Quality of New Functional Powdered Beverages Enriched with Lyophilized Fruits—Potentially Bioaccessible Antioxidant Properties, Nutritional Value, and Consumer Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material and Composition of Beverages
2.3. Production of Beverages
2.4. Sensory Evaluation
2.5. Physical Properties of the Beverages
2.6. In Vitro Digestion
2.7. Analysis of Low-Molecular-Weight Antioxidants
2.7.1. Phenolic Content
2.7.2. Vitamin C Content
2.7.3. Carotenoid Content
2.8. Antioxidant Properties
2.8.1. Reducing Power (RP)
2.8.2. Ability to Quench ABTS Radicals
2.9. Nutrients in Functional Powders
2.9.1. Starch Analysis
Starch Content
Reducing Sugar Content
2.9.2. Protein Analysis
Protein Content
Content of Free Amino Acids and Peptides
2.10. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pang, G.; Xie, J.; Chen, Q.; Hu, Z. How functional foods play critical roles in human health. Food Sci. Hum. Wellness 2012, 1, 26–60. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.K.; Alasalvar, C.; Shahidi, F. Review of dried fruits: Phytochemicals, antioxidant efficacies, and health benefits. J. Funct. Foods 2016, 21, 113–132. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D. The development of fruit-based functional foods targeting the health and wellness market: A review. Int. J. Food Sci. Technol. 2011, 46, 899–920. [Google Scholar] [CrossRef]
- Wootton-Beard, P.C.; Ryan, L. Improving public health? The role of antioxidant-rich fruit and vegetable beverages. FRIN 2011, 44, 3135–3148. [Google Scholar] [CrossRef]
- Neacsu, M.; Vaughan, N.; Raikos, V.; Multari, S.; Duncan, G.J.; Duthie, G.G.; Russell, W.R. Phytochemical profile of commercially available food plant powders: Their potential role in healthier food reformulations. Food Chem. 2015, 179, 159–169. [Google Scholar] [CrossRef]
- Ganesan, K. Polyphenol-rich lentils and their health promoting effects. Int. J. Mol. Sci. 2017, 18, 2390. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Roque, M.J.; Rojas-Graü, M.A.; Elez-Martínez, P.; Martín-Belloso, O. Changes in vitamin C, phenolic, and carotenoid profiles throughout in vitro gastrointestinal digestion of a blended fruit juice. J. Agric. Food Chem. 2013, 61, 1859–1867. [Google Scholar] [CrossRef]
- Queiroz, V.A.; da Silva Aguiar, A.; de Menezes, C.B.; de Carvalho, C.W.; Paiva, C.L.; Fonseca, P.C.; da Conceição, R.R. A low calorie and nutritive sorghum powdered drink mix: Influence of tannin on the sensorial and functional properties. J. Cereal Sci. 2018, 79, 43–49. [Google Scholar] [CrossRef]
- Hasan, M.U.; Ullah, A.; Sajid, M.; Imtiaz, A. Modern drying techniques in fruits and vegetables to overcome postharvest losses: A review. J. Food Process. Preserv. 2019, 43, 1–15. [Google Scholar] [CrossRef]
- Müller, L.; Gnoyke, S.; Popken, A.M.; Böhm, V. Antioxidant capacity and related parameters of different fruit formulations. LWT Food Sci. Technol. 2010, 43, 992–999. [Google Scholar] [CrossRef]
- Camire, M.E.; Dougherty, M.P.; Briggs, J.L. Functionality of fruit powders in extruded corn breakfast cereals. Food Chem. 2007, 101, 765–770. [Google Scholar] [CrossRef]
- Karam, M.C.; Petit, J.; Zimmer, D.; Baudelaire, E.; Marie, C. Effects of drying and grinding in production of fruit and vegetable powders: A review. J. Food Eng. 2016, 188, 32–49. [Google Scholar] [CrossRef]
- Argyropoulos, D.; Heindl, A.; Muller, J. Assessment of convection, hot-air combined with microwave- vacuum and freeze-drying methods for mushrooms with regard to product quality. Int. J. Food Sci. Technol. 2011, 46, 333–342. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, H.; Mujumdar, A.S.; Tang, J.; Miao, S.; Wang, Y. Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Crit. Rev. Food Sci. Nutr. 2017, 57, 1239–1255. [Google Scholar] [CrossRef] [PubMed]
- Costa-Font, M.; Gil, M.; Traill, W.B. Consumer acceptance, valuation of and attitudes towards genetically modified food: Review and implications for food policy. Food Policy 2008, 33, 99–111. [Google Scholar] [CrossRef]
- Piemontese, L. Plant Food Supplements with Antioxidant Properties for the Treatment of Chronic and Neurodegenerative Diseases: Benefits or Risks? J. Diet. Suppl. 2017, 14, 478–484. [Google Scholar] [CrossRef]
- Moncalvo, A.; Marinoni, L.; Dordoni, R.; Garrido, G.D.; Lavelli, V.; Spigno, G. Waste grape skins: Evaluation of safety aspects for the production of functional powders and extracts for the food sector. Food Addit. Contam. Part A 2016, 33, 1116–1126. [Google Scholar] [CrossRef]
- Lim, H.; Lee, H.J.; Choue, R.; Wang, Y. Trends in fast-food and sugar-sweetened beverage consumption and their association with social environmental status in south korea. J. Acad. Nutr. Diet. 2018, 118, 1228–1236. [Google Scholar] [CrossRef]
