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Abstract: (1) Background: The segmentation of cell nuclei is an essential task in a wide range of
biomedical studies and clinical practices. The full automation of this process remains a challenge due
to intra- and internuclear variations across a wide range of tissue morphologies, differences in staining
protocols and imaging procedures. (2) Methods: A deep learning model with metric embeddings such
as contrastive loss and triplet loss with semi-hard negative mining is proposed in order to accurately
segment cell nuclei in a diverse set of microscopy images. The effectiveness of the proposed model
was tested on a large-scale multi-tissue collection of microscopy image sets. (3) Results: The use of
deep metric learning increased the overall segmentation prediction by 3.12% in the average value
of Dice similarity coefficients as compared to no metric learning. In particular, the largest gain was
observed for segmenting cell nuclei in H&E -stained images when deep learning network and triplet
loss with semi-hard negative mining were considered for the task. (4) Conclusion: We conclude
that deep metric learning gives an additional boost to the overall learning process and consequently
improves the segmentation performance. Notably, the improvement ranges approximately between
0.13% and 22.31% for different types of images in the terms of Dice coefficients when compared to no
metric deep learning.
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1. Introduction

The ongoing digitisation in pathology allows for computer-aided diagnosis in a wide spectrum
of applications. In fact, the development of image recognition techniques enables the quantitative
analysis of digital images with a high throughput processing rate. Automation continues to be
widely applied in clinical practice since it both reduces the need for manual assessments, which are
labor intensive and time consuming, while also reducing intra- and interobserver variability among
pathologists [1,2]. Furthermore, automation can easily provide reproducible measurements and
standardisation for follow-up evaluations and comparative studies used, for example, in personalised
medicine. Quantitative information such as cell size, shape and spatial distribution are generally used
by pathologists for cancer diagnosis [3]. For example, detecting nuclei enables the computer-aided
assessment of immune cell infiltrates, which has a clear advantage due to its prognostic potential and
use in immunotherapy trials [4,5]. Once accurately segmented, nuclear morphometric and appearance
features can be beneficial for assessing cancer grades and also predicting treatment response [6]. Thus,
a robust and generalised technique that accurately segments nuclei in a diverse range of images could
be integrated into the computer-aided assessment technology used by pathologists.

Appl. Sci. 2020, 10, 615; d0i:10.3390/app10020615 www.mdpi.com/journal/applsci


http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-1237-2448
https://orcid.org/0000-0001-5412-3194
http://www.mdpi.com/2076-3417/10/2/615?type=check_update&version=1
http://dx.doi.org/10.3390/app10020615
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 615 20f15

The detection and segmentation of cell nuclei is one of the core operations in computer-aided diagnosis;
it serves as a basis for cell counting and the study of subcellular morphology, such as investigations into
the shape, size and textural properties [7]. This task is particularly challenging in histopathology image
analysis, since the target cells, which are in many cases very small, are surrounded by background
clutter made up of histological structures (capillaries, collagen, etc.) with irregular visual aspects, as
well as artefacts which appear during image acquisition (see Figure 1). Second, significant variations
in the appearance of cells are observed in different phases of mitosis development, which complicates
the cell nuclei detection task. In particular, the amount of cells may range from tens to thousands
in a typical high-resolution microscopy image, so the overlap of cells is a common phenomenon.
Furthermore, the problem becomes more challenging because of the diversity of nuclear morphology,
different staining conditions and different imaging technology applied. These challenges related to
cell nuclei detection remain to be solved [2,5,8].
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Figure 1. A diverse set of images and their proportions in the set: (A,B) Typical cases with a clear view;
(C,D) rare instances surrounded by histological structures; (E) heavily clustered nuclei; (F) blurriness
and a high level of overlapping; (G) an extremely high level of blurriness; and (H) an extremely high
level of overlapping.

