# Underwater Wireless Sensor Networks: Estimation of Acoustic Channel in Shallow Water

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

- -
- depth (0–100 m for the shallow area and up to 10 km for deep area),
- -
- temperature (at shallow areas may have fluctuations and assumes usually relatively high values, while in very deep areas it reaches constant low value),
- -
- scattering factor (cylindrical for shallow and spherical for deep areas).

## 2. Acoustic Channel

## 3. Methodology

_{3}), the second term due to the contribution of magnesium sulfate (MgSO

_{4}) and the third due the contribution of pure water. All the coefficients of Equation (4) are calculated according to [7,15]. While to calculate the velocity of sound propagation the formula given by Medwin [4] is used:

## 4. Applied Algorithm

## 5. Simulations

#### 5.1. Channel Performance as a Function of Different Salinity Values

#### 5.2. Channel Performance as a Function of Different Temperatures

#### 5.3. Channel Performance in Presence of Surface and Bottom Reflections

^{3}) are 2.7, 2.4, 2, 1.9.

## 6. Discussion of the Results

## 7. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Awan, K.M.; Shah, P.A.; Iqbal, K.; Gillani, S.; Ahmad, W.; Nam, Y. Underwater Wireless Sensor Networks: A Review of Recent Issues and Challenges. Wirel. Commun. Mob. Comput.
**2019**, 2019. [Google Scholar] [CrossRef] - Liu, L.; Zhou, S.; Cui, J.H. Prospects and Problems of Wireless Communication for Underwater Sensor Networks. Wirel. Commun. Mob. Comput.
**2008**, 8, 977–994. [Google Scholar] - Luos, H.; Wu, K.; Ruby, R.; Hong, F.; Guo, Z.; Nl, L.M. Simulation and Experimentation Platforms for Underwater Acoustic Sensor Networks: Advancements and Challenges. ACM Comput. Surv.
**2017**, 50, 28. [Google Scholar] [CrossRef] - Zanaj, E.; Enesi, I.; Zanaj, B.; Lumi, J. Link Failure Impact on the Lifetime of WSN. In Proceedings of the 7th International Conference on Modern Power Systems, Cluj-Napoca, Romania, 6–9 June 2017. [Google Scholar]
- Zanaj, E.; Enesi, I.; Zanaj, B.; Lumi, J. Impact of Node Mobility at Underwater WSN. In Proceedings of the SoftCOM 2017, Split, Croatia, 21–23 September 2017. [Google Scholar]
- Zanaj, E.; Petoku, E.; Zanaj, B.; Rista, A.; Basha, G. Range Transmission Studied at Underwater Acoustic Networks. In Proceedings of the ATINER 2019, 15th Annual International Conference on Information Technology & Computer Science, Athens, Greece, 20–23 May 2019. [Google Scholar]
- Al-Aboosi, Y.Y.; Ahmed, M.S.; Shah, N.S.M.; Khamis, N.H.H. Study of absorption loss effects on acoustic wave propagation in shallow water using different empirical models. ARPN J. Eng. Appl. Sci.
**2017**, 12, 6474–6478. [Google Scholar] - Sehgal, A.; Tumar, I.; Schönwälder, J. Variability of Available Capacity Due to the Effects of Depth and Temperature in the Underwater Acoustic Communication Channel. In Proceedings of the OCEANS 2009-EUROPE, Bremen, Germany, 11–14 May 2009. [Google Scholar] [CrossRef]
- Stojanovic, M. On the Relationship Between Capacity and Distance in an Underwater Acoustic Communication Channel. In Proceedings of the WUWNet’06, Los Angeles, CA, USA, 25 September 2006. [Google Scholar]
