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Abstract: Pine bark extracts were tested as valid natural alternatives to common phenolic
antioxidants to be deposited onto solid matrices. An analytical method for determining both
deposition-efficacy and maintenance of antioxidant activity on fabrics surfaces was developed and
successfully applied to phenolic antioxidants and pine tannins onto cotton fabric samples.
Accumulated data suggest that common phenolic antioxidants and tannin contribute to an elevated
antioxidant activity on fabric. A known source of odour is autoxidation of residual sebum on fabric,
leading to the generation of malodourous compounds. Therefore, antioxidants hold the promise for
mitigating malodour on fabrics, a top unmet consumer need around the globe.
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1. Introduction

Tannins are structurally different polyphenolic secondary metabolites of plants. Besides their
polyphenolic character, they offer a wide range of interesting biological functional features, besides
biocompatibility and biodegradability, namely antioxidant, antimicrobial and anti-inflammatory
activities [1-9], that render them ideal for several applications such as topical cosmetics, and
biomedical and healthcare products.

Tannins have been used in textiles for several hundreds of years and nowadays their use as
natural dyes in textile applications is rapidly growing because of the potential carcinogenicity and
environmental effects of synthetic dyes [10-13]. Moreover, tannin-rich natural extracts were used as
a colouring as well as antimicrobial agents to treat cotton fabrics [14,15]. Hence, on one side, natural
extracts can be successfully used as natural dyes, and on the other side, they also impart an
antimicrobial finish to cotton fabric, representing viable alternatives to the artificial and sometimes
toxic antimicrobial agents for hospital textiles as well as agents to hinder malodorous species which
may be formed by the enzymatic oxidation of fatty acids present in domestic laundry soils. The
malodour draws its origin from the bacterial biotransformation of proteinaceous substrates and
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odourless physiological secretions containing long-chain fatty acids, sulphur-containing amino acids
and hormones, into volatile odorous organic compounds [16,17]. Body soils left behind on fabrics will
break down over time due to microbial action or autoxidation into malodorous byproducts which
consumers describe as body, sweat, stale, or musty odours [18-21]. The process can be suppressed
by antioxidant agents that are able to interfere with the oxidation of organic body soil caused by
microorganisms belonging to skin flora, thereby limiting the formation of malodour. In the US, 45.7%
of consumers claim “odour removal” as a need in at least one out of their last ten loads (Procter and
Gamble, unpublished data from a 2019 study involving 4995 representative US consumers). Odour
removal is also a top unmet need in many other regions. Thus, more effective laundry detergent
solutions are needed to eliminate odours from fabrics. Given that tannins possess significant
antioxidant and enzyme complexing properties associated with a high propensity to form complexes,
they can significantly contribute to malodour reduction. Furthermore, tannins deposited on fabrics
can undergo stacking and thus trap the malodorous species on fabrics. Several studies aiming at
evaluating the possible effects of polyphenolics from plant extract on malodour have demonstrated
their effective role as malodour-reducing agents [22-27].

Existing literature suggests that condensed tannins are able to deposit on fabrics [28-30]. Their
specific UV absorbance characteristics can also make tannins natural sunscreens [31,32]. These
specific characteristics make tannins an interesting starting point for the development of smart
textiles, which, owing to their added properties, show sunscreen, antimicrobial and malodour control
properties and enable prevention of malodour formation also in a re-blooming scenario.

In this context, in a preliminary study aimed to assess the possibility of using pine bark extracts
as natural active ingredients in smart textiles [21-27], we deposited on cotton samples two different
pine tannins as well as common phenolic antioxidants, namely 3,5-di-tert-butyl-4-hydroxy toluene
(BHT), methyl 3-(3,5-di-tert-butyl- 4-hydroxyphenyl)propanoate) (MtBHPP) and octadecyl 3-(3,5-di-
tert-butyl-4-hydroxyphenyl)propanoate (Figure S1 in Supplementary Materials).

A fast analytical method based on the 2,2’-azino-bis (3- ethylbenzothiazoline-6-sulfonic acid)
radical cation (ABTS**) decolourisation assay [33] was used and adapted to meet the needs emerging
from the double objective of determining antioxidant activity of tannins and phenolic antioxidant-
treated fabrics, as well as to quantitatively determine the concentration of active antioxidants
deposited on the fabric samples based on specific calibrations accounting for specific antioxidant
species.

2. Materials and Methods

2.1. General

Industrially tannin-pretreated fabrics were obtained from Procter and Gamble Company
(Cincinnati, OH, USA). Bark chips from Pinus sylvestris and Pinus taeda were extracted in water spiked
with sodium salts, or with an aqueous solution of acetone; the pine tannins obtained are namely
water-extracted Pinus sylvestris tannin (PST-sW1) and acetone/water-derived Pinus taeda tannin
(PTT-AW1).

Furthermore, 2,2’-azino-bis (3- ethylbenzothiazoline-6-sulfonic acid) (ABTS) diammonium salt,
sodium persulfate, ascorbic acid and butylated hydroxytoluene (BHT) were purchased from Sigma
Aldrich, octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate from BASF (Ludwigshafen,
Germany) and methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate (M{BHPP) from Milliken
(Spartanburg, SC, USA). Heavy duty laundry detergent Ariel (HDL) was manufactured by the
Procter and Gamble Company (Cincinnati, OH, USA).

2.2. Pine Tannin Isolation

In order to produce PST-sW1 sample, small wood grains were subjected to a first extraction by
stirring in water spiked with sodium bisulphite (2% NaHSOs) for two hours at 80 °C in a 10:1 (w/w)
liquor-solid ratio; after a filtration step, a second extraction was performed by stirring in water spiked
with sodium bisulphite (2% NaHSO:s) for two hours at 80 °C in a 5:1 (w:w) liquor-solid ratio; finally,
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the solid residue was filtered off and the extractive was finally concentrated under reduced pressure
at the rotary evaporator. Typically, a 500 g batch of bark yielded around 40-50 g solid extracts.

In order to produce the PTT-AW1 sample, small wood grains of pine bark were suspended in a
70/30 (v/v) acetone/water mixture in a 10:1 (w:w) liquor-solid ratio and kept under reflux for 8 h. The
solid residue was separated from the liquor by centrifugation and washed with the same solvent
mixture. The extractive was finally concentrated under reduced pressure at the rotary evaporator.
Typically, a 500 g batch of bark yielded around 30-35 g solid extracts.