During the last few decades, many attempts have been made to improve the efficiency and
accuracy of automatic nuclear segmentation techniques in digital pathology, with a special focus
on histopathological image analysis. Recent comprehensive reviews of the nuclei segmentation
literature [2,9] showed that image analysis techniques applied in this domain have evolved from
classical approaches with hand-crafted features to deep learning-based techniques that typically
yield superior accuracy. The most compelling advantage of deep learning is the ability to generalise
and automatically learn problem-specific features directly from the original data. As such, deep
convolutional neural networks (CNNs) demonstrated advancements in image recognition tasks and
achieved state-of-the-art results in many medical imaging applications [8,10]. U-Net and DeepCell are
examples of models that were designed specifically for cell or nuclei segmentation. Recently published
results show that these architectures outperformed classical image processing algorithms in various
segmentation tasks [11-14]. For example, the CNN architecture, called the comparison detector, is
proposed for the detection of cervical cancer in small datasets [15]. In [16], a CNN-based algorithm
is developed to perform cell segmentation from single channel images using different stain markers
and magnifications. An original solution regarding how to achieve more accurate segmentation
performance was provided in the paper [17], in which CNN was used to classify between the cell
centre, cell body, and cell border. The Dice index, Jaccard coefficient and modified Hausdorff distance
were used in the paper to evaluate the separation of overlapping cells.

Typically, most CNN architectures use cross-entropy loss function. Comparatively, discriminative
metric learning loss functions have a better generalisation ability and are superior in solving few-shot
learning problems. Therefore, they are highly likely to surpass the learning capabilities of traditional
classification approaches for a small number of training samples. For example, in [18], a framework
based on distance metric learning was proposed to classify mitotic v/s interphase patterns. The authors
relied on the metric learning methodology since the mitotic staining patterns are rather rare as
compared with other interphase patterns. The distance metric computation was integrated with deep
convolutional neural networks, which aimed to learn useful embeddings by distance comparisons of
similar and dissimilar samples. Comparatively, in [19], a technique was presented to learn a distance
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metric from the labeled data, which was locally adaptive to account for heterogeneity in the data.
Additionally, a label propagation technique was used to improve the quality of the learned metric by
expanding the training set using unlabelled data. Unlike other loss functions, such as mean square
error loss or cross-entropy loss, metric learning aims to predict relative distances between samples.
If the contrastive loss function is used, then the losses are computed by contrasting same-class or
different-class pairs. Comparatively, the loss function computed using triplets of training data samples
can be also used, which simultaneously increases the distances between the embeddings of the query
and the negative sample (different samples) and at the same time reduces the distance between the
positive and query samples (similar samples). The use of the above-mentioned loss functions in
convolutional neural networks has proven to be very successful in various applications, such as face
recognition [20], verification [21], fingerprint recognition [22], video separation [23] and clustering [24].

In this paper, we propose a deep learning-based model to segment cell nuclei from images. In fact,
the developed model must be able to generalise across a wide range of tissue morphologies due to
intra- and internuclear variations, where the overlap of cells is a common phenomenon. Furthermore,
it must take into account the differences in staining protocols and imaging procedures. Therefore,
we challenged the algorithm with a large-scale multi-tissue collection of microscopy image sets [25].
First, the algorithm was implemented using state-of-the-art CNN architectures, such as the dense
convolutional network (DenseNet) and residual neural network (ResNet). Then, the metric embeddings
were introduced in the model by adding additional terms into the loss function. Unfortunately,
metric learning requires an a priori defined distance metric on the input space. In particular, standard
metrics may ignore some important properties available in the dataset, thus resulting in the learning
process being suboptimal. The search for a distance metric that brings similar data as close as possible
(minimising intraclass variation), while moving nonsimilar data away (maximising interclass distance),
can significantly increase the performance of these algorithms. To the best of our knowledge, this is the
first attempt to segment cell nuclei via the deep metric learning technique.

2. Materials and Methods

We used image set BBBC038v1, available from the Broad Bioimage Benchmark Collection [25].
The dataset contains 670 images, which are highly varied because they came from many contexts:
different organisms (humans, mice, flies), different nuclei treatments, different imaging conditions
(fluorescent, histology stains), several magnifications and varying qualities of illumination, different
states of nuclei including monolayers, tissues, embryos, cell division, genotoxic stress and
differentiation (for example, see Figure 1). The dataset was constructed to challenge newly developed
algorithms be able to generalise across these variations. As such, the dataset represents true variability,
which is faced at biotechs, hospitals and by research groups at universities. Therefore, it was desirable
to have a segmentation method with capacity enough to learn various aspects of each type of image in
the dataset.

