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Abstract: At present, optimization algorithms are used extensively. One particular type of such
algorithms includes random-based heuristic population optimization algorithms, which may be
created by modeling scientific phenomena, like, for example, physical processes. The present article
proposes a novel optimization algorithm based on Hooke’s law, called the spring search algorithm
(SSA), which aims to solve single-objective constrained optimization problems. In the SSA, search
agents are weights joined through springs, which, as Hooke’s law states, possess a force that
corresponds to its length. The mathematics behind the algorithm are presented in the text. In order
to test its functionality, it is executed on 38 established benchmark test functions and weighed
against eight other optimization algorithms: a genetic algorithm (GA), a gravitational search
algorithm (GSA), a grasshopper optimization algorithm (GOA), particle swarm optimization (PSO),
teaching-learning-based optimization (TLBO), a grey wolf optimizer (GWO), a spotted hyena
optimizer (SHO), as well as an emperor penguin optimizer (EPO). To test the SSA’s usability, it is
employed on five engineering optimization problems. The SSA delivered better fitting results than
the other algorithms in unimodal objective function, multimodal objective functions, CEC 2015, in
addition to the optimization problems in engineering.

Keywords: heuristic algorithms; optimization; spring force; spring search; spring

1. Introduction

As the demand for quick and accurate solutions to ever increasingly complex problems expands,
classical methods are being substituted for more robust approaches. One proposal is the use of
heuristic random-based algorithms in place of searching the defined problem space exhaustively [1-
5]. Heuristic algorithms are applicable to a variety of scientific fields, such as: logistics [6],
bioinformatics [7], data mining [8], chemical physics [9], energy [10], security [11], electrical
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engineering [12-16], energy carriers [17,18] as well as other fields that aim to discover the optimal
solution.

Each population-based algorithm may represent the conveying of data along with the
interlinkage between elements in a different way. For example, genetic algorithms simulate evolution
[19] while annealing algorithms, thermodynamics [20]; immunity algorithms, the human immune
system [21]; colony optimization strategies, ants’ search for food [22]; and particle swarm
optimization approaches, the behavior of birds while searching for food [23].

There are many laws of nature that may serve as inspiration, such as Newton’s universal law of
gravitation, Hooke’s spring law, the laws of motion, the laws of energy and mass conservation, as
well as the laws that dictate the electromagnetic force. A novel optimization algorithm was proposed
based on Hooke’s spring law, with its corresponding precursory results detailed in [24]. Such
algorithm is detailed and analyzed in the current paper with its improved equations. The SSAs
capabilities were evaluated through 23 benchmark test functions, as well as a group of problems
mentioned in the Constrained Single Objective Real-Parameter Optimization Technical Report,
‘CEC’2015". The SSA was further corroborated by being weighed against eight established algorithms
found in the literature, as well as being used to solve a selection of engineering problems.

Section 2 provides a greater insight to other established optimization approaches. Section 3
elucidates Hooke’s law while Section 4 outlines the SSA. Section 5 assesses the algorithm’s search
ability while Section 6, its proficiency. Section 7 includes the outcome of the evaluation through the
standard benchmark test functions. Section 8 includes the implementation of the algorithm on select
engineering design problems. Finally, Section 9 encompasses conclusions.

2. A Brief History of Intelligent Algorithms

An algorithm is considered intelligent when it finds a suitable answer or solution to a problem
whose main characteristic is optimization in the shortest possible time and using the least amount of
available information [25]. Using a more complete definition, the heuristic method is a strategy that
sacrifices part of the information to reach a solution in the shortest possible time and with good
precision [26]. Usually, heuristic algorithms are very frequently based on natural processes, that is,
typically biological processes or laws that explain physical phenomena. This approach has been
widely considered in the last ten years, and numerous algorithms have been suggested. These
algorithms have been classified into different categories, such as swarm-based algorithms, evolution-
based algorithms, and physics-based algorithms.

2.1. Swarm-Based Algorithms

These techniques were developed from the analysis of several processes that exist naturally, such
as the growth or symbiosis of plants, the feeding behavior of insects, and the behavior and social
organization of animals [27]. The particle swarm optimization (PSO) algorithm is an indeterminate
(random) search method that was developed around 1995 to support functional optimization [28].
This algorithm was developed by analyzing and taking a reference to the movement that birds
develop as a group (team) when looking for food. The algorithm is based on the premise that a group
of birds looks for food at random and that there is only one portion of food in the area (search space)
in question, but none of the birds know where the food is. One of the most successful strategies could
be: for the birds to follow the bird that is closest to the food, and in sequence to be the bird most likely
to find the food. This strategy is, in fact, the source of the algorithm. In the algorithm, each solution,
called a particle, is equivalent to a bird in the bird movement algorithm. Each particle (bird) has an
arbitrary value calculated by a success function. Each particle (bird) also has a speed that controls the
particle (bird). By continuing to search for optimal particles, the agent continues to move in the
solution space. The firefly algorithm (FA) is an algorithm inspired by a natural system; in this case,
based on swarms for projects where limited optimal solutions are sought [29]. The algorithm is
inspired by the analysis of the radiation behavior of these insects. The firefly lives in groups and
changes from low light to higher light intensity. The firefly algorithm generates a rhythmic light and
passes through each different light pattern or behavior among these insects. The firefly algorithm
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uses these lights for two main purposes: finding mates to mate with and looking for food. These lights
can also serve as a protection mechanism or strategy. The whale optimization algorithm (WOA) [30]
is another nature-inspired optimization algorithm; as the name implies, this algorithm mimics the
social behavior that humpback whales have. The most surprising thing about humpback whales is
their hunting strategy. This food search strategy is called a bubble net feeding method. Humpback
whales like to hunt schools of krill or small fish near the surface of the ocean. It has been analyzed
that this foraging is done by creating distinctive bubbles along a circle or route in the form of the
number “9.” Some of the other swarm-based algorithms are: artificial bee colony (ABC) [31], bat-
inspired algorithm (BA) [32], spotted hyena optimizer (SHO) [33], cuckoo search (CS) [34], monkey
search (MS) [35], group optimization (GO) [36], artificial fish-swarm algorithm (AFSA) [37], hunting
search (HS) [38], moth-flame optimization algorithm (MFO) [39], dolphin partner optimization (DPO)
[40], orientation search algorithm (OSA) [41], binary orientation search algorithm (BOSA) [42], dice
game optimizer (DGO) [43], shell game optimization (SGO) [44], hide objects game optimization
(HOGO) [45], donkey theorem optimization (DTO) [46], following optimization algorithm (FOA)
[47], rat swarm optimizer (RSO) [48], darts game optimizer (DGO) [49], football game based
optimization (FGBO) [50], grey wolf optimizer (GWO) [51], grasshopper optimization algorithm
(GOA) [52], coupled spring forced bat algorithm (SFBA) [53], adaptive granularity learning
distributed particle swarm optimization (AGLDPSO) [54], multi leader optimizer (MLO) [55], doctor
and patient optimization (DPO) [56], and emperor penguin optimizer (EPO) [57].

