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Abstract: Due to the intermittent nature of wind, there exists a major disparity between the power
generation from the wind and the demand of electricity. Hence, a sophisticated maximum power
point tracking (MPPT) control paradigm must be formulated for maximizing the power extraction
from the wind. This research article focuses on the formulation of a nonlinear fast dynamic terminal
sliding mode control (FDTSMC)-based MPPT strategy for optimizing the power extraction from
a 3 kW, variable speed, fixed-pitch wind energy conversion system equipped with a permanent
magnet synchronous generator. The proposed MPPT strategy is compared with the benchmark fast
terminal sliding mode control, conventional sliding mode control, feedback linearization control
and proportional integral derivative control-based MPPT strategies under a stochastic wind speed
profile. The proposed paradigm has been found superior in its tracking performance by converging
the output tracking error to zero in a finite time, realizing a high precision performance, offering fast
dynamic response, reducing the chattering to a minute level and guaranteeing global robustness.
The superior performance and effectiveness of the proposed FDTSMC-based MPPT control paradigm
is tested and validated through extensive MATLAB/Simulink simulations.

Keywords: wind energy conversion system (WECS); maximum power point tracking (MPPT); sliding
mode control (SMC); permanent magnet synchronous generator (PMSG); terminal sliding mode
control (TSMC)

1. Introduction

Wind energy possesses an enormous potential for simultaneously addressing the worldwide
rapidly growing energy demand, contributing to sustainable development and alleviating global
warming concerns. Over the past few decades, this technology has undergone a very fast development.
At present, the variable speed wind turbines (VSWTs) have gained a lot of attention among their
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other counterparts for achieving the maximum efficiency and delivering better quality of power [1,2].
Generally, due to the inconsistency of the wind speed, the wind energy conversion system (WECS)
exhibits variation in its electric power output. This makes the inherent characteristics of the WECS
highly nonlinear; thus, the maximum power extraction becomes a challenging task. For maximizing
the efficiency of a WECS, the application of a maximum power point tracking (MPPT) control strategy
is essential [3].

Different versions of alternating current (AC) generators have been employed in WECS, such as
the squirrel-cage induction generator (SCIG), doubly-fed induction generator (DFIG) and permanent
magnet synchronous generator (PMSG). Among the stated generators, the PMSG is preferred for a
variable speed WECS due to its higher power density, higher efficiency, lower maintenance cost, lack
of excitation and a wide operating speed range (0–100%) [4–6].

Different MPPT strategies have been formulated for maximizing the power extraction from the
WECS. Most of the MPPT control strategies, formulated in the domain of the WECS, have focused on
the development of nonlinear techniques. Among these strategies, one of the most promising nonlinear
control strategies is the sliding mode control (SMC). The SMC possesses several attractive attributes,
including simple design, fast dynamic response, insensitivity to parameter variations and disturbance
rejection [7]. Apparently, the SMC strategy seems to be an ideal solution for MPPT due to its positive
attributes; however, the chattering phenomenon as well as the asymptotic convergence because of a
linear sliding surface in the first-order SMC invites a high level of criticism. The chattering causes
the system response to oscillate around the desired reference (sliding surface), thus leading to higher
mechanical wear and tear, reduced tracking performance and overheating of the power circuits [8,9].

The SMC control signal basically consists of two parts: an equivalent (or a continuous control)
signal and a discontinuous (or switching control) signal. The continuous control part controls the
system states once they are on the sliding surface whereas the discontinuous control part deals with
the uncertainties (disturbances) but also gives rise to the chattering. The greater the uncertainties in
the system, the larger the amplitude of the discontinuous control signal, and hence the chattering
phenomenon is more severe. A normal strategy for the chattering minimization is the insertion of a
boundary layer near the sliding surface. In this strategy, the continuous control signal is replaced by
the discontinuous one once the system response is in the vicinity of the sliding surface. Through this
strategy, however, the chattering is minimized, but it also gives rise to a finite steady-state error.
Hence, a trade-off is required between the tracking accuracy and chattering. Minimizing the amplitude
of the discontinuous control signal can be employed as an alternate strategy for the chattering
reduction [10]. However, this strategy degrades the robustness as well as the transient response
of the controller.