In the current study, two different state-of-the-art CNN architectures—ResNet and
DenseNet—were implemented to build the customised deep neural network. These architectures
included the typically used building blocks, but the composition of the layers was modified by
introducing metric embeddings such as contrastive loss and triplet loss with semi-hard negative mining.
In particular, we designed ResNet-68, ResNet-104 and DenseNet-71 architectures (see Section 2.1) and
used them in the experimental study for multi-tissue cell nuclei segmentation. The implementation
code can be found in the reference provided in the subsection "Supplementary Materials". It is
important to note that the metric embedding was used as an addition to the cross-entropy and Dice
losses. Therefore, in total, we implemented 9 models: 3 architectures x (2 metric embeddings + no
metric embedding). Comparatively, in our recent study [26], we investigated a few more architectures,
including DenseNet-27, DenseNet-71, ResNet-68, ResNet-104 and Vanilla UNet-54; however, some of
them demonstrated a poor performance in segmenting the images, and therefore were not considered
in the current paper.
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Notably, some adjustments in the learning strategy were made in order to use the selected metric
embeddings, i.e., contrastive loss and triplet loss with semi-hard negative mining. First, for each
image, 200 pixels that included the nucleus and 200 pixels from the background were selected (400
pixels in total). This sampling was made randomly at each training iteration. Then, the predicted
embeddings were extracted from the 12th network layer for those 400 pixels and fed into the metric
learning loss function. Lastly, the results from the metric learning loss function were combined with
the classical metrics used for the segmentation, such as Dice loss and cross-entropy loss. In other
words, the final loss function Loss was constructed from three different subfunctions: metric learning
loss LyetricLearning (Which encourages clustering of pixels), Dice loss, and cross-entropy loss with equal
weights, which is given by
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where y is a true mask matrix with each column representing one mask of images (of size N x N)
reshaped into a column, in which there exist # such columns for n images in a single batch; § denotes
the predicted segmentation for the entire batch; i) represents M mask pixels, which were randomly
selected to calculate the metric learning loss function value; ) are embeddings of those M pixels from
the 12th layer.

Each architecture was trained with the Adam optimiser. The learning rate schedule was set to
100 epochs with a learning rate equal to 0.001 and 100 epochs with learning rate equal to 0.0005. In total,
200 epochs were enough to converge for each architecture.

2.1. Deep Learning Approach

The classical CNN architectures such as AlexNet, VGG and InceptionNet have a few layers
stacked up on top of each other. In general, assumptions that deeper networks are better for
image recognition and segmentation tasks are not absolutely true, because deeper networks become
difficult to optimise, they encounter either vanishing or exploding gradient problems, as well as
degradation problem (accuracy saturates and then degrades very fast). In order to overcome these
problems, a novel architecture—ResNet—was proposed, which includes connections and adopted
batch normalisation [27]. Actually, the architectures of the plain and residual networks are identical
except for the skip connections added to each pair of filters. In particular, these connections do not
require either an extra parameter or computational complexity. The main idea is to adjust the network
so that it does not have to learn identity connections, but rather includes the inbuilt explicitly into
the overall design. If new layers can be constructed as the identity mappings, a deeper model should
have a training error no greater than its shallower parts. Therefore, the proposed ResNet architecture
allowed for the development of even deeper networks (up to 152 layers) without compromising the
model’s accuracy and efficiency. These ultradeep architecture models with recurrent computations
have shown excellent performance for recognition tasks.

To improve parameterisation and computational efficiency, the new architecture DenseNet [28], an
extension of ResNet, was proposed. Similar to ResNet, DenseNet leverages skip connections between
layers. In both ResNet and DenseNet, the input to a particular layer is formed by passing the output
of all previous layers. However, different from Resnet, DenseNet outputs are concatenated rather
than added. Furthermore, the layers in DenseNet do not receive a single output produced by the
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summation as it is in Resnet, but all the outputs of the previous layers, which are concatenated in the
depth dimension.

To facilitate the down-sampling in the architecture, DenseNet is composed of multiple dense
blocks. DenseNet contains a convolutional layer, dense blocks, and transition layers between
neighbouring dense blocks. The layers between these dense blocks perform convolution and pooling.
Similar to ResNet, the number of convolutional layers used in each dense block can be optionally
chosen. Furthermore, the features in DenseNet are used from all complexity levels, thus giving
smoother decision boundaries. This also explains why DenseNet does not suffer from the underfitting
problem and provides high performance results with a small training set. Compared with ResNet,
DenseNet reduces the number of parameters to be estimated during the learning stage and at the same
time can achieve better performance results with less complexity.