2.2. Evolution-Based Algorithms

An algorithm is considered evolutionary when the algorithm combines aspects of natural
selection and continuity of coordination. These algorithms are based on structures that simulate the
rules of selection, recombination, change, and survival, similar to genetics, hence the adjective
algorithm. These structures are based on genetic sets. In this method, the environment determines
each person’s coordination or performance in a population and uses the most consistent individuals
to reproduce [58]. Evolutionary algorithms are random search procedures that use genetic
mechanisms and natural selection [59]. Genetic algorithms (GA) were developed as a method that
seeks optimization, starting from fundamental basic operations in genetic biology [60]. The first
record of using these concepts to create an optimization method occurred in 1967 [61]. GA is a
particular type of evolution algorithm that exploits basic biological concepts such as inheritance and
mutation [62] and has had satisfactory results in different scientific domains.

On the other hand, differential evolution (DE) [63] is an algorithm that also seeks intelligent
optimization based on populations introduced in 1995 [64]. The initial version of this algorithm was used
to solve problems with continuous variables, and interpretations of this algorithm have been
implemented over time to solve optimization problems with discrete variables [65]. Other algorithms
based on the theory of evolution have been developed, examples of which are: evolutionary programming
(EP) [66], biogeography-based optimizer (BBO) [67], enhanced quantum-inspired differential evolution
algorithm (IQDE) [68], genetic programming (GP) [69] and evolution strategy (ES) [70].

2.3. Physics-Based Algorithms

Physics-based algorithms, as the name implies, are inspired by the laws of physics. Simulated
annealing (SA) is one of the best known and most popular optimization algorithms. SA was
developed in 1983 [71], inspired by metals” annealing, for example, in the artisan process to make
swords or knives in the past. The process consists of first heating the metal to a very high temperature
and then cooling it by gradually reducing the temperature so that the metal hardens and becomes
harder. In this process, when the temperature of the metal increases, the speed of atomic movement
increases dramatically and, in the next step, the gradual reduction in temperature causes the
formation of specific patterns based on the location of its atoms [20]. Drastic temperature change is
one of the adjustment parameters of this algorithm. The gravitational search algorithm (GSA) [72] is
inspired by the universal law of gravitation developed by Isaac Newton. In this algorithm, objects
such as planets in a galaxy are defined as search agents. The optimal region, similar to a black hole,
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absorbs the planets. Information about the fitness of any object is stored as gravity and mass inertia.
The exchange of information and the effects of objects on each other is governed by the attractive
force of gravitation [73]. Several algorithms have been developed based on laws and/or theories of
physics, such as: charged system search (CSS) [74], galaxy-based search algorithm (GBSA) [75],
curved space optimization (CSO) [76], ray optimization (RO) algorithm [77], artificial chemical
reaction optimization algorithm (ACROA) [78], small world optimization algorithm (SWOA) [79],
central force optimization (CFO) [80], black hole (BH) [81] and big-bang big-crunch (BBBC) [82].

3. Spring Force Law

If a force that moves an object in a closed path (forward and backward) is not affected by the
object’s trajectory, that force is conservative. Another method for diagnosing conservative forces is
that the work done by the force in different paths is equal to the difference between the initial and
final points. The spring force is a type of conservative force [83].

Consider a spring that imposes a force on a particle with mass ‘m’. The particle moves
horizontally in the x direction. When a particle is at the origin (x = 0), the spring is balanced. An
external force (F ) influences the object in the anti-clock wise direction of the spring. The external
force is always equal to the spring force. Thus, the particle is always in balance.

Consider that the particle is moved a distance x from its initial location x = 0. When the external
factor imposes a force F,,, on the particle, the spring offers a resistance force Fs on the particle. This
force can be described by the spring force or Hooke’s law as follows:

F, = —kx (1)

where k is the spring force constant and x denotes the spring displacement (strain or compression)
from the balance point. Most real springs properly follow Hooke’s law up to a limit [84].

The system behavior is investigated in an isolated system as shown in Figure 1. It is assumed
that only the spring force is imposed on the object.
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Figure 1. An isolated system is composed of object and spring forces.

In Figure 1, forces imposed on object j can be grouped into two, Fsq,, Which variables as described
in Equation (2), is the sum of forces imposed from the right and Fi,4;,, which, as shown in Equation (3),
is the sum of forces imposed from the left. It is necessary to mention that the springs that are attached to
the object from either right or left, are also attached to robust points at their other ends.

Foptatp = Z K jxi )

totalL Z Ky jxy (€))
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where, ng and n, are the number of left and right spring forces, x;; and x;; show the distance
between the object j and the fixed left and right points, K;;jand K;; are the spring stiffness
coefficients between the object j and the fixed points.

The object is initially balanced with no force exerted on it. Then, by applying the spring forces,
the object is pulled from the right and the left. Considering the magnitude of these forces, the spring
either shifts to left or right until the system reaches a new equilibrium position. It is apt to mention
that if the right and left forces are equal, the object remains at its original position.

Considering the stiffness coefficient of the springs that are connected to the object, two new
parameters may be defined as below:

nR
J -

KequalR - ZKL'J (4)
=1
nL

Khpuar, = ) Ko G)
=1

KejqualRand KejqualLare the right and the left constants of the spring, respectively. Considering

Equation (1) the displacement values at each side may be defined as follows:

J

. F
dx! = —f]f’“”" (6)
equalg
R
dx] = t]f’“”L (7)
equaly,

here, dX 11?' and dX Z are the displacement values of object j to the right and left, respectively.
Therefore, the total displacement may be defined as follows:

X/ = dx} +dx] @)
dXis the final object j displacement value that may be a positive or negative value.
X =X} +dx )

Equation (9), X’ relates to the location of the new balance point of the system and object j.
Besides, X g is the initial balance of object j.

By simulating Hooke’s law within the discrete time domain, a new optimization algorithm called
the spring optimization was designed, which is explained further in the following section.