2.3. Fabric Sample Treatments

Industrial treatment: In order to obtain a forced deposition of antioxidants onto textiles, fabric
samples were brought in contact with an aqueous solution (80 ppm) in water or HDL (Heavy Duty
Laundry detergent). Two protocols where used to perform forced deposition treatments by means of
a mechanical stirrer (phenolic antioxidants) or using a launderometer (tannins).

Launderometer procedure: Tannin powder was pre-dissolved in monopropylene glycol at a
concentration of 5% (w/w). Then the tannin solution was added at a concentration of 80 ppm tannin
to either (i) 200 mL tab water or (ii) 200 mL tab water containing 1.03 g liquid detergent solution.

For each test, the launderometer jar was loaded with two pieces of fabric, sized 5 cm x 5 cm per
piece of fabric: one piece of fabric of knitted cotton, and one piece of fabric polyester. A total of 200
mL of the tannin/water or tannin/water/liquid detergent solution is added in the launderometer jar
containing the fabrics. Five metal spheres are added to each jar for agitation. The launderometer cycle
time was set to 2 h, temperature was set to 30 °C. After the launderometer cycle, the fabrics were
gently squeezed and rinsed with tab water for 5 min. Fabrics were squeezed again and air dried.

Laboratory treatment: In order to obtain a forced deposition of antioxidants onto textiles, a piece
of cotton fabric sample (10 mg, 0.25 cm?) was transferred into a falcon tube containing 10 mL of the
selected aqueous antioxidant solution (0.1 mg/mL). The mixture was vortexed for two minutes to
facilitate the deposition on the fabric matter. The fabric sample was removed from the falcon tube,
washed by vortexing in 10 mL of distilled water for two minutes and air-dried.

2.4. Antioxidant Activity Test

Antioxidants in aqueous solution: Antioxidant activity in solution was measured using the
ABTS radical cation (ABTS**) decolourisation assay with some modifications [33,34]. Radical
scavenging capability of the tannin in aqueous solution was determined by measuring the decrease
in absorbance of ABTS** at A = 730 nm after a fixed incubation time of the radical cation solution with
the sample to be tested using a spectrophotometer with a thermostatic cell container equilibrated at
30 °C. ABTS*+ was produced by reacting ABTS (7.00 mM final concentration) with sodium persulfate
(2.45 mM final concentration); the mixture was allowed to stand in the dark at room temperature for
12-16 h before use (oxidation of the ABTS starts immediately, but the absorbance was not found
stable before 6 h of reaction time). The radical is stable in this form for two days when stored in the
dark at room temperature. Aqueous ABTS** solution (7.00 mM) was diluted with distilled water to an
absorbance in the range of 0.65-0.70 and equilibrated at 30 °C. After addition of 1000 pL of this diluted
ABTS** solution to 10 puL of aqueous tannin solution (1 mg/mL) or alternatively 10 uL of a phenolic
antioxidant compound (final concentration range 0-25 mM), the absorbance reading was taken
exactly at 30 °C, 1 min after initial mixing. An appropriate blank was run in the assay. The percentage
inhibition of absorbance at A =730 nm was calculated and plotted as a function of concentration of
antioxidant related to the standard reference data, i.e., mg of ascorbic acid equivalent (AAE) per mg
of dry antioxidant substance.

Actives deposited on fabric: Antioxidant activity of actives deposited on fabric was measured
using an adopted ABTS** decolourisation assay. After addition of 1.0 mL of diluted ABTS** solution
(A730nm = 0.7; see above) to 10 mg treated fabric sample, or, alternatively, 10 uL of phenolic antioxidant
compounds or antioxidant standard (final concentration range 0-25 pum) the absorbance reading was
taken exactly 1 min after initial mixing at 30 °C after an ultimate shake of the solution approximately
5 s before measurement, to allow the paper to sink to the bottom prior to the measurement. A blank
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was run in the assay using a nontreated fabric sample. The percentage inhibition of absorbance at A
=730 nm was calculated and plotted as a function of concentration of actives related to the standard
reference data, i.e., as pg of ascorbic acid equivalent (AAE) per 10 mg fabric portion.

Amount of antioxidant industrially deposited on fabric: The amount of deposited antioxidant
was determined by measuring the absorbance decrease, after a fixed incubation time, of ABTS**
solution (A7nm = 0.7; see above) with treated fabric samples (weighing 10.0 mg each), based on a
specific calibration curve (final concentration range 0-2.5 pug/mL) obtained with the same approach
and using an aqueous antioxidant solution accounting for the antioxidant type used.

2.5. Tannin Characterisation

31P NMR: 3P NMR analysis was performed after the derivatisation of accurately weighed tannin
samples (10-15 mg) with the reagent 2-chloro-4,4',5,5"-tetramethyl-1,3,2-dioxaphospholane, against
cholesterol as internal standard according to methods previously published [35-38], using an inverse-
gated pulse-sequence on either a Bruker, Billerica, MA, USA, 300 MHz or a Bruker 700 MHz NMR
spectrometer, controlled via TopSpin software packages.

Gel permeation chromatography (GPC): Approximately 3.0 mg of tannin was suspended in 1.0
mL of glacial acetic acid/acetyl bromide (9:1 (v/v)) for 2 h in accordance with the method provided
for lignins by Asikkala et al. [39]. The solvent was then removed under reduced pressure, and the
residue was dissolved in HPLC-grade THF and filtered over a 0.45 um syringe filter prior to injection.
GPC analyses were performed as described before [40] using a Shimadzu, Kyoto, Japan, instrument,
consisting of a controller unit (CBM-20A), a pumping unit (LC 20AT) equipped with a 20 uL sample
loop, a degasser unit (DGU-20A3), a column oven (CTO-20AC), a diode array detector (SPD-M20A),
and a refractive index detector (RID-10A); the Shimadzu LabSolution software package (Version 5.42
SP3) was used for system control. Three analytical GPC columns (each 7.5 x 30 mm) were connected
in series for the analyses—an Agilent Technologies, Santa Clara, California, USA, PLgel 5 um 10 000
A, followed by an Agilent PLgel 5 um 1000 A and an Agilent PLgel 5 um 500 A. Calibration was
performed with polystyrene standards (Sigma Aldrich/Merck KGaA, Darmstadt, Germany, MW
range: 162-5 x 10¢ g/mol). Final analyses of each sample were performed as described elsewhere [40].