- Xing, G.; Chen, Y.; He, L.; Su, W.; Hou, R.; Li, W.; Zhang, C.; Chen, X. Energy Consumption in Relay Underwater Acoustic Sensor Networks for NDN. In Smart Catching Communications, Computting and Cybersecurity for Infomation-Centric IoT, IEEE Access; IEEE: New York, NY, USA, 2019; Volume 7. [Google Scholar] [CrossRef]
- Burrowes, G.; Khan, J.Y. Short-Range Underwater Acoustic Communication Networks. In Autonomous Underwater Vehicles; InTech Open: London, UK, 2011. [Google Scholar]
- Jensen, F.B.; Kuperman, W.A.; Porter, M.B.; Schmidt, H. Computational Ocean. Acoustics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Urick, R.J. Ambient Noise in the Sea; Naval Sea Systems Command Department of the Navy: Washington, DC, USA, 1984. [Google Scholar]
- Brekhovskikh, L.; Lysanov, Y. Fundamentals of Ocean. Acoustics; Springer Series in Electrophysics; Springer: Berlin/Heidelberg, Germany, 1982; Volume 8. [Google Scholar]
- Mohite-Patil, T.B.; Saran, A.K.; Sawant, S.R.; Chile, R.H.; Mohite-Patil, T.T. Modeling of Acoustic Wave Absorption in Ocean. Int. J. Comput. Appl.
**2010**, 9, 19–24. [Google Scholar] - Coates, R. Underwater Acoustic Systems; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Etter, P.C. Underwater Acoustic Modeling and Simulation, 5th ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Al-Aboosi, Y.Y.; Sha’ameri, A.Z. Experimental Multipath Delay Profile of Underwater Acoustic Communication Channel in Shallow Water. Indones. J. Electr. Eng. Comput. Sci.
**2016**, 2, 351–358. [Google Scholar] [CrossRef] - Hodges, R.P. Underwater Acoustics: Analysis, Design and Performance of Sonar; John Wiley &Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Umar, A.; Javaid, N.; Ahmad, A.; Khan, Z.A.; Qasim, U.; Alrajeh, N.; Hayat, A. DEADS: Depth and Energy Aware Dominating Set Based Algorithm for Cooperative Routing along with Sink Mobility in Underwater WSNs. Sensors
**2015**, 15, 14458–14486. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Qiao, G.; Zhao, C.; Zhou, F.; Ahmed, N. Distributed Localization Based on Signal. Propagation Loss for Underwater Sensor Networks. IEEE Access
**2019**, 7. [Google Scholar] [CrossRef] - Benson, B.; Li, Y.; Kastner, R.; Faunce, B.; Domond, K.; Kimball, D.; Schurgers, C. Design of a Low-Cost Underwater Acoustic Modem for Short-Range Sensor Networks. In Proceedings of the OCEANS’10 IEEE SYDNEY, Sydney, NSW, Australia, 24–27 May 2010. [Google Scholar]
- Trezzo, J. Design and Implementation of an Adaptive Underwater Acoustic Modem and Test Platform. Master’s Thesis, University of California, San Diego, CA, USA, 2013. [Google Scholar]
- EvoLogics GmbH. Evologics Underwater Acoustic Modems Product Information Guide. Available online: https://www.esonetyellowpages.com/datasheets/datasheets2c_rwise_series_modems_1479735651.pdf (accessed on 6 August 2020).
- Hong, Z.; Pan, X.; Chen, P.; Su, X.; Wang, N.; Lu, W.A. Topology Control with Energy Balance in Underwater Wireless Sensor Networks for IoT-Based Application. Sensors
**2018**, 18, 2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]