In [11], the authors have proposed a nonlinear backstepping integral sliding mode control
(BISMC)-based MPPT strategy for a standalone PMSG–WECS. The system Lie derivatives have been
computed using a multilayer feed-forward artificial neural network (ANN). This technique exhibited
a good performance in alleviating chattering. The authors in [12] have proposed a discrete-time
integral SMC strategy, consisting of a new discrete-time reaching law, to accomplish the MPPT of a
PMSG–WECS. The designed controller has been implemented using an Acorn RISC Machine-based
LM4F120 microcontroller, and its performance has been examined experimentally on a WECS emulator
prepared in the laboratory. It has been found to exhibit a better performance than the CSMC and
P&O strategies in terms of the settling time and output voltages ripple. In [13], the authors have
proposed a double integral SMC-based MPPT strategy for PMSG–WECS, where the reference signal
(optimum DC-side current) has been generated through a fuzzy logic controller. The proposed strategy
has been found to have more promising results than the CSMC and power signal feedback control
strategies in terms of eliminating the generator-side current harmonics. The authors in [14] have
proposed a voltage mode second-order SMC for improving the MPPT efficiency of a PMSG–WECS.
In the proposed method, the second-order sliding surface has a proportional integral derivative (PID)
type structure. The proposed technique has been found to exhibit a better performance than the CSMC.
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Advanced SMC strategies offering finite-time convergence, such as the conventional terminal
sliding mode control (TSMC) and fast terminal sliding mode control (FTSMC), have been proposed to
effectively minimize chattering. Both of these stated strategies utilize nonlinear sliding surfaces,
where fractional power is introduced into the sliding surface to guarantee a fast as well as
finite-time convergence during the sliding phase. The convergence speed of FTSMC is higher than the
conventional TSMC [15]. However, just like the conventional SMC, the chattering phenomenon by
TSMC and FTSMC is not eliminated completely. In [10], a novel fast dynamic terminal sliding mode
control (FDTSMC) strategy, based on Lyapunov theory is proposed for a class of single-input and
single-output uncertain nonlinear systems, for complete elimination of chattering. However, to the
best of the authors understanding and knowledge, the FDTSMC-based paradigm has never been
applied to accomplish the MPPT of a variable speed PMSG–WECS.

In this article, a nonlinear MPPT control paradigm based on FDTSMC is proposed for a 3 kW,
variable speed, fixed-pitch, PMSG–WECS-based standalone system. The proposed MPPT strategy
converges the output tracking error to zero in a finite-time, realizes a high precision performance,
offers fast dynamic response, reduces chattering to a minute level and guarantees global robustness.
The performance of the proposed paradigm is tested and validated under a stochastic wind speed
profile in Matlab/Simulink. A comparative analysis is performed among the proposed MPPT strategy,
FTSMC, conventional sliding mode control (CSMC), feedback linearization control (FBLC) and
proportional integral derivative (PID) control-based MPPT techniques, where the proposed MPPT
strategy has been found superior to all the stated techniques in terms of the tracking performance.

2. Mathematical Modeling of PMSG–WECS

This section covers the mathematical modeling of the standalone, fixed-pitch, variable speed
PMSG–WECS. A schematic of the overall variable speed PMSG–WECS is demonstrated in Figure 1.
The principal components of a typical variable speed PMSG–WECS include: a variable speed wind
turbine (VSWT), a gearbox, power electronic converters and a PMSG coupled with a VSWT.

Figure 1. Schematic of the overall variable speed permanent magnet synchronous generator–wind
energy conversion system (PMSG–WECS).
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2.1. Wind Turbine Mathematical Modeling

The mechanical power, Pm, captured by the VSWT is expressed as follows [16]:

Pm =
1
2

ρπRt
2v3

wCp(λ, β) (1)

where ρ denotes the air density (generally, its value is 1.25 kg/m3, at 10 ◦C, at sea level), Rt stands
for the turbine blade radius (m), vw represents the wind speed (m/s), and Cp indicates the wind
turbine rotor power conversion coefficient that defines the wind turbine rotor aerodynamic efficiency.
Generally, Cp varies with both the tip speed ratio, λ, and the blade pitch angle, β. However, β is
assumed to be a constant (β = 0◦) in this article.