4. Spring Search Algorithm (SSA)

In this article, the spring search algorithm is run in an artificial system with discrete time. The
system space is the defined domain of problem. It is possible to apply the spring force law as a tool
to convey information. The designed optimization may be applied to solve any optimization
problem, as long as the answer can be defined as a position within space, and its similarity to other
problem answers can be expressed as spring stiffness comparisons. The stiffness of the spring is
established relative to the objective function.

SSAs consist of two general steps: making a discrete time artificial system within the problem
space by defining the initial positioning of objects, determining the governing laws and arranging
parameters; letting the algorithm run until it reaches a stop.
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4.1. Setting the System, Determining Laws and Arranging Parameters

First, the system space is determined with its multi-dimensional coordinate system in which the
problem is defined. Any point in space may be the solution of the optimization problem. Search
factors are sets of objects that are attached to each other by some springs. Each object has its own
position as well as stiffness coefficients pertaining to the springs attached to it. The object’s position
is a point in space where the solution of the problem may be found. The values of the springs are
computed regarding the stiffness of both objects attached.

After setting the system, its governing laws are determined. Only the spring force laws and
movement laws are observed in the system. The general patterns of these rules are similar to natural
laws and are defined below.

In physics, mechanical and elastic science, Hooke’s law is an approximation that shows that any
change in an object’s length is directly proportional to its load. Most materials follow this law with
reasonable accuracy, except when the force is lower than its elasticity. Any deviation from Hooke’s
law increases with the deformation quantity, such that with numerous deformations, when the
material trespasses its linear elastic domain, Hooke’s law loses its application. The present article
assumes that Hooke’s law is valid for all of the time observed.

The present location of any object equals the sum coefficient of its previous locations and its
displacements according to the laws of motion. Any object displacement may be determined with the
aid of the spring force law.

Consider a system as a set of m objects where the position of each object is a point in the search
space and a solution to the problem.

Xi = (xil, ...,x{i, ---vxin) (10)

The position of an object i of dimension d is designated x{ in Equation (10). The initial positions
of the objects are defined within the search space randomly. These objects tend to return to an
equilibrium position by means of the forces exerted by the spring.

Equation (11) is employed in order to compute the spring stiffness coefficient.

Kij = Kinax X |F,{ - Fnj| X max (F,f,F,{) 11)

In Equation (11), K;; is the spring stiffness coefficient among objects i and j, K., is the
maximum value of the spring stiffness coefficient, and is determined according to the type of problem
in question, F! and F,f are the normalized objective functions of objects i and j respectively.
Equations (12) and (13) are used in order to normalize the objective function.

i foibj

i 12

"= in (fony) (12
F! = min (F'%) x L (13)

/i
F'n

In the above equations, Faj is the objective function and f,; is the objective function value for
the object i.

In the m variable problem, it is possible to assume that the problem has m dimensions and that
there is a coordinate for each dimension. Therefore, it is possible to draw a system on its related
coordinate based on each variable. Each coordinate’s strong points at the left or right side of the object
are determined by comparing the objective function quantities. Stronger points related to each object
mean that they are positioned at more optimal positions. Therefore, each coordinate has two general
summative forces: the sum of the right, Equation (14) and the sum of the left, Equation (15). Both are
applied to the object ;.
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i
Ja  _ d
F;:otalR - Z Ki:jxi.]' (14)
=1
nf
ja  _ d
Feotar, = Z Kijxi; 15
=1

Ja
Fitqr, the sum of the
left forces imposed on object j within the dimension d. n§ and nf are the d dimension right and left
strong points; xf; and x{; represent the distance of the object ‘j’ from the right and left strong points;

In the above equations, Ft{;‘tial stands for the sum of the right forces and
R

K;j and K, ; are the spring stiffness coefficient attached to the object j and the strong points.
Now, considering Hooke’s law in the dimension 4:

jd
id totalg
Xy =—
dx;} ; (16)
equalgR

jd
totaly,
J
equaly,

dx}® = (17)

here, dX é‘d and dX Lj'd are the displacement of object j to the right and the left of dimension 4,
respectively. The total displacement may be calculated as follows:

dx/4 = dx}* + dx}¢ (18)

where dX’is the final displacement of object j in the dimension d. The direction may be in the
positive or negative x direction.
X4 = X0+ xdxid, (19)

Equation (19) relates X, to both the new position and balance point of the system, along with
the d dimension of object j. Additionally, X, g‘d is the initial balance point of object j along with the d
dimension. Here, r; is a random number with a uniform distribution within the span of [0 — 1],
which is used to preserve the random mode.

In the last step, the objects and springs after reaching balance have a small displacement due to
slipping, which is simulated in Equation (20).

2xX(T—t .
2xT-9 X (—0.2 + 15, X 0.4) x X224 (20)

Xi = X0, +
here, X/% is the updated position of 4 dimension of objectj, T is the maximum number of iteration,
t is the counter of iteration, and 7, is a random number with a uniform distribution within the span
of [0-1], which is used to preserve the random mode.

4.2. Time Passing and Parameters Updating

While initially forming a system, each object is randomly placed within a point in space where
it may be the problem’s answer. At any given time, objects are assessed and their displacement is
calculated using Equations (11) through (18). Thereafter, the object is placed in the new computed
position. The parameter of interest is the spring stiffness coefficient that is updated at each stage
based on Equation (11). The stop condition is established after the algorithm has been run for a given
time. The steps of the SSA are as follows and a flowchart encompassing them is shown in Figure 2:
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Set parameters and problem information

v
Create mitial population of objects

——————— =)

L Evaluate objective function

: 4

| Calculate normalize objective function. Eqs. (12) and (13}
! ¢

I Calculate spring stiffness coefficient. Eq. (11)

: !

| Calculate sum of the right forces. Eq. (14)

' §

| Calculate sum of the left forces. Eq. (13)

. v

| Calculate displacement of objects to the right. Eq. (16)

: y

I Calculate displacement of objects to the left. Eq. (17)

1 !

1 Calculate total displacement. Eq. (18)

! ¥

| Update location of population of objects. Eqs. (19) and (20}
I

|

|

2
o

stop condition

Print best solution

Figure 2. Spring Search Algorithm Flowchart.

