Nanocomposites Photocatalysis Application for the Purification of Phenols and Real Olive Mill Wastewater through a Sequential Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental
2.3. Mathematical Modeling
3. Results and Discussion
3.1. Coagulation/Flocculation Results and Modeling
3.2. Photocatalysis Results and Modeling
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bora, T.; Dutta, J. Applications of nanotechnology in wastewater treatment—A review. J. Nanosci. Nanotechnol. 2014, 14, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Vilardi, G. Mathematical modelling of simultaneous nitrate and dissolved oxygen reduction by Cu-nZVI using a bi-component shrinking core model. Powder Technol. 2019, 343, 613–618. [Google Scholar] [CrossRef]
- Abdelbasir, S.M.; Shalan, A.E. An overview of nanomaterials for industrial wastewater treatment. Korean J. Chem. Eng. 2019, 36, 1209–1225. [Google Scholar] [CrossRef]
- Davies, L.C.; Vilhena, A.; Novais, J.M.; Martins-Dias, S. Modelling of olive mill wastewater characteristics. WIT Trans. Ecol. Environ. 2003, 65, 313–322, ISSN 1743-3541. [Google Scholar]
- Vavouraki, A.I.; Zakoura, M.V.; Dareioti, M.A.; Kornaros, M. Biodegradation of Polyphenolic Compounds from Olive Mill Wastewaters (OMW) during Two-stage anaerobic Co-digestion of Agro-industrial mixtures. Waste Biomass Valorization 2019. [Google Scholar] [CrossRef]
- Sáez, J.A.; Pérez-Murcia, M.D.; Martínez-Gallardo, M.R.; Andreu-Rodríguez, F.J.; López, M.J.; Bustamante, M.A.; Sanchez-Hernandez, J.C. Olive mill wastewater-evaporation ponds long term stored: Integrated assessment of in situ bioremediation strategies based on composting and vermicomposting. J. Hazard. Mater. 2020, 402, 123481. [Google Scholar] [CrossRef]
- Enaime, G.; Baçaoui, A.; Yaacoubi, A.; Berzio, S.; Wichern, M.; Lübken, M. Packed-bed biofilm reactor for semi-continuous anaerobic digestion of olive mill wastewater: Performances and COD mass balance analysis. Environ. Technol. 2020, 41, 2657–2669. [Google Scholar] [CrossRef] [PubMed]
- Ochando-Pulido, J.M.; Vellido-Pérez, J.A.; González-Hernández, R.; Martínez-Férez, A. Optimization and modeling of two-phase olive-oil washing wastewater integral treatment and phenolic compounds recovery by novel weak-base ion exchange resins. Sep. Purif. Technol. 2020, 249, 117084. [Google Scholar] [CrossRef]
- Gernjak, W.; Maldonado, M.I.; Malato, S.; Cáceres, J.; Krutzler, T.; Glaser, A.; Bauer, R. Pilot-plant treatment of olive mill wastewater (OMW) by solar TiO2 photocatalysis and solar photo-Fenton. Sol. Energy 2004, 77, 567–572. [Google Scholar] [CrossRef]
- Voros, V.; Drioli, E.; Fonte, C.; Szekely, G. Process intensification via continuous and simultaneous isolation of antioxidants: An upcycling approach for olive leaf waste. ACS Sustain. Chem. Eng. 2019, 7, 18444–18452. [Google Scholar] [CrossRef]
- Didaskalou, C.; Buyuktiryaki, S.; Kecili, R.; Fonte, C.P.; Szekely, G. Valorisation of agricultural waste with an adsorption/nanofiltration hybrid process: From materials to sustainable process design. Green Chem. 2017, 19, 3116–3125. [Google Scholar] [CrossRef] [Green Version]
- Paradiso, V.M.; Clemente, A.; Summo, C.; Pasqualone, A.; Caponio, F. Towards green analysis of virgin olive oil phenolic compounds: Extraction by a natural deep eutectic solvent and direct spectrophotometric detection. Food Chem. 2016, 212, 43–47. [Google Scholar] [CrossRef]