Considering all of this evidence, in the current study, we designed three CNN models: ResNet-104,
ResNet-68, DenseNet-71 (see Table 1). Each of the architectures consisted of 13 building blocks.
However, these blocks had different inner constructions and were iterated a different number of times
depending on the architecture. The features from the 12th layer were fed into the contrastive loss or
triplet loss with semi-hard negative mining. Then, the features from the last layer (13th) were used to
calculate the value of Dice loss and cross-entropy loss. Finally, all three metrics were added together to
give the final loss value. Both ResNet-104 and ResNet-68 consisted of blocks with an inner structure
specified by a 1 x 1 convolution followed by a 3 x 3 convolution, and then again followed by a1 x
1 convolution with the filters doubled. The results were then added to the previous layer using the
simple identity function. DenseNet blocks consisted of 1x 1 and 3 x 3 convolutions followed by the
results being stacked on top of the features from the previous iteration. The same decoder structure
was used for each of the architectures.

Image segmentation is usually treated as a pixelwise classification problem. In many cases, it is a
binary classification with the label “0” being background and the label “1” indicating object pixels.
Segmentation task (especially if considered within the deep learning framework) presupposes a metric
(loss function) for checking how well the prediction from the deep artificial neural network agrees
with the true segmentation. Over the years, many metrics have been proposed, but the most frequently
used are cross-entropy loss, Dice loss, intersection over union loss, focal loss, and Tversky loss, as well
as their combinations or generalisations [29].

Suppose y refers to the true label, while i defines the prediction from the deep network. Then,
the cross-entropy loss CEL function is defined as

CEL(y,9) = — (ylog (#) + (1 —y)log (1 —17)).

A generalisation of cross-entropy is a focal loss, which tries to down-weight the contribution of
examples that are easy to predict, while ensuring more focus on harder examples [30]. As such, focal
loss FL is given by

FL(y,9) = — (« (1—=9)"ylog (§) + (1 —a)§" (1 —y)log (1 —-7)),

where v > 0 is a focusing parameter that smoothly adjusts the rate at which easy examples are
down-weighted; and a« € [0;1] is a weighting factor. Note that the focal loss is equivalent to
cross-entropy loss when y = 0.

The two most frequently used measures of overlap—Dice loss DL and intersection over
union loss IoUL—allow us to determine how accurate a predicted segmentation is, compared to a
known/ground-truth segmentation. These loss functions are given by

2yg+1

DL (y, ) =1- _
(v, 9) T+iT1
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Table 1. Layers of convolutional neural network (CNN) architectures used for experiments.
| Resnet-104 | ResNet-68 | DenseNet-71
Input layer: 256x256x1 grayscale image
L1 | [3x3,16] Convl [3 x 3,16] Convl [3 % 3,16] Convl
1x1,8 1x1,8 1x1 32
L2 3x3,8 X 2 Conv2: 3x3,8 x 1 Conv2: { 3 3’ 16 } x 2 Conv2:
| 1x1,16 | 3*2=6 | 1x1,16 | 3*1=3 ’ 2*2=4
layers layers layers
Conv2+1 layer. Max pool [1x1, 32]
1x1,16 1x1,16 1x1 32
L3 3x3,16 | x2 Conv3: 3x3,16 | x1 Conv3: { 3 3’ 16 } x 2 Conv3:
| 1x1,32 | 3*2=6 | 1x1,32 | 3*1=3 ’ 2*2=4
layers layers layers
Conv3+1 layer. Max pool [1x1, 64]
[ 1x1,32 ] [ 1x1,32 1x1 3
L4 3x3,32 | x4 Conv4: 3x3,32 | x2 Conv4: { 3% 3’ 16 } x 4 Conv4:
1x1,64 3*4=12 1x1,64 3*2=6 ’ 2*4=8
i i layers i i layers layers
Conv4+1 layer. Max pool [1x1,128]
[ 1x1, 64 [ 1x1, 64 1x1 32
L5 3x3, 64 x 4 Convb: 3x3, 64 X 2 Convb: { 3% 3’ 16 } X 4 Convb:
1x1,128 3*4=12 1x1,128 3*2=6 ’ 2*4=8
i layers i layers layers
Conv5+1 layer. Max pool [1x1,256]
[ 1x1, 128 ] [ 1x1,128 ] 1x1 32
L6 3x3,128 | x6 | Convé: 3x3,128 | x3 | Convé: { 3% 3’ 16 } X 6 Convé6:
| 1x1,256 | 3*6=18 | 1x1,256 | 3*3=9 ’ 2*6=12
layers layers layers
Conv6+1 layer. Max pool [1x1,512]
[ 1x1, 256 | [ 1x1, 256 |
L7 3x3,256 | x6 | Conv7: 3x3,256 | x3 | Conv?: [3x3,512] x 3 Conv7:
| 1x1,512 | 3*6=18 | 1x1,512 | 3*3=9 3 layers
layers layers
Upsampling layers
L8 | Deconvolution[2x2,512]. Add L6 output before max pooling [3 x 3,256] x 4. 1+4 = 5 conv layers
L9 Deconvolution[2x2, 256]. Add L5 output before max pooling [3 x 3,128] x 4. 1+4 =5 conv layers.
L10 | Deconvolution[2x2,128]. Add L4 output before max pooling [3 x 3,64] x 4. 1+4 = 5 conv layers
L11 | Deconvolution[2x2,64]. Add L3 output before max pooling [3 x 3,32] x 4. 1+4 = 5 conv layers
L12 | Deconvolution[2x2,32]. Add L2 output before max pooling [3 x 3,16] x 4. 1+4 = 5 conv layers.
Metrics are included.
L13 | [1 x 1,1] Softmax. 1 convolutional layer
Y | 104 | 68 [ 71
and