Start

Determine the system environment and the problem information
Create the initial population of objects

Evaluate and normalize fitness function or objective function
Update parameter K

Formulate the spring force and the laws of motion for each object
Compute object displacement quantities

8 of 24
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8- Update object locations

9-  Repeat steps 4 through 8 until the stop condition is satisfied
10- Print best solution

11- End

5. Properties of the Proposed SSA

The above algorithm is a proposed optimization method that applies the spring force law. The
strategy of the algorithm proposed is to use the spring fitness coefficient. In this algorithm, a set of objects
search the space randomly using the spring force as a tool to transfer information between objects. Under
the influence of other objects, each may arrive at a rough understanding of its surrounding space. The
algorithm must be navigated such that the objects’ location improves as time passes.

Thus, springs with more fitness coefficients can be attached to those with better fitness functions.
The springs attract other objects to themselves, allowing a suitable force to be exerted on each object.
Objects tend to move towards better conditions as time goes by. Accordingly, objects placed in better
locations must take slower and shorter steps. As an object arrives in a better condition, its stiffness
coefficient increases. The stiffer objects search their surrounding environment with more precision.
Indeed, this behavior, known here as the adjustment, is similar to arranging the learning rate in a
neural network. The spring’s stiffness coefficient becomes smaller with the passing of time as a result
of the spring’s force. Another reason why the spring stiffness coefficient decreases with time is that
the objects tend to concentrate around better locations and need to search space with smaller and
more precise steps.

Each object can influence the radius of its neighborhood according to its fitness value. As
indicated in Figure 3, each object can move as influenced by the spring forces imposed on it.

Figure 3. Forces in the system of objects and springs.

6. Exploration and Exploitation in SSA

The optimization method must address two issues: exploration and exploitation. In the
exploration aspect, the algorithm must have enough power to search the problem search space well
and not be limited to only a few specific locations. The algorithm tackles exploitation by focusing on
exploring optimal locations. Before running a population algorithm, it is necessary to search the
designated space comprehensively. Hence, the algorithm must focus on searching for the solution’s
general area during initial iterations, though as the time passes, it must locate itself more efficiently
through aid from the population findings [85].
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SSAs can search space by considering the suitable number of objects. The way the optimization
algorithm improves its detection power is through the spring force effect by varying the spring’s
stiffness coefficient and consequently controlling the spring forces among the objects. During initial
iterations, the problem needs thorough searches, and as time passes, the population arrives at better
results and the spring stiffness coefficient value is controlled. At the initial time, a proper value is
chosen, and as time passes, that value decreases though the spring stiffness coefficient (Equation (11))
until it arrives at its minimum value.

7. Experimental Results and Discussion

This section presents the results from the evaluation of the SSA’s performance on twenty-three
standard benchmark test functions. A detailed description of these benchmark functions is presented
below. Furthermore, the results are compared to eight existing optimization algorithms.

7.1. Benchmark Test Functions

The performance of the SSA was assessed by using 23 benchmark test functions [86]. The
experimentation was done on MATLAB version R2014a (8.3.0.532) in a Microsoft Windows 7
environment using a 64 bit Core i-7 processor with 2.40 GHz and 16 GB main memory. The average and
standard deviation of the best optimal solutions are displayed in Tables 1-3. For each benchmark test
function, the SSA utilizes 20 independent runs, in which each run employs 1000 iterations.

7.2. Algorithms Used for Comparison

In order to prove the potency of the SSA, it is also compared to eight optimization algorithms
on unimodal, multimodal, fixed-dimension multimodal and composite optimization. They were
assessed by solving a set of minimization problems introduced in the Constrained Single Objective
Real-Parameter Optimization Technical Report, ‘CEC’2015" [86]. To validate the performance of the
SSA, the eight optimization algorithms included: GA [87], PSO [29], GSA [73], TLBO [88], GOA [53],
GWO [52], SHO [34], and EPO [58].

The Algorithm 1 describes the pseudo code of SSA technique.

Algorithm 1

GA

: Population size N = 80

: Crossover 0.9

: Mutation 0.05

PSO

: Swarm size S =50

: Inertia weight decreases linearly from 0.9 to 0.4

: C1(individual-best acceleration factor) increases linearly from 0.5t0 2.5
: C2(global-best acceleration factor) decreases linearly from 2.5 to 0.5
:GSA

: Objects number N = 50

: Acceleration coefficient (a = 20)

: Initial gravitational constant (GO = 100)

: TLBO

: Swarm size 5 =50

:GOA

: Search Agents N =100

t Cpax =1

¢ Cpin = 4% 1073

:l=15andf=0.5

O PN U WN R

e I i e i e e el e
O O NI O U WN PO
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21:

22

GWO

: Wolves number = 50
23:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

a variable decreases linearly from 2 to 0
SHO

Search Agents N = 80

M Constant [0.5,1]

Control Parameter (h) [5, 0]
EPO

Search Agents N = 80
Temperature Profile [1,1000]
A Constant [—1.5,1.5]
Function S() [0,1.5]
Parameter M =2

Parameter f [2, 3]

Parameter 1 [1.5, 2]

7.3.1. Evaluation of Unimodal Test Function with High Dimensions

Functions F1 to F7 are unimodal. The mean results of 20 independent runs of the algorithm are
displayed in Table 1. These results show that the SSA has a better performance in all F1 to F7 functions
than other algorithms.

Table 1. Results for SSA and other algorithms in Unimodal test functions.

GA PSO GSA TLBO GOA GWO SHO EPO SSA
i Ave 195x101 498x10% 1.16x107% 355x10%2 281x10 786x107" 4.61x10% 571x10% 6.74x10
std  201x10"  1.40x10% 6.10x107"7 1.06x10° 1.11x10° 811x10%* 737x10% 831x10% 9.17x10%
b Ave 6.53x10%  729x10* 1.70x10" 3.23x10% 3.96x10 599x10% 120x10% 6.20x10% 7.78 x10%
std  510x10"7 1.84x10%® 9.29x10 857x10% 141x10" 1.11x10"7 130x103 3.32x10% 348 x10%
B Ave 7.70x107%  1.40x10™ 416x102  491x10%  431x10" 9.19x10% 1.00x10* 205x10" 2.63 x10%
std  7.36x10%  7.13 x10% 1.56 102 3.89 x 10% 8.97 x10%  6.16x10™ 410x10* 9.17x10% 9.83x10%
B Ave  9.17x10"  6.00 x 10 1.12 x10% 1.87x10"  880x10° 873 x10" 2.02x10 432x10'  4.65x10%
std 567 x10"  1.72x10° 9.89x10 821 x10° 250x10 1.19x10° 243x10™ 3.98x10" 4.68x10%
Fs Ave  557x102  4.93x10™ 3.85 x 10% 7.37 x 102 1.18x10%2 891 x102 279 x10™ 5.07 x10% 541 x 10
std 4.16 x 10* 3.89 x 10 3.47 x 10 1.98 x 10% 143 x102 297 x 10” 1.84x10°  4.90x10°  5.05x10*2
Fe Ave 3.15x10° 923x10® 1.08x107%  4.88x10° 3.15x10 818x10"7 6.58x10 7.01x10" 8.03x102
std  9.98x10 1.78x10% 4.00x10"7 9.75x10° 9.98x10 1.70x10% 3.38x10" 439x102% 522x10%
B Ave 6.79x10%  6.92x10% 7.68x10" 3.88x10%2 202x10%2 537x10° 7.80x10% 271x10%  3.33x10%
std  329x10% 287x10 277x10® 579x10 743x10% 1.89x10" 3.85x10* 9.26x10% 1.18 x10%