Folin—Ciocalteau test: The total phenolic content of the extracts was determined by the Folin—
Ciocalteu method: 2.5 mL of Folin-reagent (diluted 10 times) was added to 0.5 mL of a solution of
tannin in distilled water (0.10 mg/mL). After 2 min, 2.0 mL of sodium carbonate (7.5% (m/m)) was
added. The mixture was heated at 50 °C for 5 min. Absorbance was read at A = 765 nm in suitable
cuvettes. A calibration curve was obtained following this approach using a solution of gallic acid in
distilled water (0.5 mg/mL). Results are reported as mg of gallic acid equivalent (GAE) per mg of dry
tannin (mg GAE/mg tannin) [41]. Measurements were done using a Shimadzu, Kyoto, Japan, 1800
UV spectrophotometer.

Scalbert test: The proanthocyanidin content of pine tannins was determined by the Scalbert
method [42]. A total of 5.0 mL of an acidic ferrous solution (77 mg FeSO4-7 H20 in 500 mL HCl/BuOH
(2/3)) was added to 0.5 mL of the aqueous tannin solution (1 mg/mL). Mixtures were heated at 95 °C
for 15 min. Absorbance was read at A = 530 nm. Results are expressed in cyanidin equivalents (CyaE)
as mg per g of dry bark (mg CyaE/g bark). Measurements were done using a Shimadzu, Kyoto, Japan,
1800 UV spectrophotometer.

3. Results and Discussion

3.1. Pine Tannin Isolation

In order to develop a general protocol for the characterisation of antioxidant activity of tannins
on fabric surfaces and to determine the amounts of deposited tannin on the fabrics, we selected two
different extraction protocols in water spiked with sodium salts and aqueous solution of acetone,
respectively. It has been reported in literature that extraction of pine bark using water spiked with
sodium bisulphate or sodium carbonate and water mixed with acetone yields tannin extracts with
different compositions and characteristics [42-45]. More specifically, the extraction with aqueous
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acetone is supposed to result in a preferential isolation of high-molecular-weight polyphenols, while
oligomers with lower degrees of polymerisation are isolated upon extraction with aqueous salt
solutions.

These two different types of pine tannins (PT), termed PST-sW1 and PTT-AW]1, respectively,
were obtained in 30% and 6% yield of dry tannin mass, respectively. PST-sW1 was found to contain
52% (m/m) residual sulphites.

3.2. Structural Aspects of Pine Tannin

The structural characterisation of the tannins consisted of the determination of the distribution
of molecular weights by means of gel permeation chromatography (GPC), the total phenol content
by spectrophotometry using the Folin—Ciocalteau test [41], 3P NMR analysis of the different phenolic
groups and the proanthocyanidin content of pine tannins using the Scalbert method [42].

In view of the fact that selected properties, i.e., antioxidant activities, of natural resources that
render them potential natural active ingredients to be used in the target products are significantly
correlated with their prevailing structural features [46-54], polyphenolic and proanthocyanidins
features of pine tannins are crucial aspects to know for an overall data interpretation. Selected
structural data related to the characterisation of different pine bark extracts are summarised in Tables
1and 2.

Table 1. Structural characteristics obtained for pine tannins (PT).

M, Total Phenolic
Pine Proanthocyanidin Content
Entry Extraction [Da] Contentlmg GAE/mg PT]
Tannin " o [mg CyE/g] 1

1 PST-sW1 water/2%NaHSOs 500 0.15 22

PTT-
2 acetone/water 530 0.23 43

AW1

ol Determined by GPC in THF after acetobromination of the sample; results reflect the soluble part.
Numbers in square brackets represent exact molecular weight; ! Determined by Folin-Ciocalteau
test; [ Determined by Scalbert test.

Tannins arising from extraction using both aqueous acetone and sulphite-containing water
exhibit mean average molecular weights (Mn) of around 500 Da. The results indicated that both
extraction methods are suitable for extracting tannins with comparable molecular weight from the
bark matrix but with different content of phenols and condensed tannins, higher in the case of PTT-
AWI1 (Table 1, entry 2).

The 3'P NMR spectra (Figure 1A and data (Table 2)) reveal that pine tannins are essentially
comprised of catechin/epicatechin units, with some gallocatechin/epigallocatechin moieties as well
as gallates incorporated. Figure 1B shows a representative structure of the main composition, in
which the GPC-derived data regarding the number average molecular weight (Mn) were used for
estimating an average degree of polymerisation (DP) equal to three.
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Table 2. Averaged quantitative structural characteristics obtained for pine bark extracts of by

quantitative 3P NMR.

OH-Group/Motif

Integration Range [ppm]

Av. Abundance [mmol g]

PTT-sW1 [al PTT-AW1

aliphatic 145.94-145.25 3.11+0.5 2.22+0.2
ortho-disubstututed OH 142.46-141.06 0.56 +0.5 0.77 £0.2
gallo/epigallocatechin 142.46-141.87 1.22+£0.5 0.39+0.2
gallate 141.47-141.05 0.01+£05 0.12+0.2
ortho-substituted OH 140.60-137.60 1.00+0.5 1.66+0.2
catechol 140.20-138.30 0.89+0.5 0.72+0.2
non-catechols 138.80-137.60 044+05 0.91+0.2
ortho-unsubstituted OH 137.60-137.40 0.11+0.5 0.79+£0.2
acidic 135.50-134.00 0.44+0.5 0.82+0.2

lal Sample only scarcely soluble under standardised analysis conditions, approx. 10-15% of the sample
was adequately solubilised.

(A) prr-aws is

acids

aliphatics
A-ring

B-ring

pyrogallols calechols

52 151 150 149 148 147

,,,,,,,,,,,,

146 145 144 143 142 141 140 139 138 137 136 135 134 13
3 31P [ppm]

(B)

Figure 1. (A) Representative 3P NMR of a PTT-AW1 with cholesterol as internal standard (IS); (B)
structural representations of pine tannin (PT), estimating trimeric 408 linkage.

Various extraction methods yield tannins with different degrees of carbohydrate
contaminations, as delineable from the structure that the overestimated aliphatic OH-group content
shows. While aqueous acetone extractions furnish tannins with a relatively low carbohydrate content,
sulphite-assisted aqueous extractions cause more significant co-extraction of carbohydrates. A
difficulty in the preparation of PST-sW1 was identified in the efficient removal of all inorganic salts,
which requires eventually an additional washing of the extracts prior to drying; generally, PST-sW1

preparations exhibit scarcer solubilities (vide infra, Figure 2). As can be expected, despite overall
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structural similarity, differences in the absolute distribution of typical pine tannin motifs are
noticeable in the 3P NMR. A more detailed discussion of this aspect is, however, not possible given
the solubility characteristics of the tested PST-sW1 preparation.