IoUL (y,7) =1

yi+1

Syt

The value of these two measures ranges between 0 and 1, with 0 indicating complete disagreement
and 1 complete agreement between the true segmentation and the prediction.
Tversky loss TL is a generalisation of the Dice coefficient [31] given by

yi+1

TRt APy T

where § € [0;1] is a weighting factor.

Typically, the full network is trained according to a selected loss function. Different loss functions
will produce different errors for the same prediction, and thus might change the performance of the
model. On the other hand, every loss function has its own merits and pitfalls. Therefore, one might
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ask the following question: is possible to also learn the metric while training the deep network? There
is now extensive literature regarding this metric learning task. However, it was mostly formulated as a
classification task, as it is understood in a classical way, i.e., prescribing a label for an entire image.

2.2. Deep Metric Embeddings

In its general form, the metric learning problem considers similarities between different pairs or
triplets of samples coming from the dataset X = (x1,x2,...,xy), where x; € R" is i-th training sample
and N is the total number of samples in the dataset. As was reported in [32], these similarities are
determined by the sets S, D, R given by

S = {(xl-, xj) € X x X :x;and x; are similar} ,

D = {(x;,xj) € X x X : x; and xj are not similar } ,
R = {(i,xj,xx) € X x X : x; is more similar to x; than to x; } .

The problem then consists of finding a distance d € D that best fits the criteria specified by the
similarity sets S, D, R. With respect to a certain loss function £, the distance is found by optimising
the problem

min £ (d,S,D,R),
deD

where D is a family of distances. Under the supervised learning setting with the true labels known
(y1,¥2,---,YN), the similarity sets are reformulated as follows:

S:{(xi,xj) EXxXzyi:yj}

D= {(x,x) € XxX:y; #Yi},
R={(xi,xj,x) € XxX:y;i =y; # yi} -

Loss function is one of the most important functions in deep feature learning. In general,
the models presented in the the domain of deep metric learning can be categorised as minimising
either the contrastive loss or the triplet loss [33,34]. If the contrastive loss L¢ [35] function is selected,
the model is penalised differently based on whether the classes of the samples are the same or different.
Specifically, if the classes agree, the loss function encourages the network to output feature vectors
that are more similar, whereas if the classes differ, the loss function encourages the models to output
feature vectors that are less similar. As such, contrastive loss L is given by

1 1
Le =3 (1= Y) D+ 3V {max(0,m — Du) P,

where m is a margin value, which has to be selected manually; Y indicates whether those two features
come from the same class or not; Dy (G(X7), G(X3)) is a distance metric for a pair of input samples,
where X; and X; is a pair of inputs in the training set, while G(X;) and G(X,) are two vectors
generated as a new representation of paired samples in the embedding space. In the current paper,
the distance metric Dyy is specified with a Euclidean metric for further analysis. Optionally, a more
general metric, Mahalanobis distance, can be also considered. The function G denotes the results of a
next-to-last convolutional layer. For the case considered in this paper, this function refers to the results
of a 12th layer.