Cp is determined by numerical approximation; such as in [17], for β = 0◦, it is given as follows:

Cp(λ) = 0.0061λ− 0.0013λ2 + 0.0081λ3 − 9.7477× 10−4λ4 − 6.5416× 10−5λ5

+ 1.3027× 10−6λ6 − 4.54× 10−7λ7 (2)

Cp has a unique maximum value (say, Cpmax ) at a particular λ, called λopt. Thus, a VSWT tracks
the Cpmax , while maintaining the tip speed ratio at its optimal value, λopt, for the maximum wind
power extraction.

The ratio of the peripheral speed of the wind turbine blades to the wind speed indicates the tip
speed ratio, as follows:

λ =
Ω`Rt

vw
(3)

where Ω` represents the rotational speed of the wind turbine blades (rad/s, i.e., rotational speed of the
low-speed shaft).

The wind turbine mechanical torque (aerodynamic torque), Tm, can be obtained from
Equations (1) and (3), as follows:

Tm =
Pm

Ω`
=

1
2

ρπR3
t v2

wCt(λ) (4)

where Ct(λ) = Cp(λ)/λ represents the wind turbine torque coefficient. It can be found from a
second-order polynomial expression, as a function of the tip speed ratio, as follows:

Ct(λ) = α0 + α1λ + α2λ2 (5)

Now, substituting Equations (3) and (5) into Equation (4), Tm can also be expressed as follows:

Tm = d1v2
w +

d2vwΩh
gr

+
d3Ω2

h
g2

r
(6)

where Ωh is rotational speed of the high speed shaft (PMSG rotor) and gr = Ωh/Ω` is the gear ratio
(or transmission ratio). Moreover,{

d1 = 0.5πρR3
t α0, d2 = 0.5πρR4

t α1, d3 = 0.5πρR5
t α2

α0 = 0.1253, α1 = −0.0047, α2 = −0.0005

Knowing Cpmax and λopt, the optimal mechanical power, Pmopt , generated by the VSWT can be
worked out from Equation (1) by substituting Equation (3) into it as follows:

Pmopt =
ρπRt

5Ω3
`Cpmax (λ)

2λ3
opt

(7)
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Figure 2 demonstrates the mechanical power output of the VSWT under different wind speeds.
There exists a unique maximum power point, Pmopt , at each wind speed. All these maximum power
points constitute an optimal regime characteristic (ORC). The ORC indicates the operating region
where the maximum possible energy can be extracted from the fluctuating wind. The primary goal of
the MPPT control strategy is to continuously operate the VSWT on the ORC, despite fluctuations in
the wind speed.
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Figure 2. Wind turbine mechanical power output under different wind speeds.

The optimal mechanical torque can be obtained from the optimal mechanical power given in
Equation (7) as follows:

Tmopt =
Pmopt

Ω`
=

ρπR5
t Ω2

`Cpmax (λ)

2λ3
opt

(8)

Tables 1 and 2 describe different significant parameters of the overall PMSG–WECS along with its
control system.

Table 1. PMSG–WECS and the proposed maximum power point tracking (MPPT)
controller parameters.

Name Quantity Value

W
in

d
Tu

rb
in

e

Air density (at 10 ◦C, at sea level), ρ 1.25 kg/m3

Turbine blade radius, Rt 2.50 m

Transmission (or gear) ratio, gr 7

Average wind speed, vwav 7 m/s

Optimal tip speed ratio, λopt 7

Maximum power conversion coefficient, Cpmax 0.4762

PM
SG

Stator resistance, Rs 3.30 Ω

Stator d-axis inductance, Ld 41.56 mH

Stator q-axis inductance, Lq 41.56 mH

Magnetic flux, Φm 438.20 mWb

Pole pairs, p 3

High-speed shaft moment of inertia, Jh 0.055 22 kg m2

Load inductance, Lch 0.008 H
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Table 1. Cont.

Name Quantity Value

FD
TS

M
C

Gain, p3 3

Gain, q3 1

Gain, c2 100

Gain, c3 7000

Gain, β3 200

Gain, K1 4000

Gain, K2 0.1

Table 2. Specification of various important parameters.