Further analytical data were not generated for the different tannin extracts, since this work was
more intended as an exploratory study regarding the application of the prepared pine bark tannins.

3.3. Antioxidant Activity Test in Solution

Several available methods to test the antioxidant activity of different compounds are reported
in the literature [33,34,53,55-58]. Among them, those based on direct measurement of radical
scavenging capability are the most widely used ones. They are less expensive and less time-
consuming in comparison to the inhibition procedures in which the inhibition of oxidative damage
of a target molecule is measured in the presence of the examined antioxidants [59,60]. Based on what
was found in the literature, the currently most common methods for analysing the antioxidant
capability of compounds deposited on fabrics use chromogen compounds of a radical nature are the
stable free radicals 2,2-diphenyl-1-picrylhydrazyl (DPPH®) and 2,2’-azino-bis  (3-
ethylbenzothiazoline-6-sulphonic acid) (ABTS**) [61-66]. Both display a remarkable stability in
specific assay conditions but also present several differences in their response to the antioxidants
[67,68]. DPPH is a stable and commercially available organic free radical with a peak of absorbance
at A = 515 nm. It undergoes a decrease in its absorption when reduced by an antioxidant or a free
radical species. While ABTS** can be solubilised in aqueous and organic solvents, in which the
antioxidant activity can be measured due to the hydrophilic and lipophilic nature of the compounds
in samples, on the contrary, DPPH cannot be dissolved in aqueous solvents but only in organic ones,
which is an important limitation when interpreting the role of hydrophilic antioxidants. Moreover,
as it is reported in literature [68], a possible colour interference of DPPH with the plant material
extracts can lead to underestimation of antioxidant activity. Therefore, in order to minimise a
potential interference with the pine tannins being studied and thus with the aim to obtain more
reliable data, the antioxidant activities of cotton fabrics were investigated using the quick and easy
colorimetric procedure based on the ABTS assay, also characterised by measurement simplicity and
short experimental time.

Preliminarily, we determined the antioxidant activity of two different pine tannins and of BHT,
MtBHPP and octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate in solution by carrying out
the ABTS** decolourisation assay; results are reported in Table 3. Due to the solubility issues in water
observed for PTT-AW1 (Figure 2D), the antioxidant activity measurements were repeated using
aqueous ethanol (30% (v/v) water) as a solvent for preparing the starting antioxidant solution (Figure
2B). PST-sW1 as water soluble extract (Figure 2C) gave reliable data in the standard ABTS assay run
with water as only solvent. Since PST-sW1 was equally soluble in the aqueous ethanol necessary for
solubilising PTT-AW1, it was used for creating data for comparison for estimating the differences in
observed antioxidant activity as a function of the test used.
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Table 3. Antioxidant capabilities of pine tannins and commercial synthetic antioxidant as reference.

Anti-Ox Activity

Entry Pine Tannin Extraction
[mg AAE per Mg Pine Tannin]
1 PST-sW1 water/2%NaHSOs 0.30, 0.4011, 0.401
2 PTT-AW1 acetone/water 0.05,0.11 11, 0.051d
3 BHT - 0.14 1
octadecyl 3-(3,5-di-tert-butyl- 4-
- 0.03 toI
hydroxyphenyl)propionate

5 MtBHPP - 0.01 b1

lal Determined by a standard ABTS-assay if not stated otherwise. The maximum semi-dispersion is
adopted for the error estimation (+0.01).! Determined by a slightly modified ABTS-assay, using a
starting aqueous ethanol (70%) sample solution to be run in the assay instead of the aqueous one. ¢l
Determined by running in the modified ABTS-assay (started from an aqueous ethanol (70%) pine
tannin) only the supernatants obtained after centrifugation at 5000 rpm for 1 min of the pine tannin
starting liquid suspensions. [4l Determined by running in the standard ABTS-assay only the
supernatants obtained after centrifugation at 5000 rpm for 1 min of the pine tannin starting liquid
suspensions.

A B Gl e

Figure 2. Representative starting tannin solutions used in the ABTS"* decolourisation assay; aqueous
ethanol (70%) sample solutions (A,B,E) and aqueous sample solution (C,D).

Overall, a slightly better antioxidant activity was observed in the case of the use of starting pine
tannin preparations in aqueous ethanol instead of water (Table 3, entries 1 and 2) a fact that could be
ascribed to an increased solubility in this solvent system of those components responsible for the
radical scavenging capability. Therefore, the use of aqueous ethanol for both the samples allowed
bringing in solution a greater quantity of components responsible for the antioxidant activity.
Noteworthy, after centrifugation of the starting liquid suspensions of tannins (Figure 2D,E) and
performing the measurements only with the supernatants, respective AAE values essentially did not
change (Table 3, entries 1 and 2). This evidence suggests that the insoluble part does not significantly
contribute to the antioxidant activity of the sample.

In conclusion, PST-sW1 shows a better radical scavenging activity (Table 3, entry 1) but a lower
content of phenols and condensed tannins in comparison to PTT-AW1, despite having similar
molecular weight (Table 1).

Since the antioxidant activity of the plant extracts is mainly attributed to the high levels of
phenolics and proanthocyanidins [51,69], these findings suggest that some other constituents,
impurities or a combination of them, due to the extraction procedure, might be co-responsible for the
actual radical scavenging activity.

In Table 3, entry 3, we report the AAE values of synthetic antioxidants BHT, MtBHPP and
octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate, as references (Figures S1 and S2 in
Supplementary Materials), as common food additives and ingredients in personal care cosmetics,
pesticides and other consumer products [70,71]; their antioxidant activity exhibited in the ABTS*+
assay is comparable to that one observed for PTT-AW1, the pine tannin sample with a lower activity
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(Table 3, entry 2). This evidence hence lends pine tannins to be a natural viable alternative to the
artificial antioxidant agents used in many industrial application and formulations.

3.4. Antioxidant Activity on Fabrics

In order to obtain smart textiles, we subsequently deposited the two pine tannins and the
commercial antioxidants previously selected onto cotton fabric samples and investigated their
maintenance of functional features, especially the antioxidant activity. For this purpose, each treated
fabric was subjected an adapted ABTS** decolourisation assay. Results are summarised in Table 4.
Antioxidant activities of cotton fabrics significantly increased after the antioxidant deposition
treatments, and the lowest ant-oxidative capacity is shown for the reference fabric. This could be
attributed to the retention of antioxidants on the treated fabric surface.