- Jerman Klen, T.; Vodopivec, B.M. Optimisation of olive oil phenol extraction conditions using a high-power probe ultrasonication. Food Chem. 2012, 134, 2481–2488. [Google Scholar] [CrossRef] [PubMed]
- Otles, S. Treatment of olive mill wastewater and the use of polyphenols obtained after treatment. Int. J. Food Stud. 2012, 1, 85–100. [Google Scholar] [CrossRef]
- Stoller, M.; Di Palma, L.; Vuppala, S.; Vilardi, N.V. Process intensification techniques for the production of nano- and submicronic particles for food and medical applications. Curr. Pharm. Des. 2018, 24, 2329–2338. [Google Scholar] [CrossRef] [PubMed]
- Choquette-Labbé, M.; Shewa, W.; Lalman, J.; Shanmugam, S. Photocatalytic degradation of phenol and phenol derivatives using a Nano-TiO2 catalyst: Integrating quantitative and qualitative factors using response surface methodology. Water 2014, 6, 1785–1806. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.L.; Tan, Y.N.; Mohamed, A.R. Photocatalytic degradation of phenol using immobilized TiO2 nanotube photocatalysts. J. Nanotechnol. 2011, 2011, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Jia, Z.; Lyu, F.; Liang, S.; Lu, J. Progress in materials science a review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects. Prog. Mater. Sci. 2019, 105, 100576. [Google Scholar] [CrossRef]
- Liang, S.X.; Jia, Z.; Liu, Y.J.; Zhang, W.; Wang, W.; Lu, J.; Zhang, L.C. Compelling rejuvenated catalytic performance in metallic glasses. Adv. Mater. 2018, 30, e1802764. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Wang, X.; Zhang, W.; Liu, Y.; Wang, W.; Zhang, L. Selective laser melting manufactured porous Fe-based metallic glass matrix composite with remarkable catalytic activity and reusability. Appl. Mater. Today 2020, 19, 100543. [Google Scholar] [CrossRef]
- Ruíz-Delgado, A.; Roccamante, M.A.; Malato, S.; Agüera, A.; Oller, I. Olive mill wastewater reuse to enable solar photo-Fenton-like processes for the elimination of priority substances in municipal wastewater treatment plant effluents. Environ. Sci. Pollut. Res. Int. 2020, 27, 38148–38154. [Google Scholar] [CrossRef]
- Chianese, S.; Fenti, A.; Iovino, P.; Musmarra, D.; Salvestrini, S. Sorption of organic pollutants by humic acids: A review. Molecules 2020, 25, 918. [Google Scholar] [CrossRef] [Green Version]
- Vilardi, G.; Di Palma, L.; Verdone, N. Chinese journal of chemical engineering heavy metals adsorption by banana peels micro-powder: Equilibrium modeling by non-linear models. Chin. J. Chem. Eng. 2018, 26, 455–464. [Google Scholar] [CrossRef]
- Rizzo, L.; Lofrano, G.; Grassi, M.; Belgiorno, V. Pre-treatment of olive mill wastewater by chitosan coagulation and advanced oxidation processes. Sep. Purif. Technol. 2008, 63, 648–653. [Google Scholar] [CrossRef]
- Hamdi, M.; Garcia, J.L.; Ellouz, R. Integrated biological process for olive mill wastewater treatment. Bioprocess Eng. 1992, 8, 79–84. [Google Scholar] [CrossRef]
- Vilardi, G.; Rodriguez-Rodriguez, J.; Ochando-Pulido, J.M.; Di Palma, L.; Verdone, N. Fixed-bed reactor scale-up and modelling for Cr(VI) removal using nano iron-based coated biomass as packing material. Chem. Eng. J. 2019, 361, 990–998. [Google Scholar] [CrossRef]