Another metric considered in the current work is the triplet loss with semi-hard negative
mining [20,34]. Instead of calculating the loss based on two examples, triplet loss LT involves three
inputs: an anchor example X, similar to anchor input X5 and dissimilar to anchor input XP. As such,
triplet loss Lt is given by

Lt = max (0, D%\,l — DIZ,VZ +a),
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where « is the margin value; Dy, = Dy (G(X), G(X®)) and Dy, = Dw(G(X), G(XP)) are distance
metrics for two vectors of new representations G(X), G(X%) and G(XP)), respectively. As one can
see, triplet loss function penalises the model such that the distance between the matching examples is
reduced and the distance between the nonmatching examples is increased.

3. Results

This section reports the validation results and main outcomes for all deep learning models
considered in this paper. Table 2 compares the values of the area under the receiver operating
characteristics (ROC) curve (area under the ROC curve (AUC)) obtained from a fivefold cross-validation
performed on the dataset containing 670 images.

Table 2. Area under the receiver operating characteristics (ROC) curve (AUC): average =+
standard deviation.

DenseNet-71 ResNet-68 ResNet-104

No metric learning  0.97952 £ 0.00198  0.97176 4+ 0.00394  0.98312 + 0.00272
Contrastive loss 0.98703 4+ 0.00458 0.98678 + 0.00351  0.98873 + 0.00199
Triplet Loss 0.98817 4 0.00225 0.98902 £ 0.00229  0.99089 + 0.00150

In Table 2, we can observe that in terms of mean and deviation of the AUC, the most
promising result was achieved by the ResNet-104 architecture using triplet loss with semi-hard
negative mining, while the poorest performance was demonstrated by the ResNet-68 architecture
without metric learning. Surprisingly, the metric embeddings in the DenseNet architecture led
to the increased variation of prediction performance over different folds compared to no metric
learning. On the other hand, the overall AUC achieved over different folds is very high for each
model. Therefore, it becomes very difficult or even impossible to improve this performance measure.
Correspondingly, Table 3 reports the summary of Dice coefficient values achieved during the fivefold
cross-validation experiment.

Table 3. Dice coefficient values: average + standard deviation.

DenseNet-71 ResNet-68 ResNet-104

No metric learning  0.8118 £ 0.0043  0.8109 4 0.0057  0.8175 &£ 0.0098
Contrastive loss 0.8233 £ 0.0083  0.8327 £+ 0.0048  0.8401 £ 0.0027
Triplet Loss 0.8308 = 0.0065  0.8357 = 0.0029  0.8461 + 0.0034

As shown in Table 3, the average values of Dice coefficient range from 0.8109 to 0.8461, with the
highest result achieved by the Resnet-104 model using triplet loss with semi-hard negative mining.
The performance demonstrated by the considered models corresponds with the results illustrated in
Table 2. Here, we observe the same tendency, i.e., the use of metrics in the deep learning model enabled
it to achieve a better segmentation performance compared to no metric learning. Notably, the variation
among folds decreased when using ResNet metric learning, while DenseNet with embedded metrics
demonstrated a larger deviation in the values of Dice coefficient. On the whole, cross-validation
results give us assurance that the performance of a classifier is stable since the standard deviation is
comparatively low.

In the following, we compare the segmentation prediction performance of the ResNet-104
architecture using triplet loss with semi-hard negative mining for testing the dataset consisting of
134 images). We relied on the Dice similarity coefficient, which is a preferable performance measure for
the nuclei segmentation task, since it quantifies the similarity between the model output and reference
mask. In particular, the Dice similarity coefficient was estimated separately for sample groups drawn
up based on the type of image. Recall that the images in the dataset were acquired under a variety
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of conditions and vary in cell type, cell spatial distribution, magnification, and imaging modality
(brightfield vs. fluorescence). The obtained results are summarised in Figure 2.

Type of testing images

: Very dark with
H&E stained Papanlcollaou high level of A !“-1.35 mpount of
(PAP) stained bl overlapping cells
urriness

All testing ‘ﬁ » e g
images b A
§ \_ . s
Diees gocfhicienty (wihi | aoey 0.76490 0.5968 0.93788 0.84722

metric learning)

Inceoclcicmy(withot: | o c 0.62536 0.57628 0.93670 0.84186
Metric learning)

Figure 2. Dice coefficients estimated for one fold of testing samples based on the image type.