7.3.2. Evaluation of Multimodal Test Functions with High Dimensions

In multimodal functions Fs to Fis, by increasing the function dimensions, the number of local

responses increased exponentially. Therefore, arriving at the minimum response of these functions is

hard to achieve. In these types of functions, arriving at a response close to the ideal response denotes

the algorithm’s high capability in avoiding wrong local responses. The results obtained from

assessing Fs to F13 after 20 runs of the SSA as well as the other algorithms compared are presented in
Table 2. The SSA demonstrated the best performance of all the functions analyzed.
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Table 2. Results for SSA and other algorithms in Multimodal test functions.
GA PSO GSA TLBO GOA GWO SHO EPO SSA
F Ave  S5I1x10%  -501x10%  -275x10%  -381x10%  —692x10% -469x10"  -614x10% -876x10%  -12x10%
std 4.37 x 10 4.28 x 10% 5.72 x 107 2.83 x 10 9.19 x 10% 3.94 x 10% 9.32 x 10™ 5.92x10%  9.14 x 107
o Ave 1.23x10"  1.20x10°  3.35x 10" 2.23 x 107 1.01x102  485x10%  4.34x10"  6.90x10" 876 x 10
std 4.11 x 10 4.01 x 10% 1.19 x 10 3.25 x 10 1.89 x 10 3.91 x 10% 1.66x10% 481 x10%  4.85x10®
Fuo Ave 531x10"  520x10"  825x10%  1.55x10% 1.15x10°  283x10%  1.63x10™  8.03x107¢  8.04 x 102
std  111x10%®  1.08x10"°  1.90x10%  811x10%  7.87x10% 434x109 314x10"5  274x10% 334 x107
F, Ave  331x10% 324x10%  819x100  301x10  574x100  249x10%  229x10%  420x10%  423x101
std  423x10%  411x10%  370x10®  289x10°  1.12x10"  134x10% 524x10% 473x10% 511x10%
Fu Ave 9.16x10"  893x10%  265x10%  5.21x10% 12710  1.34x10%  3.93x10%  509x10" 633 x10
std  4.88x107  477x107  314x10"  247x10%  1.02x10"  623x10% 242x10 375x10% 471 x10%
B, Ave  639x100 626x10%  573x10%  281x10%  660x10%  994x10%  475x100  125x10%  0.00x10%
std  449x100  439x10®  895x102  863x102  4.33x102  261x107  2.38x100 261 x10 0.0 x 10®

7.3.3. Evaluation of Multimodal Test Functions with Low Dimensions

Functions Fis to F23 have both low dimensions in addition to low local responses. Results
obtained from 20 runs of each algorithm, are shown in Table 3. These results indicate that the SSA
has a suitable performance in all functions Fi4 to Fs.

7.3.4. Evaluation of CEC 2015 Test Functions

This section is devoted to real approaches and techniques for solving single objective
optimization problems. All of these test functions are minimization problems. Table 4 shows the
performance of the SSA as well as the other algorithms on the CEC 2015 test. Table 4 exhibits how
the SSA is the most efficient optimizer of all of the benchmark test functions studied.
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Table 3. Results for SSA and other algorithms in Multimodal test functions with low dimension.

GA PSO GSA TLBO GOA GWO SHO EPO SSA
Fus Ave  4.39 x10% 2.77 x 10% 3.61 x 10% 6.79 x 1000 9.98 x 100 1.26 x 10% 3.71 x 10% 1.08 x 10% 9.98 x 1071
std  4.41x10" 2.32 x 10% 2.96 x 10% 1.12 x 10% 9.14 x 10! 6.86 x 107 3.86 x 10% 4.11 x 102 7.64 x 1012
Fue Ave 736x102  9.09x10%  6.84x10  515x10%  7.15x10%  1.01x10%  3.66 x 100 8.21 x 107 3.3 x10%
std 239x10%  238x10%  737x10° 345x10%  126x10%  3.75x10%  7.60 x 102 4.09 x 10 1.25 x 1070
Fue Ave -1.02x10% -1.02x10% -1.02x10% -1.01x10% -1.02x10% -1.02x10% -1.02x10%  -1.02 x 10% -1.03 x 10%
std 419 %10 0.00 x 100 0.00 x 10% 3.64x10%  474x10%  323x10%  7.02x 10 9.80 x 107 5.12 x 1010
Fur Ave 398x100  398x100  3.98x100  3.98x100  3.98x100  3.98x100  3.98 x 100 3.98 x 10 3.98 x 10
std 371x10"7 9.03x107% 1.13x107' 945x107% 1.15x10%7 7.61x10%  7.00x10 5.39 x 10 4.56 x 101
Fus Ave  3.00 x 10% 3.00 x 10% 3.00 x 10% 3.00 x 1000 3.00 x 10% 3.00 x 100 3.00 x 10% 3.00 x 10% 3.00 x 10%
std  633x107 659 x10%  324x10  1.94 x 10710 1.48 x 109 225x10% 716 x 1070 1.15 x 1078 1.15x 10718
Fio Ave -3.81x10% -3.80x10% -3.86x10% -3.73x10% -3.77x10%0 -3.75x10%  -3.84x10%  -3.86 x 10% -3.86 x 10%
std 437x101° 337x107% 415x109  9.69 x10%  353x107 255x10%  1.57x10"% 6.50 x 107 5.61 x 10710
Fao Ave -239x10% -332x10%0 -1.47x10% -217x10%0 -3.23x10%0 -2.84x10% -3.27x10%  -2.81 x 10% -3.31 x 10%
std 437x10"  266x10" 532x10%  1.64x10% 537x10 371 x10% 727 x10 7.11 x 107 429 x 10
o Ave -519x10%  -7.54 x 100 -4570 =733 x10%  -738x10%  -228x10% -9.65x10%  -8.07x10%  -10.15 x 10%
std 2.34 x 10% 2.77 x 10% 1.30 x 10% 1.29 x 100 2.91 x 10% 1.80 x 10% 1.54 x 10% 2.29 x 10% 1.25 x 10702
Fn Ave -297x1000 -8.55x1000 -6.58x1000 -1.00x1000 -8.50x1000 -3.99 x1000 -1.04x1000 -10.01x1000 -10.40 x10%
std 1.37x10-02 3.08x1000 2.64x1000 2.89x10-04 3.02x1000 1.99x1000 2.73x10-04 3.97x10-02  3.65 x 10"
s Ave -3.10x1000 -9.19x1000 -9.37x1000 -2.46x1000 -8.41x1000 -4.49x1000 -1.05x1001 -3.41x1000 -10.53 x 10%
std 237x1000 252x1000 2.75x1000 1.19x1000 3.13x1000 1.96x1000 1.81x10-04 1.11x10-02  5.26 x 10%
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Table 4. Results for SSA and other algorithms in CEC 2015.