- Borges, M.E.; Sierra, M.; Cuevas, E.; García, R.D.; Esparza, P. Photocatalysis with solar energy: Sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment. Sol. Energy 2016, 135, 527–535. [Google Scholar] [CrossRef]
- You, J.; Guo, Y.; Guo, R.; Liu, X. A review of visible light-active photocatalysts for water disinfection: Features and prospects. Chem. Eng. J. 2019, 373, 624–641. [Google Scholar] [CrossRef]
- Hennig, H.; Billing, R. Advantages and disadvantages of photocatalysis induced by light-sensitive coordination compounds. Coord. Chem. Rev. 1993, 125, 89–100. [Google Scholar] [CrossRef]
- Fedotova, M.P.; Voronova, G.A.; Emelyanova, E.Y.; Vodyankina, O.V. A method of preparation of active TiO2-SiO2 photocatalysts for water purification. Stud. Surf. Sci. Catal. 2010, 175, 723–726. [Google Scholar] [CrossRef]
- Nguyen, V.-C.; Nguyen, T.-V. Photocatalytic decomposition of phenol over N–TiO2–SiO2 catalyst under natural sunlight. J. Exp. Nanosci. 2009, 4, 233–242. [Google Scholar] [CrossRef]
- Stoller, M.; Vuppala, S.; Matarangolo, M.; Vaiano, V.; Sannino, D.; Chianese, A.; Cianfrini, C. About a novel production method for N-doped magnetic nanocore nanoparticles of titania by means of a spinning disk reactor. Chem. Eng. Trans. 2017, 60, 43–48. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, W.; Zhang, L.; Wang, W.; Zhang, L. Remediation of industrial contaminated water with arsenic and nitrate by mass-produced Fe-based metallic glass: Toward potential industrial applications. Sustain. Mater. Technol. 2019, 22, e00126. [Google Scholar] [CrossRef]
- De Caprariis, B.; Di Rita, M.; Stoller, M.; Verdone, N.; Chianese, A. Reaction-precipitation by a spinning disc reactor: Influence of hydrodynamics on nanoparticles production. Chem. Eng. Sci. 2012, 76, 73–80. [Google Scholar] [CrossRef]
- Sacco, O.; Vaiano, V.; Rizzo, L.; Sannino, D. Photocatalytic activity of a visible light active structured photocatalyst developed for municipal wastewater treatment. J. Clean. Prod. 2018, 175, 38–49. [Google Scholar] [CrossRef]
- Vaiano, V.; Sacco, O.; Sannino, D.; Ciambelli, P.; Longo, S.; Venditto, V.; Guerra, G. N-doped TiO2/s-PS aerogels for photocatalytic degradation of organic dyes in wastewater under visible light irradiation. J. Chem. Technol. Biotechnol. 2014, 89, 1175–1181. [Google Scholar] [CrossRef]
- Nieto, L.M.; Hodaifa, G.; Rodríguez, S.; Giménez, J.A.; Ochando, J. Flocculation-sedimentation combined with chemical oxidation process. Clean Soil Air Water 2011, 39, 949–955. [Google Scholar] [CrossRef]
- Association, A.P.H.; Eaton, A.D.; Association, A.W.W.; Federation, W.E. Standard Methods for the Examination of Water and Wastewater; APHA-AWWA-WEF: Washington, DC, USA, 2005; ISBN 0875530478 9780875530475. [Google Scholar]
- Reymond, J.P.; Kolenda, F. Estimation of the point of zero charge of simple and mixed oxides by mass titration. Powder Technol. 1999, 103, 30–36. [Google Scholar] [CrossRef]
- Paul, T.; Miller, P.L.; Strathmann, T.J. Visible-light-mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents. Environ. Sci. Technol. 2007, 41, 4720–4727. [Google Scholar] [CrossRef]