Bottom Material | Porosity (%) | pl/p | cl/c | cl (m/s) |
---|---|---|---|---|

Clay | 70 | 1.5 | 1.0 | 1500 |

Silt | 55 | 1.7 | 1.05 | 1575 |

Sand | 45 | 1.9 | 1.1 | 1650 |

Gravel | 35 | 2.0 | 1.2 | 1800 |

Moraine | 25 | 2.1 | 1.3 | 1950 |

Chalk | - | 2.2 | 1.6 | 2400 |

Limestone | - | 2.4 | 2.0 | 3000 |

Basalt | - | 2.7 | 3.5 | 5250 |

Company | Modem | Frequency (kHz) | Tx Power (W) | Rx Power (W) | Max Range (Km) |
---|---|---|---|---|---|

AquaTec | AquaModem1000 | 7.5–12 | 20 | 0.6 | 20 |

LinkQuest | UWM2000H | 26.77–44.62 | 2 or 8 | 0.8 | 1.2 |

EvoLogics | S2C R 48/78 | 48–78 | 5, 8, 18 or 60 | 1.1 | 1 |

Tritech | MicronDataModem | 20–28 | 7.92 | 0.72 | 0.5 |

DSPComm | AquaComm | 16–30 | Configurable | 0.42 | 3 |

TeledyneBenthos | SMARTModem | 9–14, 16–21 or 22–27 | NS | NS | 2–6 |

AquaSeNT | AquaSeNTModem | 14–20 | 5–20 | 0.7 | 4 |

**Table 3.**Technical specification of S2C R 48/78 EVOLOGICS [24].

S2C R 48/78 EVOLOGICS | |
---|---|

Depth of operation | up to 200 m |

Range of operation | 250 m |

Range of frequencies | 48–78 kHz |

The model of the ray beam | Omni directional |

Bit error rate less than | 10^{−10} |

Buffer | 1 MB, configurable |

Host interface Power supply Power consumption | Ethernet/RS-232 External: 24 VDC (options for 12 VDC, 300VDC) Internal: Rechargeable battery Tx 5.5 W/250 m range, Rx 1.4 W; Listen 5 mW, Stand-By 2.5 mW |

Number of Reflections | Capacity (kbps) | Delay (ms) | Lifetime (cycles) |
---|---|---|---|

2 | 831.51 | 160.16 | 4573 |

4 | 738.02 | 291.55 | 4065 |

6 | 656.81 | 424.40 | 3618 |

8 | 580.46 | 557.71 | 3197 |

10 | 506.77 | 691.29 | 2789 |

12 | 434.77 | 825.11 | 2391 |

14 | 363.95 | 959.22 | 1998 |

16 | 294.02 | 1093.78 | 1611 |

18 | 224.91 | 1229.14 | 1227 |

20 | 157.06 | 1366.30 | 852 |

Number of Reflections | Basalt | Limestone | Gravel | Sand |
---|---|---|---|---|

2 | 831.51 | 808.27 | 765.24 | 751.17 |

4 | 738.02 | 699.61 | 617.82 | 590.63 |

6 | 656.81 | 600.98 | 479.43 | 438.94 |

8 | 580.46 | 506.76 | 345.23 | 291.45 |

10 | 506.77 | 415.05 | 213.74 | 147.70 |

12 | 434.77 | 324.98 | 89.12 | 31.36 |

14 | 363.95 | 236.18 | 12.88 | 1.61 |

Number of Reflections | Basalt | Limestone | Gravel | Sand |
---|---|---|---|---|

2 | 4573 | 4635 | 4474 | 4279 |

4 | 4065 | 4014 | 3610 | 3362 |

6 | 3618 | 3447 | 2798 | 2493 |

8 | 3197 | 2905 | 2008 | 1648 |

10 | 2789 | 2375 | 1234 | 823 |

12 | 2391 | 1856 | 502 | 163 |

14 | 1998 | 1343 | 64 | 18 |

Number of Reflections | Basalt | Limestone | Gravel | Sand |
---|---|---|---|---|

2 | 160.16 | 160.00 | 160.04 | 160.34 |

4 | 291.55 | 291.45 | 291.77 | 292.18 |

6 | 424.40 | 424.43 | 425.23 | 425.88 |

8 | 557.71 | 557.96 | 559.79 | 561.13 |

10 | 691.29 | 691.91 | 696.47 | 700.96 |

12 | 825.11 | 826.42 | 842.96 | 885.47 |

14 | 959.22 | 961.98 | 1111.54 | 2221.05 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zanaj, E.; Gambi, E.; Zanaj, B.; Disha, D.; Kola, N.
Underwater Wireless Sensor Networks: Estimation of Acoustic Channel in Shallow Water. *Appl. Sci.* **2020**, *10*, 6393.
https://doi.org/10.3390/app10186393

**AMA Style**

Zanaj E, Gambi E, Zanaj B, Disha D, Kola N.
Underwater Wireless Sensor Networks: Estimation of Acoustic Channel in Shallow Water. *Applied Sciences*. 2020; 10(18):6393.
https://doi.org/10.3390/app10186393

**Chicago/Turabian Style**

Zanaj, Elma, Ennio Gambi, Blerina Zanaj, Deivis Disha, and Nels Kola.
2020. "Underwater Wireless Sensor Networks: Estimation of Acoustic Channel in Shallow Water" *Applied Sciences* 10, no. 18: 6393.
https://doi.org/10.3390/app10186393