The data reveal that treated fabric samples, i.e., industrial treatment (Table 4, entries 1-4) and
laboratory treatment, (Table 4, entry 5) in comparison to control-fabrics (Table 4, entries 6-8), display
an antioxidant activity under all treatment conditions. Most importantly, this observed activity for
all treated fabric samples is comparable in all cases except for PST-sW1 industrially treated in the
presence of HDL (Table 4, entry 2): this sample exhibits lower antioxidant activity.

Table 4. Antioxidant activity data obtained for cotton fabric samples treated with pine tannins.

Entry Fabric Sample [10 mg] Treatment Conditions Anti-ox Activity [ug AAE per Fabric Portion] 12!

1 PST-sW1_cotton H2O_mechanical 0.37 £0.22
2 PST-sW1_cotton HDL mechanical 0.16 £0.11
3 PTT-AW1_cotton H>O_mechanical 0.48 +0.22
4 PTT-AW1_cotton HDL mechanical 0.41+£0.23
5 PST-sW1_cotton H:0 0.42 +0.11
6 BHT_cotton H>0_mechanical 0.18+0.22
7 BHT_cotton H0_ 0.20+ 0.22
8 MBHPP_cotton H>0_mechanical 0.24+0.22
9 MitBHPP_cotton HO_ 0.27+0.22
10 cotton H20 mechanical 0.00 £0.10
11 cotton HDL_mechanical 0.00 +£0.10
12 cotton H0 0.00+£0.10

12l The maximum semi-dispersion is adopted for the error estimation. More in detail, as can be seen in
Table 2, entries 1 and 5, the values obtained for the measurements show that there is not a substantial
difference between fabrics treated industrially or in the laboratory. Noteworthy, combined data
analysis shows a larger relative variance for mechanically treated samples. This fact could be
explained by a non-homogenous tannin deposition especially in case of mechanical treatment (see
below).

3.5. Determination of Antioxidant Concentration Deposited on Fabric

The assessment of the amount of antioxidant deposited on fabrics is of crucial relevance in view
of many possible practical applications. In this effort, a protocol for the quantification of single
antioxidant deposited was developed. Samples of fabrics (weighing 10.0 mg each), were used
assuming the following: (i) once deposited, the antioxidant remains attached to the fibres by
electronic interactions and hydrogen bonding, i.e., wear-off is limited; and (ii) once deposited the
antioxidant does not undergo any chemical changes, i.e., does not lose its antioxidant activity.

Analysis was performed by the ABTS*+ decolourisation assay as shown in Table 5, on the basis
of a specific calibration for the compounds under analysis in the ABTS*+ decolourisation assay based
on a calibration obtained for PST (Figure S3 in Supplementary Materials).
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Table 5. Amount of antioxidants deposited on fabric determined by ABTS** decolourisation assay.

Amount of Pine Tannin
Amount of Pine

Sample Deposited on 10.0 mg
Entry Fabric Tannin Deposited on
(10 mg) Fabric[Mean Value + sd in
10.0 mg Fabric [ug]
ugl
PST-sW1_cotton_ H20
1 1 0.25
mechanical
PST-sW1_cotton_ H20
2 2 0.26
mechanical
PST-sW1_cotton_ H20O
3 3 0.49 0.24+£0.20
mechanical
PST-sW1_cotton_ H20
4 4 0.13
mechanical
PST-sW1_cotton_ H20
5 5 0.09
mechanical
PST-sW1_cotton_
6 1 0.25
HDL_mechanical
0.23 +0.02
PST-sW1_cotton_
7 2 0.21
HDL_mechanical
8 BHT cotton_ H20 1 0.27
9 BHT cotton_ H20 2 0.17
0.20 +0.07
10 BHT cotton_ H20 3 0.22
11 BHT cotton_ H20 4 0.15
Octadecyl 3-(3,5-di-tert-
butyl-4-hydroxyl-
12 Y Y Y 1 0.15
phenyl)propanoate cotton_
H0
Octadecyl 3-(3,5-di-tert-
butyl-4-hydroxyl-
13 Y Y Y 2 0.14
phenyl)propanoate cotton_
H0
0.14+0.01
Octadecyl 3-(3,5-di-tert-
butyl-4-hydroxyl-
14 Y Y Y 3 0.14
phenyl)propanoate cotton_
H0
Octadecyl 3-(3,5-di-tert-
butyl-4-hydroxyl-
15 Y Y Y 4 0.13
phenyl)propanoate cotton_
H0

As can be seen in Table 5, the values obtained for the measurements confirm a nonhomogeneous
tannin deposition onto the fabrics as it could be expected based on the chosen deposition method, the
industrial launderometer process used to treat the textiles with the chosen pine tannin under the
various conditions. Hence, this non-homogenous deposition could well explain the large error
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observed in the antioxidant activity measurements (see Table 2). On the contrary, the deposition of
commercial antioxidant species carried out manually is, as expected, homogenous.

4. Conclusions

Pine tannins and commercial antioxidant species were deposited on model fabrics. A dedicated
test method, based on the ABTS assay, was developed to determine deposition efficiency and
homogeneous distribution of the antioxidant species on the fabric. The developed procedure could
be also successfully applied to measure the residual antioxidant activity of the species deposited on
fabrics. A known source of odour is autoxidation of residual sebum on fabric, leading to generation
of an array of odoriferous compounds [20]. Antioxidants hold thus a promise for mitigating
malodour on fabrics, a top unmet consumer need around the globe.

Supplementary Materials: The following are available online at www.mdpi.com/2076-3417/10/18/6213/s1,
Figure S1: Structures of synthetic phenolic antioxidants; Figure S2: ABTS** decolorization assay before and after
addition of MtBHPP (1 mg/mL in ethanol); Figure S3: PST-sW1 calibration plot for evaluation of amount of
active tannin deposited on fabric.

Author Contributions: Conceptualisation, G.B. and C.C.; methodology, P.G.; H.L.; G.B. and C.C.; validation,
P.G,;H.L., G.B.and C.C,; formal analysis, P.G.; H.L. and C.J.; investigation, P.G.; H.L.; C.J. and D.W.B.; resources,
G.B. and C.C,; data curation, P.G. and H.L.; writing—original draft preparation, P.G; H.L. and C.C.; writing—

review and editing, P.G; H.L.; G.B. and C.C,; supervision, H.L. and C.C.; funding acquisition, G.B. and C.C. All
authors have read and agreed to the published version of the manuscript.

Funding: General financial support by the Procter & Gamble Company is gratefully acknowledged.