GA PSO GSA TLBO GOA GWO SHO EPO SSA

Cec-1 Ave 8.89x10% 320x107 7.65x10% 1.47x10% 437x10% 2.02x10% 228x10%  6.06x10%  1.50 x 10%
std  6.95x10% 837x10% 3.07x10% 263 x10% 4.73x10% 208x10% 218x10% 5.02x10% 1.21 x10%

Cec-2 Ave 297x10%  6.58x10% 7.33x10% 1.97x10“ 9.41x10% 5.65x10% 313 x10%  1.43x10%  4.40 x 10"
std 2.85x10% 1.09x10% 2.33x10% 1.46x10% 1.08x10% 6.03x10% 4.19x10% 1.03x10% 1.34 x 10%

Cec-3 Ave 3.20x10%2 320x102 3.20x10% 3.20x102 3.20x10%2  3.20x10%  3.20x 1002  3.20 x 102  3.20 x 10
std  2.78x102 1.11x10% 753x109 3.19x102 9.14x10 8.61x10 7.08x1002 3.76x1002 1.16 x 10

Cecd Ave 6.99 x102 439 x102 442 x102 4.18x102 4.26x102 4.09x102 416 x10  4.11x10%  4.04 x 10
std 643 x100 725x10%0 772x10% 1.03x10 1.17x10 3.96x10% 1.03x10" 1.71 x10"  5.61 x 10%

Cec5 Ave 1.26x10% 1.75x10% 1.76x10% 1.09 x10%  1.33 x10%  8.65x 10  9.20x 10  9.13 x 102  9.81 x 10
std  1.86x102 279x102 230x102? 2.81x102 345x10%2 2.16x102 1.78x10% 1.85x10 1.06x 10

Cecss Ave 291x10% 391x10% 230x10% 3.82x10% 7.35x10% 1.86x10% 226x10% 129x10% 1.05x10%
std  1.67x10% 270x10% 241x10% 244x10® 3.82x10% 193x10% 245x10% 1.15x10% 1.05x10%

Cec7 Ave 7.08x10%2 7.08x102 7.06x102 7.02x102 7.02x10%2 7.02x102 7.02x1002 7.02x10% 7.02x10%
std  297x10% 1.32x10% 9.07x1091 940x10° 1.10x10% 7.75x10% 7.07x10-"1 6.76x1001 550 x 10"

C Ave 579x10% 6.07 x10% 6.73x10% 258x10% 993 x10% 343 x10%® 3.49x10% 1.86x10%  1.47 x10%
ec-8 std 2.76x10% 4.81x10% 3.36x10% 1.61x10% 874x10% 277 x10% 2.04x10% 1.98x10%  1.34 x 10%
Cec-9 Ave 1.00x10%  1.00x10% 1.00x10% 1.00x10% 1.00x10% 1.00x10%  1.00x10%  1.00x10%  1.00 x 10%
std  3.97x10% 533x10% 9.79x10% 529x10 220x10" 723x10° 128x10" 143 x10° 1.51x10%

Cec-10 Ave 413x10% 342x10% 991 x10% 2.62x10% 839 x10% 3.27x10%  4.00x10%  2.00x10%  1.23 x10%
std 239x10% 1.74x10% 8.83x10% 1.78x10% 1.12x10% 1.84x10% 2.82x10% 2.73x10% 1.51 x10%

Coc-11 Ave 1.36x1003 1.41x10% 1.35x10% 1.39x10% 1.37x10% 1.35x10% 1.40x10% 1.38x10% 1.35x10%
std  539x10"  7.73x10" 1.11x10” 542x10" 8.97x10 1.12x10” 581 x10" 242x10" 1.01 x 10"

Cec-12 Ave 1.31x10% 1.31x10% 1.31x10% 1.30x10% 1.30x10% 1.30x10% 1.30x10% 1.30x10% 1.30x10%
std  1.65x10% 205x10%° 1.54x10% 8.07=x10° 9.14x10" 6.94x10° 6.69x10° 7.89x100 1.50x10-"

Ave 1.35x10% 1.35x10% 1.30x10% 1.30x10% 1.30x10% 1.30x10%® 1.30x10% 1.30x10%  1.30 x 10%

Cec-13 std  3.97x10" 470x10" 3.78x10% 243x10* 1.04x10 544x10% 192x10% 2.76x10% 6.43x10%
Coc-14 Ave 896x10%  930x10% 751 x10% 7.34x10% 7.60x10% 710x10% 729x10%  425x10%  3.22x10%
std  632x10% 4.04x102 1.52x10% 247x10% 1.29x10% 3.12x10% 245x10% 1.73x10%® 2.12 x10%

Coc-15 Ave 1.63x10%  1.64x10% 1.62x10% 1.60x10% 1.61x10% 1.60x10% 1.61x10% 1.60x10%  1.60 x 10%
std  3.67x10% 1.12x10" 3.64x10%° 1.80x10 1.13x10% 2.66x10° 494x10° 3.76 x10% 5.69 x 10
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8. SSA for Engineering Design Problems

15 of 24

In this section, the SSA is applied to five constrained engineering design problems.

