diseases in neuroradiology.

Fedorov et al. [135] introduced a deep learning model based on volumetric dilated convolutions.
Dilated convolutions is another name for atrous convolutions introduced by Deeplab [125].
Compared to other models, this model significantly reduced the number of parameters, shortening
the processing time and showing high accuracy for test data. Another important characteristic of this
model was that it showed high accuracy even when trained on imperfect data.

FRnet [136] offers novel methodologies in three ways. First, the authors created it based on U-
Net. The difference between FRnet and U-Net is that it executes residual block after a “de-convolution
+ batch normalization + ReLU” block in the decoder part. It is also novel to apply convolution before
concatenation. Another difference is that a new loss function was used to highlight the boundary
regions that are ambiguous and blurry. The loss function is weighted at the boundary region since
the boundary is always the most important part of the segmentation map.

Finally, Beers et al. [23] introduced a deep learning framework that puts the best fit deep learning
algorithms in order to deal with neuroimaging practically. The authors noted that many packages
are very good at sharing and designing deep learning algorithms, but few provide utilities for
working with clinical data. The authors showed how the framework designs and trains the network,
and how to modify the state-of-the-art architecture in a flexible and intuitive way using their toolbox.
In addition, by providing preprocessing and post-processing which are frequently used in medical
imaging, the framework has shown a consistent performance in various environments. Once the
author develops a GUI interface for users with no coding capability, it is expected to be more helpful.
Table 4 summarizes deep learning-based methods that have been described in the preceding sections.

In the next part, we briefly introduce deep learning-based techniques that have been recently
proposed for 3D semantic segmentation, and are applicable to our 3D skull-stripping problem. The
first network is 3D U-Net [137]. This network is based on a model created by extending the by one
dimension the existing 2D U-Net. Not only were the methods used in 2D U-Net used for 3D, but they
also added techniques such as batch normalization [138]. The strength of this network is that it can
learn from sparsely annotated volumetric images. Similar to 3D U-Net, V-Net [139] is a network that
has end-to-end structures. It is composed of encoder and decoder. The existing networks generally
downsample and upsample using pooling, while V-Net downsamples and upsamples using
convolution layers with strides. VoxResNet [140] consists of 25 layers, including the VoxRes module.
The VoxRes module corresponds to ResNet’s [141] residual unit in three dimensions. Here, the
deconvolution of the output of every fourth block is performed to classify and merge the result to get
the final output. The advantage of this approach is the integration of multimodality and multilevel
contextual information. As a result, the overall information can be learned and the functions of
various scales can be utilized, resulting in increased segmentation performance. DenseVoxNet [142]
was proposed. This network outperforms 3D U-Net and VoxResNet even with fewer parameters.
Similar to VoxResNet, the network consists of a DenseBlock, which extends the dense connections of
DenseNet [143] in three dimensions. The benefits of DenseBlock include less information loss, a lesser
gradient vanishing problem, and fewer learning parameters.

Although deep learning-based methods revolutionized image segmentation by automatically
learning the most difficult feature representations from data, they still have drawbacks. One of the
major drawbacks of deep learning methods is the inability to show how to get the result. Deep
learning models are basically black boxes. This opacity of deep learning makes deep learning difficult
to understand or difficult to improve. As a result, developers do not know how to adjust the
numerous hyperparameters of a deep learning model and how to improve the performance of the
model. Unfortunately in many cases, they have no choice but to rely on trial and error, which are
very inefficient. Another problem is the limitation of data-dependence. Basically, a lot of data is
needed to properly train a deep learning network model. This is a well-known characteristic of deep
learning methods. For this purpose, various open databases for general images have been built and
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keep accumulating data. However, this is not a simple problem for medical imaging, because
collecting lots of annotated datasets in medical images is often very difficult, time-consuming, and
expensive, not to mention the ethical concerns and privacy issues. Global collaboration is the only
way to address this data issue wisely and effectively.
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Table 4. Notable algorithms of deep learning-based methods.

Deep-Learning

Auth Y h D Perf
Based Methods uthors ear Methods ataset erformance Measures
TiW,
. Dice, Sensitivity,
Salehietal [110] 2017  Auto-Net T2W, Y

Specificit
fatal T-W P Y

Dice, Sensitivity,
Lucenaetal [111] 2019  CONSNet TIW Specificity, HD, ASSD,
mean distance
mCNN- TiW, Dice, Sensitivity,