Acknowledgments: The authors thank Robertet SA R&D Department (Grasse, France) for providing Pinus
sylvestris tannin sample (PST-sW1). H.L. acknowledges the MIUR Grant ‘Dipartimento di Eccellenza 2018-2022"
to the Department of Pharmacy of the University of Naples ‘Federico II'. C.C acknowledges the Ca’Foscari FPI
2019 funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sahiner, N.; Sagbas, S.; Sahiner, M.; Silan, C.; Aktas, N.; Turk, M. Biocompatible and biodegradable
poly(Tannic Acid) hydrogel with antimicrobial and antioxidant properties. Int. |. Biol. Macromol. 2016, 82,
150-159, d0i:10.1016/j.ijbiomac.2015.10.057.

2. Dai, J; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer
Properties. Molecules 2010, 15, 7313-7352, doi:10.3390/molecules15107313.

3. Yesil-Celiktas, O.; Ganzera, M.; Akgun, I; Sevimli, C.; Korkmaz, K.S; Bedir, E. Determination of
polyphenolic constituents and biological activities of bark extracts from different Pinus species. J. Sci. Food
Agric. 2009, 89, 1339-1345, doi:10.1002/jsfa.3591.

4. Schafer, A.; Chovanova, Z.; Muchovd, J.; Sumegova, K.; Liptakova, A.; Durackova, Z.; Hogger, P.
Inhibition of COX-1and COX-2 activity by plasma of human volunteers after ingestion of French
maritime  pine bark extract (Pycnogenol).  Biomed.  Pharmacother. 2006, 60, 5-9,
doi:10.1016/j.biopha.2005.08.006.

5. Higdon, J.V.; Frei, B. Tea Catechins and Polyphenols: Health Effects, Metabolism, and Antioxidant
Functions. Crit. Rev. Food Sci. Nutr. 2003, 43, 89143, d0i:10.1080/10408690390826464.

6. Hammer, K.A; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. .

Appl. Microbiol. 1999, 86, 985-990, doi:10.1046/j.1365-2672.1999.00780.x.



Appl. Sci. 2020, 10, 6213 12 of 15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Packer, L.; Rimbach, G.; Virgili, F. Antioxidant activity and biologic properties of a procyanidin-rich
extract from pine (pinus maritima) bark, pycnogenol. Free Radic. Biol. Med. 1999, 27, 704-724,
doi:10.1016/S0891-5849(99)00090-8.

Mueller-Harvey, I. Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric.
2006, 86, 20102037, doi:10.1002/jsfa.2577.

Scalbert, A. Antimicrobial properties of tannins. Phytochemistry 1991, 30, 3875-3883, doi:10.1016/0031-
9422(91)83426-L.

Shakyawar, D.B.; Raja, A.S.M.; Kumar, A.; Pareek, P.K. Antimoth finishing treatment for woollens using
tannin containing natural dyes. Indian ]. Fibre Text. Res. 2015, 40, 200-202.

Ghaheh, F.S.; Nateri, A.S.; Mortazavi, S.M.; Abedi, D.; Mokhtari, J. The effect of mordant salts on
antibacterial activity of wool fabric dyed with pomegranate and walnut shell extracts. Color. Technol. 2012,
128, 473478, doi:10.1111/j.1478-4408.2012.00402.x.

Owis, A.S. An Economical Dyeing Process for Cotton, Polyester and Cotton/Polyester Blended Fabrics. J.
Text. Appar. Technol. Manag. 2010, 6, Fall 2010, 1-11.

Mongkholrattanasit, R.; Krysttifek, J.; Wiener, ].; Studnickova, J. Properties of Wool and Cotton Fabrics
Dyed with Eucalyptus, Tannin and Flavonoids. FIBRES Text. East. Eur. 2011, 19, 90-95.

Yamuna, V.; Sudha, S. Antimicrobial activity of fabrics treated with Quercus Infectoria extract for foot
odour control. Biotechnol. Indian ]. 2013, 7, 231-235.

Patel, B.H.; Tandel, M.G. Antimicrobial finish to cotton fabric by natural extracts. Man-Made Text. India
2015, 473-476.

Shahidi, S.; Wiener, J. Antibacterial Agents in Textile Industry. In Antimicrobial Agents; Bobbarala, V., Ed.;
InTech, 2012, ISBN 978-953-51-0723-1.

Chung, H.; Seok, H.J. Populations of malodor-forming bacteria and identification of volatile components
in triolein-soiled cotton fabric. Fibers Polym. 2012, 13, 740-747, doi:10.1007/s12221-012-0740-5.

Chi, Y.-S;; Kay Obendorf, S. Aging of oily soils on textiles. Chemical changes upon oxidation and
interaction with textile fibers. J. Surfactants Deterg. 1998, 1, 371-380, d0i:10.1007/s11743-998-0038-y.

Chi, Y.-S.; Obendorf, S.K. Aging of oily soils on textile materials: A literature review. J. Surfactants Deterg.
1998, 1, 407418, doi:10.1007/s11743-998-0044-0.

Munk, S.; Miinch, P.; Stahnke, L.; Adler-Nissen, J.; Schieberle, P. Primary odorants of laundry soiled with
sweat/sebum: Influence of lipase on the odor profile. ]. Surfactants Deterg. 2000, 3, 505-515,
doi:10.1007/s11743-000-0150-z.

Callewaert, C.; Maeseneire, E.D.; Kerckhof, F.-M.; Verliefde, A.; Wiele, T.V. de; Boon, N. Microbial Odor
Profile of Polyester and Cotton Clothes after a Fitness Session. Appl. Environ. Microbiol. 2014, 80, 6611—
6619, doi:10.1128/AEM.01422-14.

Kim, Y,; Jang, S.-J.; Kim, H.-R,; Kim, S.-B. Deodorizing, antimicrobial and glucosyltransferase inhibitory
activities of polyphenolics from biosource. Korean |. Chem. Eng. 2017, 34, 1400-1404, doi:10.1007/s11814-
017-0039-8.

Kanlayavattanakul, M.; Lourith, N. Body malodours and their topical treatment agents. Int. |. Cosmet. Sci.
2011, 33, 298-311, d0i:10.1111/j.1468-2494.2011.00649.x.

Lodhia, P.; Yaegaki, K.; Khakbaznejad, A.; Imai, T.; Sato, T.; Tanaka, T.; Murata, T.; Kamoda, T. Effect of
Green Tea on Volatile Sulfur Compounds in Mouth Air. |. Nutr. Sci. Vitaminol. (Tokyo) 2008, 54, 89-94,
doi:10.3177/jnsv.54.89.