Parameter Value Parameter Value Parameter Value

a1 0.1215 b3 −6 d4 2.6292

a2 −27.1471 b4 21.6288 ξ1 9.9399

a3 −0.9486 d1 3.8422 ξ2 −0.13316

b1 0.1215 d2 −0.3603 ξ3 −5.059× 10−3

b2 −27.1471 d3 −0.0958 ξ4 2.6292

2.2. Permanent Magnet Synchronous Generator Mathematical Modeling

The PMSG can be conveniently modeled in the d-q (or synchronously rotating) reference frame,
where the zero components are discarded. The axis along the axis of the rotor is called the direct or the
d-axis, while the axis perpendicular to the d-axis is known as the quadrature or q-axis.

For a standalone PMSG–WECS, the voltages on the d-q axes are considered as the output variables.
Based on this concept, the PMSG model can be described in terms of the d-q axes voltages by the
following group of equations [18,19]:

(Ld + Lch)
did
dt

= − (Rs + Rch) id + p
(

Lq − Lch
)

iqΩh(
Lq + Lch

) diq
dt

= − (Rs + Rch) iq − p (Ld + Lch) iqΩh + pΦmΩh

Jh
dΩh
dt

=
Tm

gr
− Tem =

Tm

gr
−
[
p
(

Ld − Lq
)

idiq + pΦmiq
]
=

d1v2
w

gr
+

d2vwΩh
g2

r

+
d3Ω2

h
g3

r
− pΦmiq


(9)

where Rs denotes the stator resistance, Ld and Lq represent the stator d- and q-axis inductances,
respectively, id and iq stand for the d- and q-axis stator currents, respectively, p indicates the number of
pole pairs, Φm indicates the maximum value of magnetic flux and Tem represents the electromagnetic
torque of the PMSG, resulting from the interaction between the stator and rotor fluxes. Moreover,
Jh denotes the moment of inertia of the high-speed shaft (PMSG) and Rch, Lch indicate the resistance
and inductance of the load, respectively. In Equation (9), the non-salient pole type of PMSG has been
considered, for which Ld = Lq.

The WECS is inherently a highly nonlinear system. The objective of this work is to maximize
the power extraction from the PMSG–WECS, which is accomplished by controlling the shaft speed.
For this purpose, the nonlinear PMSG–WECS model can be written in state-space representation
as follows: {

ẋ = f (x) + g(x)u

y = h(x)
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where 
ẋ1

ẋ2

ẋ3


︸ ︷︷ ︸

ẋ

=



a2x1 + a3x2x3

b2x2 + b3x1x3 + b4x3

1
Jh

(
d1v2

w
gr

+
d2vwx3

g2
r

+
d3x2

3

g3
r
− pΦmx2

)


︸ ︷︷ ︸

f (x)

+



− x1

a1

− x2

b1

0


︸ ︷︷ ︸

g(x)

. Rch︸︷︷︸
u

y = Ωh︸︷︷︸
h(x)



(10)

where f (x) = [ f1 f2 f3]
T , g(x) = [g1 g2 g3]

T , x = [x1 x2 x3]
T = [id iq Ωh]

T ∈ Rn represents the state
vector, f (x) and g(x) stand for the nonlinear smooth vector fields, and u and y indicate the control
input and output, respectively. Moreover,

a1 = Ld + Lch; a2 = −Rs

a1
; a3 =

p(Lq − Lch)

a1

b1 = Lq + Lch; b2 = −Rs

b1
; b3 = − p(Ld + Lch)

b1
; b4 =

pΦm

b1

Tables 1 and 2 describe different significant parameters of the overall PMSG–WECS along with its
control system.

3. Coordinates Transformation

To express the system in normal form, the coordinates transformation must be carried out,
as follows:

z1 = h(x) = x3 = Ωh

z2 = L f h(x) =
∂h(x)

∂x
f (x) = ξ1v2

w + ξ2vwx3 + ξ3x2
3 − ξ4x2

z3 = a3
x1

x2

 (11)

where ξ1 =
d1

Jhgr
, ξ2 =

d2

Jhg2
r

, ξ3 =
d3

Jhg3
r

and ξ4 = d4 = pΦm.