Yilmaz et al. [114] 2018
2D Convolutional MRI-SS T-W Specificity, Jaccard,

Neural Network Dice, Sensitivity,
Chenetal. [115] 2018 CSCNet FLAIR

Specificity

Dice, Sensitivity,
Duy et al. [117] 2018  ASM-CNN W Y
Specificity, HD, Jaccard

Dice, Sensitivity,
Dey etal. [119] 2018 CompNet W Y

Specificity,
. TiW,
Rajchletal. [120] 2018  NeuroNet Dice
T-W
Deep MRI
TiW, Dice, Sensitivity,
Kleesiek et al. [131] 2016 brain ' ice, Sensitivity.
FLAIR Specificity
extraction
Huo et al. [133] 2019 SLANT TiW Dice, SSSD
TiW,
3D Convolutional ~ Isenseeetal [134] 2019  HD-BET cTiW, Dice, HD
Neural Network FLAIR
TiW, Dice, Sensitivity,
Fedorovetal [135] 2017  MeshNet  T:W IR, Specificity, Average
FLAIR Volume Difference
Infant
Zhangetal. [136] 2019 FRnet Dice
T«W

Finally, Table 5 summaries publicly available packages with their respective online links. Users
can download and execute their packages from the links. The upper part of the table shows links of
conventional methods, and the lower part of the table shows links of deep learning methods.

Table 5. Publicly available conventical and deep learning packages.

Authors Package Name Link
Shattuck et al. [50] BSE (BrainSuite v.19a) http://brainsuite.org/
Iglesias et al. [100] ROBEX1.2 https://www.nitrc.org/projects/robex

Heckemann et al. [65] PINCRAM http://soundray.org/pincram
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Park and Lee [85]

RGS_1_1

http://hdsp.yonsei.ac.kr/pages/download/rgs_1_

1.zip.
Roy et al. [81] MONSTR http://www .nitrc.org/projects/monstr
Lucena et al. [111] CONSNet https://github.com/MICLab-Unicamp/CONSNet
https://github.com/SenthilCaesar/CNN-Brain-
Dey et al. [119] CompNet pe:lig

MRI-Segmentation
https://github.com/GUR9000/Deep_MRI_brain_e

Kleesiek et al. [131] xtraction

Deep MRI brain extraction

Huo et al. [133] SLANT https://github.com/MASILab/SLANTbrainSeg
Isensee et al. [134] HD-BET https://github.com/MIC-DKFZ/HD-BET
Fedorov et al. [135] MeshNet https://github.com/Entodi/MeshNet
Beers et al. [144] DeepNeuro https://github.com/QTIM-Lab/DeepNeuro
Lutkenhoff et al. [108] OptiBET http://montilab.psych.ucla.edu/fmri-wiki

5. Conclusions

This review article has presented a comprehensive and extensive overview of the state-of-the-
art conventional and CNN deep learning-based skull stripping (or whole-brain extraction) methods
in brain MRIs. Many of the available approaches employed mainly T:W brain MRIs due to good soft-
tissue contrast. Even though most of the published algorithms have relatively decent results in the
field of neuroimage analysis, there is a certain distance and discontinuity between the research
community and clinical applications. In most cases, clinicians and practitioners still depend on
manual skull stripping due to the communication gap and lack of interaction between the researchers
and practitioners. The objective of several skull stripping tools is to do only the research, and they
are barely useful for clinicians. Therefore, embedding the developed tools into more user-friendly
environments will become inevitable in the future. Consequently, incorporating all the accessible
developed skull stripping into a more intelligible and easier-to-use environment will become
unavoidable in the future. Although deep learning-based methods have attained exceptional
performance in skull stripping, the computation time is unsatisfactory in a clinical routine, as these
approaches can take a few minutes per volume of brain MRI. Time is also an important criterion for
real neuroimaging applications. Another critical issue for skull stripping in brain MRI approaches is
robustness. If an automatic brain extraction technique is unsuccessful in some cases, the trust of
clinicians will be lost, and they will stop using this method. Hence, the robustness is also one of the
keys and foremost evaluation criteria for each new algorithm applied in clinical practice.
Optimization of the skull stripping methods, particularly those CNN deep learning-based, to make
them faster, is also future work. However, some current skull stripping methods have presented
robust results within an acceptable computation time.

The existing brain extraction techniques have already demonstrated great potential in skull
stripping in T1W brain MRIs and will certainly continue to be improved in the future. Furthermore,
widely published algorithms mostly considered normal healthy subjects brain MRIs except a few
(e.g., Roy et al. [81], and Lutkenhoff et al. [108]). They started deterioration in their performance and
become less accurate when presented with brain MRIs having pathologies. There is a need for
modification in the existing techniques or developing new algorithms for other modalities, such as
T-W, T-W FLAIR, PDW, and brain MRIs with lesions or pathologies. This provides more room and
predictive medical information to the practitioner and optimizes treatment options.
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