Appl. Sci. 2020, 10, 6213 13 of 15

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Bianchetti, G.O. Celliers, J.M.; Crestini, C. Cleaning and/or treatment compositions 2016;
US20170088798A1.

Furno, F.; Wattebled, L.; Ix-Mund, A.; Schmidt, H.; Henn, M.; Harren, J. Superabsorbent composition with
tannins for odor control 2014; US8658146B2.

Schiir, J. Method for Neutralising Odours in the Air in a Non-Toxic Manner 2002; WO/2002/055114.
Srisod, S.; Motina, K.; Inprasit, T.; Pisitsak, P. A green and facile approach to durable antimicrobial coating
of cotton with silver nanoparticles, whey protein, and natural tannin. Prog. Org. Coat. 2018, 120, 123-131,
doi:10.1016/j.porgcoat.2018.03.007.

Shahid, M.; Shahid-ul-Islam; Mohammad, F. Recent advancements in natural dye applications: a review.
J. Clean. Prod. 2013, 53, 310-331, doi:10.1016/j.jclepro.2013.03.031.

Varesano, A.; Vineis, C.; Aluigi, A.; Rombaldoni, F. Antimicrobial polymers for textile products. In Science
against microbial pathogens: communicating current research and technological advances; Formatex Research
Center, 2011; Vol. 3, pp. 99-110.

Pizzi, A. Tannins: Major Sources, Properties and Applications. In Monomers, Polymers and Composites from
Renewable Resources; Elsevier, 2008; pp. 179-199 ISBN 978-0-08-045316-3.

Cefali, L.C.; Ataide, J.A.; Moriel, P.; Foglio, M.A.; Mazzola, P.G. Plant-based active photoprotectants for
sunscreens. Int. |. Cosmet. Sci. 2016, 38, 346-353, doi:10.1111/ics.12316.

Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying
an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231-1237,
doi:10.1016/50891-5849(98)00315-3.

Serpen, A.; Capuano, E.; Fogliano, V.; Gokmen, V. A new procedure to measure the antioxidant activity
of insoluble food components. . Agric. Food Chem. 2007, 55, 7676-7681, d0i:10.1021/jf071291z.

Melone, F.; Saladino, R.; Crestini, C. Tannin Structural Elucidation and Quantitative 31P NMR Analysis.
1. Model Compounds. J. Agric. Food Chem. 2013, 61, 9307-9315, d0i:10.1021/jf401477c.

Melone, F.; Saladino, R.; Crestini, C. Tannin Structural Elucidation and Quantitative 31P NMR Analysis.
2. Hydrolyzable Tannins and Proanthocyanidins. ]. Agric. Food Chem. 2013, 61, 9316-9324,
doi:10.1021/jf401664a.

Granata, A.; Argyropoulos, D.S. 2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a Reagent for the
Accurate Determination of the Uncondensed and Condensed Phenolic Moieties in Lignins. J. Agric. Food
Chem. 1995, 43, 1538-1544, doi:10.1021/jf00054a023.

Meng, X.; Crestini, C.; Ben, H.; Hao, N.; Pu, Y.; Ragauskas, A.]J.; Argyropoulos, D.S. Determination of
hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nat. Protoc. 2019, 14,
2627-2647, doi:10.1038/s41596-019-0191-1.

Asikkala, J.; Tamminen, T.; Argyropoulos, D.S. Accurate and Reproducible Determination of Lignin Molar
Mass by Acetobromination. J. Agric. Food Chem. 2012, 60, 8968-8973, doi:10.1021/jf303003d.

Lange, H.; Rulli, F.; Crestini, C. Gel Permeation Chromatography in Determining Molecular Weights of
Lignins: Critical Aspects Revisited for Improved Utility in the Development of Novel Materials. ACS
Sustain. Chem. Eng. 2016, 4, 5167-5180, doi:10.1021/acssuschemeng.6b00929.

Singleton, V.L.; Rossi, ]J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid
Reagents. Am. ]. Enol. Vitic. 1965, 16, 144-158.

Scalbert, A.; Monties, B.; Janin, G. Tannins in wood: comparison of different estimation methods. J. Agric.

Food Chem. 1989, 37, 1324-1329, doi:10.1021/jf00089a026.



Appl. Sci. 2020, 10, 6213 14 of 15

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Strumeyer, D.H.; Malin, M.]. Condensed tannins in grain sorghum. Isolation, fractionation, and
characterization. J. Agric. Food Chem. 1975, 23, 909-914, doi:10.1021/j£60201a019.

Gambacorta, A.; Tofani, D.; Bernini, R.; Migliorini, A. High-Yielding Preparation of a Stable Precursor of
Hydroxytyrosol by Total Synthesis and from the Natural Glycoside Oleuropein. ]. Agric. Food Chem. 2007,
55, 3386-3391, doi:10.1021/jf063353b.

Vieira, M.C.; Lelis, R.C.C,; Silva, B.C. da; Oliveira, G. de L. Tannin Extraction from the Bark of Pinus
oocarpa var. oocarpa with Sodium Carbonate and Sodium Bisulfite. Floresta E Ambiente 2011, 18, 1-8,
doi:10.4322/floram.2011.017.

De la Luz Cadiz-Gurrea, M.; Fernandez-Arroyo, S.; Segura-Carretero, A. Pine Bark and Green Tea
Concentrated Extracts: Antioxidant Activity and Comprehensive Characterization of Bioactive
Compounds by HPLC-ESI-QTOEF-MS. Int. |. Mol. Sci. 2014, 15, 20382-20402, d0i:10.3390/ijms151120382.
Weber, H.A.; Hodges, A.E.; Guthrie, ].R.; O’'Brien, B.M.; Robaugh, D.; Clark, A.P.; Harris, R.K.; Algaier,
J.W.; Smith, C.S. Comparison of Proanthocyanidins in Commercial Antioxidants: Grape Seed and Pine
Bark Extracts. J. Agric. Food Chem. 2007, 55, 148-156, doi:10.1021/jf063150n.

Bahorun, T.; Luximon-Ramma, A.; Crozier, A.; Aruoma, O.I. Total phenol, flavonoid, proanthocyanidin
and vitamin C levels and antioxidant activities of Mauritian vegetables. J. Sci. Food Agric. 2004, 84, 1553
1561, doi:10.1002/jsfa.1820.