Since, the system under consideration possesses a relative degree, r < n (system order),
where r = 2 and n = 3, it implies that the system is only partially linearizable [20,21]. Moreover,
the input-output form (normal form) can be expressed as follows:

ż1 = z2

ż2 = L2
f h(x) + LgL f h(x)u

ż3 = L3
f h(x) + LgL2

f h(x)u̇

 (12)

where one of the transformed system states, i.e., z3 represents the internal (or zero) dynamic state.
Now, the Lie derivatives are given as follows:

L2
f h(x) = −d4(b2x1 + b3x1x3 + b4x3) + (d2vw + 2d3x3)(ξ1v2

w + ξ2vwx3 + ξ3x2
3 − ξ4x2)

LgL f h(x) = −d4x2

a1
6= 0

 (13)
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4. Lie Derivatives Estimation via Adaptive Neuro-Fuzzy Inference System

In practical contexts, one may not be available with the nonlinear terms and aerodynamic forces.
Hence, in this work, an offline Takagi–Sugeno–Kang (TSK)-based ANFIS scheme is designed for the
estimation of the nonlinear drift of the PMSG–WECS (i.e., LgL f h(x), LgL2

f h(x), L2
f h(x) and L3

f h(x)).
The TSK-based ANFIS is a MISO (multiple-input-single-output) system [22]. Four ANFIS networks
are trained for estimating the system Lie derivatives using the inputs (z1, z2, z3 and vw) and outputs
(LgL f h(x), LgL2

f h(x), L2
f h(x) and L3

f h(x)). The input-output data are generated by simulating the
system for a particular wind speed profile. The ANFIS network then mimics the relationships between
the inputs and the corresponding outputs. The ANFIS estimation network comprises six layers. Layer
1 consists of all the inputs that are available during the estimation process. Layer 2 generates the
membership functions based on triangular functions. Layer 3 represents the antecedent connective part
of the extracted IF-THEN fuzzy rule. Layers 4, 5 and 6 represent the normalization layer, the consequent
or regressor layer and the summation layer, respectively.

The complete ANFIS network structure for Lie derivatives estimation is demonstrated in Figure 3.

Figure 3. ANFIS network structure for PMSG–WECS Lie-derivatives estimation.

5. MPPT Control Design for PMSG–WECS

The main goal of the MPPT control design is to maximize the power output of the PMSG–WECS.
This goal is accomplished by proposing an FDTSMC-based MPPT control strategy.

The conventional TSMC strategy may not be able to guarantee the same convergence speed for
the system states located distant from the equilibrium point, O. However, it can offer a finite-time
convergence for the system states located near the equilibrium point.

The conventional TSMC concept was first introduced in [23], for which the nonlinear sliding
surface can be expressed as follows:

s1 = ė + β1e
q1
p1 = 0 (14)

where e represents the tracking error and β1, p1, q1 > 0. Note that both p1 and q1 must be odd
integers, such that (p1 > q1). It can easily be verified that for any given initial tracking error, e(0) 6= 0,
the dynamics expressed in Equation (14) will converge to e = 0 in a finite time, as determined by
the reaching time, ts1 = [p1/{β1 (p1 − q1)}]|e(0)|(p1−q1)/p1 , obtained from the analytical solution of
Equation (14). The equilibrium point O is termed as the terminal attractor. The reaching time can be
tuned by proper selection of the parameters β1, p1 and q1.

The inclusion of the nonlinear term eq1/p1 in Equation (14) improves the convergence towards the
equilibrium point such that the closer the eq1/p1 is to the equilibrium point, the faster the convergence
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will be, thus offering a finite-time convergence. However, for the system states located distant from
the equilibrium point, the conventional TSMC strategy does not outperform its conventional SMC
counterpart (where p1 = q1) because the eq1/p1 term now tends to retard the convergence towards the
equilibrium point. To counteract this problem, a solution has been proposed in [24] that is known as
the FTSMC, for which the nonlinear sliding surface can be expressed as follows:

s2 = ė + c1e + β2eq2/p2 = 0 (15)

where c1, β2, p2, q2 > 0. Note that both p2 and q2 must be odd integers, such that (p2 > q2).
Thus, Equation (15) gives ė = −c1e− β2eq2/p2 . By properly choosing p2 and q2, for a given initial
tracking error e(0) 6= 0, the dynamics expressed in Equation (15) will converge to e = 0 in a finite
time. Physically, it can be interpreted as: when e is located far away from the equilibrium point,
the approximate dynamics can then be expressed as: ė = −c1e, which offers a fast and finite-time
convergence. However, when e is located close to the equilibrium point, the approximate dynamics
then become: e = −β2eq2/p2 , which is the terminal attractor offering fast and finite-time convergence.
More precisely, the analytical solution of Equation (15) gives the exact time to reach the equilibrium
point (reaching time) as follows:

ts2 =
p2

c1 (p2 − q2)