From the Figure 2, it is apparent that a 3.12% increase in the average value of Dice similarity
coefficients with deep metric learning was achieved as compared to no metric learning. The largest gain
of 22.31% is observed for the H&E-stained images, which is an appealing result since many authors
found H&E-stained images challenging in terms of segmentation. Comparatively, a slight increase of
3.56% in the average value of Dice similarity coefficients is also seen for the PAP -stained images, while
no significant improvement is observed for the other types of images included in the testing set. On the
other hand, for dark images with a high level of blurriness or images with many overlapping cells,
which seemed to us to be challenging for automated nuclei segmentation, the value of Dice coefficients
achieved by the deep convolutional neural network is comparatively high, and metric embeddings
had no significant effect on model performance. Figure 3 reports the difference in Dice coefficients for
different types of images in the testing dataset, which was computed for every image individually.
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Figure 3. Differences in Dice coefficients achieved using the deep metric learning model and using the
deep network model without metric learning for different types of images in the testing dataset.

In Figure 3, the positive differences indicate an improvement in prediction performance when
deep learning with metrics was chosen, while the negative values show worsened performances. It can
be seen that metric embeddings in the deep network model resulted in a similar amount of negative
and positive Dice coefficients when images with many overlapping cells or very dark images with
a high level of blurriness were under consideration (see Figure 3). This is in line with the average
values of Dice coefficients reported in Figure 2, where the overall improvement was nearly zero, i.e.,
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0.624% for images with many overlapping cells and 0.126% for dark images with a high level of
blurriness. Notably, for the latter case, the improvement is slightly larger since we can observe more
cases when the difference is larger than 0.1. A very similar situation can be observed for PAP-stained
images. In fact, the most significant improvement is observed for H&E-stained images, where the Dice
coefficients are in the range [0.001; 1) for a major part of testing images. For this reason, we performed
an in-depth analysis focusing solely on individual H&E-stained images in the testing set (see Figure 4).
The figure plots the differences in Dice similarity coefficients achieved by the deep network model
with metric learning (triplet loss semi-hard mining) and without metric learning.
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Figure 4. Dice coefficients estimated separately for individual H&E-stained images in the testing
dataset: green bars show a gain in value, while red bars show a loss.

As one can see in Figure 4, the difference ranges from —0.06 to 0.72. Overall, these results
suggest that metric embeddings used in deep learning enhance cell nuclei segmentation applied to
H&E-stained images. For demonstration purposes, Figure 5 depicts how the predictions differ when
deep metric learning is used compared to when no metrics are embedded.

"'.'

Original test image

True mask

Predictions from
network with metric
learning

Predictions from
network without
metric learning

Figure 5. From top to bottom: original test image, its true mask, the predictions using the network with
metric learning (triplet loss with semi-hard negative mining), and the predictions using the network
without metric learning.

In Figure 5, the first column displays an example of an untypical image; these made up only
0.69% of the dataset. It can be seen that the embedded metrics produced predictions that are more
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consistent with the true mask as compared to no metric learning. On the other hand, the relatively
high accuracy achieved by both models and the nearly unobtrusive effect of embedded metrics are
demonstrated in the second and third columns. This is in line with estimated Dice coefficients for
dark images: 0.937 and 0.936, respectively (see Figure 2). The other three columns are provided to
demonstrate the model performance for H&E-stained images, for which the use of metrics had the
most profound effect in the experimental study. On the whole, one can observe that the use of metrics
in the deep network model enhanced the segmentation prediction for images containing a complex
background and higher variability. These observations hint at the possible use of metric learning for
diverse sets of images containing different types of images.

To summarise, the best prediction results were obtained with the triplet semi-hard metric learning
approach. The use of metric learning in addition to other loss functions (Dice and cross-entropy)
resulted in a better representation of images. For demonstration purposes, the examples of this can
be seen in Figure 6, where the edges are well differentiated and there is a clear distinction between
the nucleus and the rest of the background when metric deep learning is considered (Figure 6, right),
while without metric learning, this distinction is weak or almost nonexistent (Figure 6, left).

(A) (B)

Figure 6. (A) RGB images reconstructed from the layer before the last network layer ( i.e., from 16 feature

maps) without metric learning; (B) RGB images reconstructed from the last network layer with metric
learning (triplet loss with semi-hard mining). RGB channels were selected randomly from the 16 feature
maps from the layer before the last layer of the network.