8.1. Pressure Vessel Design

The mathematical model of this problem was adapted from a paper by Kannan and Kramer [89].
Tables 5 and 6 show the performance of the SSA along with the other algorithms. The SSA provides
an optimal solution at (0.778099, 0.383241, 40.315121, 200.00000), with a corresponding fitness value

of 5880.0700.
Table 5. Comparison results for pressure vessel design problem.
Algorithms Optimum Variables Optimum Cost
Ts T R

SSA 0.778099 0.383241 40.315121 200.00000 5880.0700
EPO 0.778210 0.384889 40.315040 200.00000 5885.5773
SHO 0.779035 0.384660 40.327793 199.65029 5889.3689
GOA 0.778961 0.384683 40.320913 200.00000 5891.3879
GWO 0.845719 0.418564 43.816270 156.38164 6011.5148
TLBO  0.817577 0.417932 41.74939 183.57270 6137.3724
GSA 1.085800 0.949614 49.345231 169.48741 11,550.2976
PSO 0.752362 0.399540 40.452514 198.00268 5890.3279

GA 1.099523 0.906579 44.456397 179.65887 6550.0230

Table 6. Statistical results for pressure vessel design problem.

Algorithms Best Mean Worst Std. Dev. Median
SSA 5880.0700 5891.3099 024.341 5883.5153
EPO 5885.5773 5887.4441 5892.3207  002.893  5886.2282
SHO 5889.3689 5891.5247 5894.6238  013.910  5890.6497
GOA 5891.3879 6531.5032 7394.5879  534.119 6416.1138
GWO 6011.5148 6477.3050 72509170  327.007  6397.4805
TLBO 6137.3724 6326.7606 6512.3541 126.609 6318.3179
GSA 11,550.2976  23,342.2909 33,226.2526  5790.625 24,010.0415
PSO 5890.3279 6264.0053 7005.7500  496.128  6112.6899
GA 6550.0230 6643.9870 8005.4397  657.523 7586.0085

8.2. Speed Reducer Design Problem

This problem is modeled mathematically in [90,91]. The results of the optimization problem are
presented in Tables 7 and 8. The optimal solution was provided by the SSA at (3.50123, 0.7, 17, 7.3,

7.8, 3.33421, 5.26536) with a corresponding fitness value equal to 2994.2472.
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Table 7. Comparison results for speed reducer design problem.

16 of 24

Algorithms Optimum Variables Optimum Cost
b m p I I d1 dz
SSA 3.50123 0.7 17 7.3 7.8 3.33421 5.26536  2994.2472
EPO 3.50159 0.7 17 7.3 7.8 3.35127 5.28874  2998.5507
SHO 3.506690 0.7 17 7.380933 7.815726 3.357847 5286768  3001.288
GOA 3.500019 0.7 17 8.3 7.8 3.352412 5.286715  3005.763
GWO 3.508502 0.7 17 7.392843 7.816034 3.358073 5.286777  3002.928
TLBO 3.508755 0.7 17 7.3 7.8 3.461020 5.289213  3030.563
GSA 3.600000 0.7 17 8.3 7.8 3.369658 5.289224  3051.120
PSO 3.510253 0.7 17  8.35 7.8 3.362201 5.287723  3067.561
GA 3.520124 0.7 17 837 7.8 3.366970 5.288719  3029.002

Table 8. Statistical results for speed reducer design problem.

Algorithms Best Mean Worst Std. Dev.Median
SSA  2994.24722997.4822999.092 1.78091 2996.318
EPO  2998.55072999.6403003.889 1.93193 2999.187
SHO  3001.288 3005.8453008.752 5.83794 3004.519
GOA  3005.763 3105.2523211.174 79.6381 3105.252
GWO  3002.928 3028.8413060.958 13.0186 3027.031
TLBO  3030.563 3065.9173104.779 18.0742 3065.609
GSA  3051.120 3170.3343363.873 92.5726 3156.752
PSO  3067.561 3186.5233313.199 17.1186 3198.187
GA 3029.002 3295.3293619.465 57.0235 3288.657

8.3. Welded Beam Design

The mathematical model of a welded beam design was adapted from [31]. The results to this
optimization problem are presented in Tables 9 and 10. The SSA provides an optimal solution at
(0.205411, 3.472341, 9.035215, 0.201153) with a corresponding fitness value equal: 1.723589.

Table 9. Comparison results for welded beam design problem.

Algorithms

Optimum Variables

h l

t b

Optimum Cost

SSA
EPO
SHO
GOA
GWO
TLBO
GSA
PSO
GA

0.205411 3.472341
0.205563 3.474846
0.205678 3.475403
0.197411 3.315061
0.205611 3.472103
0.204695 3.536291
0.147098 5.490744
0.164171 4.032541
0.206487 3.635872

9.035215 0.201153
9.035799 0.205811
9.036964 0.206229
10.00000 0.201395
9.040931 0.205709
9.004290 0.210025
10.00000 0.217725
10.00000 0.223647
10.00000 0.203249

1.723589
1.725661
1.726995
1.820395
1.725472
1.759173
2.172858
1.873971
1.836250
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Table 10. Statistical results for welded beam design problem.

Algorithms Best Mean Worst Std. Dev. Median

SSA  1.7235891.7251241.727211 0.004325 1.724399
EPO  1.7256611.7258281.726064 0.000287 1.725787
SHO  1.7269951.7271281.727564 0.001157 1.727087
GOA  1.8203952.2303103.048231 0.324525 2.244663
GWO  1.7254721.7296801.741651 0.004866 1.727420
TLBO 1.7591731.8176571.873408 0.027543 1.820128
GSA  2.1728582.5442393.003657 0.255859 2.495114
PSO  1.8739712.1192402.320125 0.034820 2.097048
GA 1.8362501.3635272.035247 0.139485 1.9357485

8.4. Tension/Compression Spring Design Problem

17 of 24

The mathematical model of this problem was adapted from [31]. The results to this optimization
problem are displayed in Tables 11 and 12. The SSA provides the optimal solution at (0.051087,
0.342908, 12.0898), with a corresponding fitness value of 0.012656987.

Table 11. Comparison results for tension/compression spring design problem.

Algorithms Optimum Variables Optimum Cost
d D p

SSA  0.051087 0.342908 12.0898 0.012656987
EPO  0.051144 0.343751 12.0955 0.012674000
SHO  0.050178 0.341541 12.07349 0.012678321
GOA  0.05000 0.310414 15.0000 0.013192580
GWO  0.05000 0.315956 14.22623 0.012816930
TLBO  0.050780 0.334779 12.72269 0.012709667
GSA  0.05000 0.317312 14.22867 0.012873881
PSO  0.05010 0.310111 14.0000 0.013036251

GA 0.05025 0.316351 15.23960 0.012776352

Table 12. Statistical results for tension/compression spring design problem.