[
ln{c1e(0)(p2−q2)/p2 + β2} − ln β2

]
(16)

5.1. FDTSMC-Based MPPT Control Design for PMSG–WECS

The FTSMC renders the advantages of fast dynamic response, high steady-state tracking accuracy
and finite-time convergence. However, chattering of the control signal due to the switching action
of the discontinuous control signal, and sensitivity to high-frequency noise, still remain as the main
disadvantages of the FTSMC. To counteract these issues, a novel strategy has been proposed in [25],
namely the global FDTSMC. In the stated strategy, the time derivative of the control input has
been taken as the control variable for the augmented system such that the control input appears as
chattering-free due to an integrator (acting as a low-pass filter) placed next to the system.

In this article, the FDTSMC offers a finite-time rotor speed tracking error convergence of the
PMSG–WECS for ensuring the MPPT. This control strategy is developed using a function augmented
nonlinear sliding surface that guarantees the tracking error convergence to the equilibrium point in
a finite time. Moreover, the high-frequency chattering is completely eliminated by eliminating the
reaching phase.

The input-output form for FDTSMC can be described as follows:

ż1 = z2

ż2 = L̂2
f h(x) + L̂gL f h(x)u

ż3 = L̂3
f h(x) + L̂gL2

f h(x)u̇

 (17)

where L̂3
f h(x) and L̂gL2

f h(x) have been expressed in Equations (A1) and (A2), in Appendix A, respectively.
The nonlinear sliding surface for the proposed FDTSMC can be expressed as follows:

s3 = σ̇ + c2σ + β3σq3/p3 (18)

where c2, β3, p3, q3 > 0. Note that both p3 and q3 must be odd integers, such that (p3 > q3). The term
σ in Equation (18) denotes a sliding mode surface that can be expressed as follows:

σ = ė + c3e = (z2 − żre f ) + c3(z1 − zre f ) (19)
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Now, the successive differentiation of Equation (19) yields:

σ̇ = (ż2 − z̈re f ) + c3(ż1 − żre f ) = (z3 − z̈re f ) + c3(z2 − żre f )

σ̈ = (ż3 −
...
z re f ) + c3(ż2 − z̈re f ) = L̂3

f h(x) + L̂gL2
f h(x)u̇− ...

z re f + c3(ë)

}
(20)

Next, the FDTSMC sliding surface expressed in Equation (18) is differentiated and simplified
using Equation (20) in order to derive the equivalent controller as follows:

ṡ3 = L̂3
f h(x) + L̂gL2

f h(x)u̇− ...
z re f + c3 ë + c2σ̇ + β3

q3

p3
σ

(
q3
p3
−1
)

σ̇ (21)

The equivalent controller, u̇eqD, can be obtained by setting Equation (21) to zero as follows:

u̇eqD =
−1

L̂gL2
f h(x)

[
L̂3

f h(x)− ...
z re f + c3 ë + c2σ̇ + β3

q3

p3
σ

(
q3
p3
−1
)

σ̇
]

(22)

While, the discontinuous controller, u̇discD, can be given as follows:

u̇discD = −K1s3 −K2 sign(s3) (23)

where K1, K2 > 0 are the switching controller gains.
Finally, the FDTSMC-based MPPT law is obtained by combining Equations (22) and (23),

and passing through an integrator (low-pass filter) as follows:

uFDTSMC =
∫ [ −1

L̂gL2
f h(x)

{
L̂3

f h(x)− ...
z re f + c3 ë + c2σ̇ + β3

q3

p3
σ

(
q3
p3
−1
)

σ̇
}

︸ ︷︷ ︸
u̇eqD

−K1s3 −K2 sign(s3)︸ ︷︷ ︸
u̇discD

]
.dt

(24)

The computational flow chart for implementation of the proposed MPPT strategy is depicted in
Figure 4, while the closed-loop control system for PMSG–WECS is given in Figure 5.
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Figure 4. Computational flow chart for implementation of the proposed MPPT strategy.

Figure 5. Closed-loop control system for the PMSG–WECS.
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6. Stability Analysis

To verify the PMSG–WECS closed-loop system stability under FDTSMC, Lyapunov theory
is employed.