4. Discussion

The concept of deep metric learning was introduced when deep learning and metric learning
were combined [34]. As such, the performance of a deep metric learning model depends not only on
the quality of image dataset and the deep network architecture, but also on the metric loss function
used in the learning. However, the selection of a metric is not always obvious, and no general rules
exist regarding how the metric should be selected to guarantee the best performance of the algorithm.
Therefore, in the current paper, we relied on two state-of-the-art deep network models, DenseNet and
ResNet, embedded with metrics such as contrastive loss or triplet loss with semi-hard negative mining
selected optionally.

While testing the segmentation prediction on the testing dataset using Dice similarity coefficients,
it was observed that the metric embeddings used in the deep network model allowed us to significantly
improve the cell nuclei segmentation in H&E-stained images within the diverse set of microscopy
images. It is well known that the visual inspection of H&E-stained images is still a challenging
task and often leads to the over-segmentation phenomenon, because of large variation among
Hé&E-stained images, uneven intensities of the background regions and heterogeneity of cell nuclei [36].
Furthermore, cell nuclei segmentation, being such as important task in cancer detection, is complicated
because of cells which often touch and overlap, making the separation problem of the cell nuclei
difficult [37,38]. Comparatively, many researchers demonstrated successful segmentation results of
nuclei in H&E-stained images by manipulating colour spaces in the image [39] and then using certain
thresholds [10]. However, most of these algorithms are applicable only for the separation of nuclei,
which have an ellipse-like shape [40]. In general, we infer that the mean value 0.764 of Dice similarity
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coefficient achieved in the current paper for the large-scale multi-tissue collection of images is in line
with already published studies, where its value varied from 0.69 to 0.9 when the deep learning model
was applied [6,41,42]. However, the comparison of the obtained results is not trivial because of the
different algorithms applied and the accuracy metrics selected, as well as the different image qualities,
magnifications (40x or 20x) and different staining techniques, etc., in the dataset.

Future work will concentrate on a quantification of cell nuclei in complex tissue images, since
numerous procedures in medical and biological investigations require the counting of cells [43].
The research will be continued using the same image set BBBCO38v1 that was used in the current paper.
For comparison, the authors in [44] addressed the question of cell nuclei counting, considering the
same image set as we did. For this purpose, they proposed a technique to automate the quantification
of cell nuclei in histological images. However, the proposed approach failed to count nuclei correctly
for complex images, such as those with no dominant background or that contain large blue or red areas.
Therefore, we believe that we can continue with the use of deep metric learning for the quantification
of histological images.

5. Conclusions

In this paper, we proposed a deep metric learning-based model to segment cell nuclei from
images. The model was designed by customising two deep network models—the DenseNet and
ResNet architectures. Adjustments in the learning strategy were made in order to use the metric
embeddings, by which either contrastive loss or triplet loss with semi-hard negative mining can be
selected.

One of our aims was to explore how the developed model is able to generalise across a wide range
of tissue morphologies due to intra- and internuclear variations, where the overlap of cells is a common
phenomenon, as well taking into account the differences in staining protocols and imaging procedures.
During the experimental investigation, we observed a 3.12% increase in the average value of Dice
similarity coefficients using deep metric learning as compared with no metric learning; with the largest
gain of 22.31% being observed for H&E-stained images when the ResNet-104 model was embedded
with triplet loss with semi-hard negative mining. In fact, the ResNet-68 architecture demonstrated the
poorest performance, while metric embeddings in the DenseNet architecture increased the variation in
the performance over different cross-validation folds compared to no metric learning.

There is a good reason why including metric learning boosts the accuracy of deep learning
methods, i.e., metric learning gives an additional flexibility allowing the model to learn better
representations. Predetermined loss functions alone (dice loss, cross-entropy, etc.) may not be optimal
for a given problem, while enabling the possibility to learn better distance metrics provides the
possibility of better data embeddings, which results in higher accuracy. In this paper, the pixels
selected for metric learning were chosen randomly. However, this strategy could be possibly improved
using some heuristic selection procedures, such as choosing poorly embedded pixels or selecting only
a fraction of a nucleus from the sample pixels. This shall be investigated in more detail in the near
future. Given the fact that images in most biomedical applications have very high variability, and
that large quantities of images for most problems are not available, metric learning may provide a
chance for higher accuracies with smaller samples of images. As such, we believe that our research
contributes to future studies in the field of biomedical science.
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Abbreviations

The following abbreviations are used in this manuscript:

AUC

Area under the ROC curve

CNN Convolutional Neural Network
DenseNet Dense Convolutional Network
ResNet Residual Neural Network

ROC

Receiver Operating Characteristics
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