- Chatzisymeon, E.; Xekoukoulotakis, N.P.; Mantzavinos, D. Determination of key operating conditions for the photocatalytic treatment of olive mill wastewaters. Catal. Today 2009, 144, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Cheng, D.; Ariafar, S.; Sheibat-Othman, N.; Pohn, J.; McKenna, T.F.L. Particle coagulation of emulsion polymers: A review of experimental and modelling studies. Polym. Rev. 2018, 58, 1–43. [Google Scholar] [CrossRef]
- Ani, J.U.; Nnaji, N.J.N.; Onukwuli, O.D.; Okoye, C.O.B. Nephelometric and functional parameters response of coagulation for the purification of industrial wastewater using Detarium microcarpum. J. Hazard. Mater. 2012, 243, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Vuppala, S.; Bavasso, I.; Stoller, M.; Di Palma, L.; Vilardi, G. Olive mill wastewater integrated purification through pre-treatments using coagulants and biological methods: Experimental, modelling and scale-up. J. Clean. Prod. 2019, 236, 117622. [Google Scholar] [CrossRef]
- Rizzo, L.; Lofrano, G.; Belgiorno, V. Olive mill and winery wastewaters pre-treatment by coagulation with chitosan. Sep. Sci. Technol. 2010, 45, 2447–2452. [Google Scholar] [CrossRef]
- Kumar, M.M.; Karthikeyan, R.; Anbalagan, K.; Bhanushali, M.N. Coagulation process for tannery industry effluent treatment using Moringa oleifera seeds protein: Kinetic study, pH effect on floc characteristics and design of a thickener unit. Sep. Sci. Technol. 2016, 51, 2028–2037. [Google Scholar] [CrossRef]
- Okolo, B.; Menkiti, M.; Nnaji, P.; Onukwuli, O.; Agu, C. The Performance of Okra seed (Hibiscus esculentus L.) Extract in Removal of Suspended Particles from Brewery Effluent by Coag-Flocculation Process. Br. J. Appl. Sci. Technol. 2014, 4, 4791–4806. [Google Scholar] [CrossRef]
- Ruzmanova, Y.; Ustundas, M.; Stoller, M.; Chianese, A. Photocatalytic Treatment of olive mill wastewater by N-doped titanium dioxide nanoparticles under visible light. Chem. Eng. Trans. 2013, 32, 2233–2238. [Google Scholar] [CrossRef]
- Guo, N.; Liang, Y.; Lan, S.; Liu, L.; Ji, G.; Gan, S.; Zou, H.; Xu, X. Uniform TiO2-SiO2 hollow nanospheres: Synthesis, characterization and enhanced adsorption-photodegradation of azo dyes and phenol. Appl. Surf. Sci. 2014, 305, 562–574. [Google Scholar] [CrossRef]
OMW | Synthetic Phenol | |
---|---|---|
k0 (L1+n/min mgn−1) | 0.024 | 0.7 |
E (kJ mol−1) | 9.57 | 6.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vuppala, S.; Stoller, M. Nanocomposites Photocatalysis Application for the Purification of Phenols and Real Olive Mill Wastewater through a Sequential Process. Appl. Sci. 2020, 10, 7329. https://doi.org/10.3390/app10207329
Vuppala S, Stoller M. Nanocomposites Photocatalysis Application for the Purification of Phenols and Real Olive Mill Wastewater through a Sequential Process. Applied Sciences. 2020; 10(20):7329. https://doi.org/10.3390/app10207329
Chicago/Turabian StyleVuppala, Srikanth, and Marco Stoller. 2020. "Nanocomposites Photocatalysis Application for the Purification of Phenols and Real Olive Mill Wastewater through a Sequential Process" Applied Sciences 10, no. 20: 7329. https://doi.org/10.3390/app10207329
APA StyleVuppala, S., & Stoller, M. (2020). Nanocomposites Photocatalysis Application for the Purification of Phenols and Real Olive Mill Wastewater through a Sequential Process. Applied Sciences, 10(20), 7329. https://doi.org/10.3390/app10207329