Stability Analysis for FDTSMC

First of all, a Lyapunov candidate function, V f1 , and its derivative, V̇ f1 , are defined along the
system trajectory as follows:

V f1 = 1
2 s2

3

V̇ f1 = s3 ṡ3

}
(25)

Now, ṡ3 from Equation (21) is substituted into Equation (25) as follows:

V̇ f1 = s3

[
L̂3

f h(x) + L̂gL2
f h(x)u̇FDTSMC −

...
z re f + c3 ë + c2σ̇ + β3

q3

p3
σ

(
q3
p3
−1
)

σ̇
]

(26)

Now, uFDTSMC from Equation (24) is substituted into Equation (26), giving:

V̇ f1 = −K1s2
3 −K2s3 sign(s3) ≤ −K1s2

3 −K2|s3| ∴ ∀ K1,K2 > 0, V̇ f1 < 0 (27)

7. Simulation Results and Discussion

In this section, the proposed nonlinear MPPT control scheme, namely FDTSMC, is tested and
evaluated in MATLAB/Simulink through simulations. The FTSMC [26], CSMC, FBLC [27] and PID
have been used as benchmarks to manifest the superior tracking performance of the proposed MPPT
paradigm. For performance evaluation, the wind speed is assumed to have a stochastic profile.

Figures 4 and 5 demonstrate the application of the proposed nonlinear MPPT control paradigm
to the standalone, variable speed, fixed-pitch, 3 kW PMSG–WECS. The MPPT strategy ensures the
maximum power extraction from the VSWT while keeping the tip speed ratio, λ, at its optimal value,
λopt. Table 1 describes different significant parameters of the proposed FDTSMC.

7.1. Performance Evaluation under Stochastic Wind Speed Profile

The performance of the proposed MPPT paradigm has been tested and evaluated, in this section,
for a 3 kW PMSG–WECS under a stochastic wind speed profile that comprises rapid and frequent
wind speed fluctuations. The maximum power conversion coefficient, Cpmax = 0.4762, computed from
Equation (2) occurs at an optimal tip speed ratio, λopt = 7. The simulations are performed for a 100 s
horizon at an average wind speed of, vwav = 7 m/s (also depicted in Figure 2).

Figure 6 demonstrates the PMSG rotational speed tracking performance. It is evident from
the zoomed-in segments of the figure that the FDTSMC is offering a superior tracking performance
among its competitors. Moreover, both the FTSMC and FDTSMC offer a finite-time convergence.
The superior performance of the FDTSMC to the FTSMC, CSMC, FBLC and PID, as well as the
finite-time convergence of both the FTSMC and FDTSMC, are also evident from the speed tracking
error of the PMSG, as depicted in Figure 7. The CSMC exhibits slightly better performance than both
the FBLC and PID.

Figure 8 indicates the tip speed ratio performance of the VSWT. The PID has the worst
performance, and it offers a lot of oscillations around the λopt. However, both the FTSMC and
FDTSMC are accurately tracking the λopt with FDTSMC being the best MPPT candidate.

Figure 9 shows the power conversion coefficient of the VSWT. It is clear that both the FTSMC and
FDTSMC strategies are tracking the optimal power conversion coefficient, Cpmax = 0.4762, throughout
the selected stochastic wind speed profile, thus guaranteeing the maximum wind power extraction.
The zoomed-in segments of the figure clearly depict that, based on the Cpmax tracking, the FDTSMC is
the best MPPT candidate, while the PID is the worst.
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Figures 10 and 11 indicate the low-speed shaft mechanical power and the high-speed shaft
mechanical power versus the tip speed ratio, respectively. It is evident that both the FTSMC and the
FDTSMC strategies maintain the low-speed as well as the high-speed shaft mechanical powers in the
close neighborhood of the optimal tip speed ratio, λopt. On the other hand, both the FBLC and PID
techniques have very poor performance on account of having a lot of power fluctuations around the
optimal tip speed ratio.
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Figure 6. High-speed shaft rotational speed tracking.
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Figure 10. Low-speed shaft mechanical power versus the tip speed ratio.
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Figure 11. High-speed shaft mechanical power versus the tip speed ratio.