Algorithms  Best Mean Worst  Std. Dev. Median
SSA  0.0126569870.0126789030.012667902 0.001021 0.012676002
EPO  0.0126740000.0126841060.012715185 0.000027 0.012687293
SHO  0.0126783210.0126971160.012720757 0.000041 0.012699686
GOA  0.0131925800.0148171810.017862507 0.002272 0.013192580
GWO  0.0128169300.0144643720.017839737 0.001622 0.014021237

TLBO  0.0127096670.0128396370.012998448 0.000078 0.012844664
GSA  0.0128738810.0134388710.014211731 0.000287 0.013367888
PSO  0.0130362510.0140362540.016251423 0.002073 0.013002365

GA  0.0127763520.0130698720.015214230 0.000375 0.012952142

8.5. Rolling Element Bearing Design Problem

The mathematical model of this problem is adapted from [92]. The results of this optimization
problem are included in Tables 13 and 14 and prove that the SSA provides an optimal solution at
(125, 21.41890, 10.94113, 0.515, 0.515, 0.4, 0.7, 0.3, 0.02, 0.6) with a corresponding fitness value equal

to 85067.983.



Appl. Sci. 2020, 10, 6173 18 of 24

Table 13. Comparison results for rolling element bearing design problem.

Algorithms Optimum Variables Opt. Cost
D Dy V4 fi fo KDmin KDmax & e C

SSA 125 21.4189010.941130.515 0.515 0.4 0.7 0.3 0.02 0.6 85,067.983

EPO 125 21.4073210.932680.515 0.515 0.4 0.7 03 002 06 85054.532

SHO 125.619921.3512910.987810.515  0.515 0.5 0.688070.3001510.03254 0.62701 84,807.111

GOA 125 20.7538811.173420.515 0.515000 0.5  0.615030.3000000.05161 0.60000 81,691.202
GW0125.600221.3225010.973380.515 0.515000 0.5  0.687820.3013480.03617 0.61061 84,491.266
TLBO 125 21.1483410.969280.515 0.515 0.5 0.7 0.3 0.02778 0.62912 83,431.117
GSA 125 20.8541711.149890.515 0.517746 0.5  0.618270.3040680.020000.62463882,276.941
PSO 125 20.7756211.012470.515 0.515000 0.5  0.613970.3000000.050040.61000182,773.982
GA 125 20.8712311.166970.515 0.516000 0.5 0.619510.3011280.050240.61453181,569.527

Table 14. Statistical results for Rolling element bearing design problem.

Algorithms Best Mean  Worst Std. Dev. Median
SSA  85,067.98385,042.35286,551.599 1877.09 85,056.095
EPO  85,054.53285,024.85885,853.876 0186.68 85,040.241
SHO  84,807.11184,791.61384,517.923 0137.186 84,960.147
GOA  81,691.20250,435.01732,761.546 13,962.150 42,287.581
GWO  84,491.26684,353.68584,100.834 0392.431 84,398.601
TLBO  83,431.11781,005.23277,992.482 1710.777 81,035.109
GSA  82,276.94178,002.10771,043.110 3119.904 78,398.853
PSO  82,773.98281,198.75380,687.239 1679.367 8439.728
GA  81,569.52780,397.99879,412.779 1756.902 8347.009

9. Conclusions

There are many optimization problems in the different scientific domains that must be solved
using the algorithms with each case’s necessary characteristics. In this project, a new optimization
algorithm called spring search algorithm (SSA) was developed; Hooke’s law describes the starting
point or basic concept. The search agents of the proposed method are weights that are connected by
several springs. The system starts from a transitory situation or state and stabilizes at the equilibrium
point, according to the law of the spring.

To evaluate the algorithm and purchase it, almost 40 standard objective functions, including
unimodal and multimodal functions, in addition to CEC2015, were used to assess the performance
of the proposed algorithm in solving optimization problems of a different nature. To review and
analyze the algorithm’s results, these were compared with eight widely known optimization
algorithms: GA, PSO, GSA, TLBO, GWO, GOA, SHO, and EPO.

The results in the functions show the superior exploration and exploitation capabilities of SSA
compared to other optimization algorithms, for both unimodal and multimodal functions. The same
occurs with the simulations using the SSA algorithm and the eight algorithms selected for
comparison in the case of CEC2015, which shows the SSA’s high aptitude to solve this type of
problem to optimize the function. In addition to the work carried out on the almost 40 functions, the
SSA algorithm was evaluated in five engineering design optimization problems to evaluate the
performance in solving optimization problems in real situations, showing that it is much more
competitive than other algorithms.

For future work, it is suggested to develop a binary version of the SSA algorithm and apply this
algorithm to multi-objective problems. Likewise, extending the concept of Hooke’s law to more
complex models with more adjustment parameters, which, even though it will reduce simplicity,
could generate additional advantages.
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Abbreviations

Acronym Definition

ABC Artificial Bee Colony

ACROA  Artificial Chemical Reaction Optimization Algorithm
AFSA Artificial Fish-Swarm Algorithm

BA Bat-inspired Algorithm

BBO Biogeography-Based Optimizer

BH Black Hole

BOSA Binary Orientation Search Algorithm
BBBC Big-Bang Big-Crunch

CFO Central Force Optimization

CSs Cuckoo Search

CSO Curved Space Optimization

CSSs Charged System Search

DGO Darts Game Optimizer

Dro Dolphin Partner Optimization

DGO Dice Game Optimizer

DE Differential Evolution

DTO Donkey Theorem Optimization

EP Evolutionary Programming

ES Evolution Strategy

EPO Emperor Penguin Optimizer

FA Firefly Algorithm

FOA Following Optimization Algorithm
FGBO Football Game Based Optimization
GP Genetic Programming

GO Group Optimization

GOA Grasshopper Optimization Algorithm
GSA Gravitational Search Algorithm
GbSA Galaxy-based Search Algorithm
GWO Grey Wolf Optimizer

HOGO Hide Objects Game Optimization
HS Hunting Search
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MFO Moth-flame Optimization Algorithm
MS Monkey Search

OSA Orientation Search Algorithm

PSO Particle Swarm Optimization

RSO Rat Swarm Optimizer

RO Ray Optimization

SHO Spotted Hyena Optimizer

SGO Shell Game Optimization

SWOA Small World Optimization Algorithm
WOA Whale Optimization Algorithm
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