Wu, X; Gu, L.; Prior, R.L.; McKay, S. Characterization of Anthocyanins and Proanthocyanidins in Some
Cultivars of Ribes, Aronia, and Sambucus and Their Antioxidant Capacity. J. Agric. Food Chem. 2004, 52,
7846-7856, d0i:10.1021/jf0486850.

Arnous, A.; Makris, D.P.; Kefalas, P. Correlation of Pigment and Flavanol Content with Antioxidant
Properties in Selected Aged Regional Wines from Greece. ]. Food Compos. Anal. 2002, 15, 655-665,
doi:10.1006/jfca.2002.1070.

Luximon-Ramma, A.; Bahorun, T.; Soobrattee, M.A.; Aruoma, O.I. Antioxidant Activities of Phenolic,
Proanthocyanidin, and Flavonoid Components in Extracts of Cassia fistula. J. Agric. Food Chem. 2002, 50,
5042-5047, d0i:10.1021/jf0201172.

Alonso, A.M.; Guillén, D.A.; Barroso, C.G.; Puertas, B.; Garcia, A. Determination of Antioxidant Activity
of Wine Byproducts and Its Correlation with Polyphenolic Content. ]. Agric. Food Chem. 2002, 50, 5832~
5836, d0i:10.1021/j£025683Db.

Rigo, A.; Vianello, F.; Clementi, G.; Rossetto, M.; Scarpa, M.; Vrhovsek, U.; Mattivi, F. Contribution of
Proanthocyanidins to the Peroxy Radical Scavenging Capacity of Some Italian Red Wines. ]. Agric. Food
Chem. 2000, 48, 1996-2002, doi:10.1021/jf991203d.

Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and
phenolic acids. Free Radic. Biol. Med. 1996, 20, 933-956, d0i:10.1016/0891-5849(95)02227-9.

Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total
Antioxidant Capacity of Plant Foods, Beverages and Oils Consumed in Italy Assessed by Three Different
In Vitro Assays. . Nutr. 2003, 133, 2812-2819, d0i:10.1093/jn/133.9.2812.

Da Silva, ].M.R,; Darmon, N.; Fernandez, Y.; Mitjavila, S. Oxygen free radical scavenger capacity in
aqueous models of different procyanidins from grape seeds. |. Agric. Food Chem. 1991, 39, 1549-1552,
doi:10.1021/j00009a002.

Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of Antioxidant Activities
of Common Vegetables Employing Oxygen Radical Absorbance Capacity (ORAC) and Ferric Reducing



Appl. Sci. 2020, 10, 6213 15 of 15

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Antioxidant Power (FRAP) Assays: A Comparative Study. |. Agric. Food Chem. 2002, 50, 3122-3128,
doi:10.1021/j£0116606.

Szabo, M.R; Iditoiu, C.; Chambre, D.; Lupea, A.X. Improved DPPH determination for antioxidant activity
spectrophotometric assay. Chem. Pap. 2007, 61, 214-216, d0i:10.2478/s11696-007-0022-7.

Pérez-Jiménez, J.; Arranz, S.; Tabernero, M.; Diaz- Rubio, M.E.; Serrano, J.; Goni, I.; Saura-Calixto, F.
Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction,
measurement and expression of results. Food Res. Int. 2008, 41, 274-285, doi:10.1016/j.foodres.2007.12.004.
Nugroho Prasetyo, E.; Kudanga, T.; Steiner, W.; Murkovic, M.; Nyanhongo, G.S.; Guebitz, G.M.
Antioxidant activity assay based on laccase-generated radicals. Anal. Bioanal. Chem. 2008, 393, 679,
doi:10.1007/s00216-008-2466-1.

Pan, Y.; Yang, X.; Xu, M.; Sun, G. Preparation of mud-coated silk fabrics with antioxidant and antibacterial
properties. Mater. Lett. 2017, 10-13.

Koh, E.; Hong, K.H. Gallnut extract-treated wool and cotton for developing green functional textiles. Dyes
Pigments 2014, 222-227.

Zemlji¢, L.F.; Persin, Z.; éauperl, O.; Rudolf, A ; Kosti¢, M. Medical textiles based on viscose rayon fabrics
coated with chitosan-encapsulated iodine: antibacterial and antioxidant properties. Text. Res. |. 2018, 88,
2519-2531, doi: 10.1177/0040517517725117,.

Zemlji¢, L.F.; Volmajer, J.; Risti¢, T.; Bracic, M.; Sauperl, O.; KrezZe, T. Antimicrobial and antioxidant
functionalization of viscose fabric using chitosan—curcumin formulations. Text. Res. ]. 2014, 84, 819-830,
doi:10.1177/0040517513512396.

Hong, K.H.; Bae, ].H.; Jin, S.R; Yang, ].S. Preparation and properties of multi-functionalized cotton fabrics
treated by extracts of gromwell and gallnut. Cellulose 2012, 19, 507-515.

Hong, K.H. Preparation and properties of phenolic compound/BTCA treated cotton fabrics for functional
textile applications. Cellulose 2015, 22, 2129-2136.

Shalaby, E.A.; Shanab, SM.M. Comparison of DPPH and ABTS assays for determining antioxidant
potential of water and methanol extracts of Spirulina platensis. Indian | Mar Sci 2013, 42, 556-564.

Arnao, M.B. Some methodological problems in the determination of antioxidant activity using chromogen
radicals: a practical case. Trends Food Sci. Technol. 2000, 11, 419-421, doi:10.1016/50924-2244(01)00027-9.
Saeed, N.; Khan, M.R.; Shabbir, M. Antioxidant activity, total phenolic and total flavonoid contents of
whole plant extracts Torilis leptophylla L. BMC Complement. Altern. Med. 2012, 12, 221, doi:10.1186/1472-
6882-12-221.

Yehye, W.A,; Rahman, N.A,; Ariffin, A.; Abd Hamid, S.B.; Alhadi, A.A.; Kadir, F.A.; Yaeghoobi, M.
Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A
review. Eur. . Med. Chem. 2015, 101, 295-312, d0i:10.1016/j.ejmech.2015.06.026.

Yang, T.-J.; Tsai, F.-].; Chen, C.-Y.; Yang, T.C.-C.; Lee, M.-R. Determination of additives in cosmetics by
supercritical fluid extraction on-line headspace solid-phase microextraction combined with gas

chromatography-mass spectrometry. Anal. Chim. Acta 2010, 668, 188-194, doi:10.1016/j.aca.2010.04.001.

© 2020 by the authors. Licensee MDP], Basel, Switzerland. This article is an open access
@ ® | article distributed under the terms and conditions of the Creative Commons

Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).