Figure 12 represents the low-speed shaft mechanical power versus the low-speed shaft rotational
speed. The proposed MPPT controller efficiently maintains the rotational speed of the VSWT in such a
manner that the system operates on the ORC (optimal regimes characteristic)—that is, the region where
the maximum wind power can be extracted. However, both the FBLC and PID schemes experience a
lot of speed as well as mechanical power fluctuations.

Figure 13 illustrates the PMSG electromagnetic torque versus the tip speed ratio. Since both the
FTSMC- and the FDTSMC-based MPPT candidates maintain the torque at the optimal tip speed ratio,
λopt = 7, it implies that both are capable of extracting the maximum wind power. The FDTSMC has
the best, while the PID has the worst performance because of frequent torque fluctuations. Similarly,
Figure 14 shows the VSWT mechanical torque versus the low-speed shaft rotational speed. Again,
both the FTSMC- and the FDTSMC-based MPPT candidates maintain the torque around the ORC.
It signifies that these two MPPT strategies are capable of extracting the maximum wind power,
with FDTSMC being superior to the remaining MPPT candidates.

-5 0 5 10 15 20 25 30 35 40

l
 (rad/s)

-1000

0

1000

2000

3000

4000

5000

6000

P
m

l (
W

)

ORC

PID

FBLC

CSMC

FTSMC

FDTSMC

23.7 23.72 23.74
3520

3530

3540

3550

Figure 12. Mechanical power versus the low-speed shaft rotational speed.
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7.2. Performance Indices

To further validate the superior performance of the proposed MPPT strategy to the FTSMC-,
CSMC-, FBLC- and PID-based MPPT strategies, the dynamic performance of each MPPT candidate is
also evaluated through four different performance indices, given as follows [11,28,29]:

ISE =
∫ tsim

0 [e (t)]2 dt

ITSE =
∫ tsim

0 t [e (t)]2 dt

IAE =
∫ tsim

0 |e (t) |dt

ITAE =
∫ tsim

0 t|e (t) |dt


(28)
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where tsim indicates the total simulation time.
The performances indices, ISE (integral squared error), ITSE (integral of time squared error),

IAE (integral absolute error) and ITAE (integral of time absolute error) have been computed for
PMSG–WECS using e(t) = Ωh − Ωre f for each MPPT strategy. It is evident from Figures 15–18
that as the time advances, the accumulative error of each MPPT controller also increases. However,
the proposed FDTSMC renders the flattest profile and the smallest error in each case, thus guaranteeing
its superior performance. Moreover, the FTSMC is the second best MPPT candidate, while the PID is
the worst.
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Figure 15. Integral squared error.
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Figure 16. Integral of time squared error.
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8. Conclusions

To extract the maximum possible power from the wind and to reduce chattering, in this research
article, a nonlinear MPPT control strategy based on FDTSMC has been proposed for a variable speed,
standalone, fixed-pitch, 3 kW PMSG–WECS. The proposed MPPT strategy has been simulated under
a stochastic wind speed profile in MATLAB/Simulink. Its MPPT performance has been compared
with and found superior to the FTSMC-, CSMC-, FBLC- and PID-based benchmark MPPT techniques
in terms of offering a finite-time convergence, accurate MPPT, low steady-state error, fast dynamic
response and minute chattering. The stability of the closed-loop system is demonstrated by the
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Lyapunov stability theory. The results are promising, and it has been observed that the FDTSMC has
the best MPPT performance among the candidates, while the conventional PID has the worst.
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Appendix A

L̂3
f h(x) = d4b2x2 + b2b3d4x1x3 + b2b4d4x3 −

2b2d4x2u
b1

+ a2b3d4x1x3

+ a3b3d4x2x2
3 −

b3d4x1x3u
a1

+ b3ξ1d4v2
w + b3ξ2d4x1x3 + b3ξ3d4x1x2

3

+
b3d2

4x1x2

Jh
+

b3d4x1x3u
b1

− b4d4x3u
b1

+
d4x2u2

b2
1

+
(d2vw

gr2 +
2d3x3

gr3

)
[(

ξ2vw + 2ξ3x3

)(
ξ1v2

w + ξ2vwx3 + ξ3x2
3 + d4x2

)
+

d4b2x2

Jh
+ b3d4x1x3

− d4x2u
b1

+ d4x3

]
(A1)

L̂gL2
f h(x) =

d4x2

Jhb1
(A2)
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