- Nazir, M.; Arif, S.; Sanaullah, R.; Nazir, W.; Khalid, N. Opportunities and challenges for functional and medicinal beverages: Current and future trends. Trends Food Sci. Technol. 2019, 88, 513–526. [Google Scholar] [CrossRef]
- Shittu, T.A.; Lawal, M.O. Factors affecting instant properties of powdered cocoa beverages. Food Chem. 2007, 100, 91–98. [Google Scholar] [CrossRef]
- Diah, R.; Budiwati, T.A.; Kosasih, W.; Pudjiraharti, S. Sensory and physicochemical evaluation od instant ginger drinks fortified with DFA III. Procedia Chem. 2015, 16, 177–183. [Google Scholar]
- Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galieni, A. Sprouted grains: A comprehensive review. Nutrients 2019, 11, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Świeca, M.; Gawlik-Dziki, U. Effects of sprouting and postharvest storage under cool temperature conditions on starch content and antioxidant capacity of green pea, lentil and young mung bean sprouts. Food Chem. 2015, 185, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Nawirska-Olszańska, A.; Biesiada, A.; Sokół-Łętowska, A.; Kucharska, A.Z. Characteristics of organic acids in the fruit of different pumpkin species. Food Chem. 2014, 148, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Jun, H.; Lee, C.; Song, G.; Kim, Y. Characterization of the pectic polysaccharides from pumpkin peel. LWT-Food Sci. Technol. 2006, 39, 554–561. [Google Scholar] [CrossRef]
- Adams, G.G.; Imran, S.; Wang, S.; Mohammad, A.; Kok, S.; Gray, D.A.; Channell, G.A.; Morris, G.A.; Harding, S.E. The hypoglycaemic effect of pumpkins as anti-diabetic and functional medicines. Food Res. Int. 2011, 44, 862–867. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Dong, L. Inhibitory effect of polysaccharides from pumpkin on advanced glycation end-products formation and aldose reductase activity. Food Chem. 2012, 130, 821–825. [Google Scholar] [CrossRef]
- Bouayed, J.; Hoffmann, L.; Bohn, T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem. 2011, 128, 14–21. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Toydemir, G.; Boyacioglu, D.; Beekwilder, J.; Hall, R.D.; Capanoglu, E. A Review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2016, 56, S110–S129. [Google Scholar] [CrossRef]
- Asami, D.K.; Hong, Y.J.; Barrett, D.M.; Mitchell, A.E. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J. Agric. Food Chem. 2003, 51, 1237–1241. [Google Scholar] [CrossRef]
- Gündeşli, M.A.; Korkmaz, N.; Okatan, V. Polyphenol content and antioxidant capacity of berries: A review. Int. J. Agric. For. Life Sci. 2019, 3, 350–361. [Google Scholar]
- Raudone, L.; Raudonis, R.; Liaudanskas, M.; Viskelis, J.; Pukalskas, A.; Janulis, V. Phenolic profiles and contribution of individual compounds to antioxidant activity of apple powders. J. Food Sci. 2016, 81, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.C.; do Nascimento da Silva, E.; de Souza, A.O.; Vieira, M.A.; Ribeiro, A.S.; Cadore, S. Evaluation of the bioaccessibility of minerals from blackberries, raspberries, blueberries and strawberries. J. Food Compos. Anal. 2018, 68, 73–78. [Google Scholar] [CrossRef]
- Moazzem, M.S.; Sikder, M.B.H.; Zzaman, W. Shelf-Life Extension of Wood Apple Beverages Maintaining Consumption-Safe Parameters and Sensory Qualities. Beverages 2019, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Sobota, A.; Rzedzicki, Z.; Zarzycki, P.; Kuzawińska, E. Application of common wheat bran for the industrial production of high-fibre pasta. Int. J. Food Sci. Technol. 2015, 50, 111–119. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrì, F.; Boutrou, R.; Corredig, F.M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bochnak, J.; Świeca, M. Potentially bioaccessible phenolics, antioxidant capacities and the colour of carrot, pumpkin and apple powders—Effect of drying temperature and sample structure. Int. J. Food Sci. Technol. 2020, 55, 136–145. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Campos, F.M.; Ribeiro, S.M.R.; Della Lucia, C.M.; Pinheiro-Sant’ana, H.M. Optimization of methodology to analyze ascorbic and dehydroascorbic acid in vegetables. Quim. Nova 2009, 32, 87–91. [Google Scholar] [CrossRef]
- Sumanta, N.; Haque, C.I.; Nishika, J.; Suprakash, R. Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci. 2014, 4, 63–69. [Google Scholar]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Adler-Nissen, J. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food Chem. 2002, 27, 1256–1262. [Google Scholar] [CrossRef] [PubMed]
- Ogunjobi, M.A.K.; Ogunwolu, S.O. Physicochemical and sensory properties of cassava flour biscuits suplemented with cashew apple powder. J. Food Technol. 2010, 8, 24–29. [Google Scholar] [CrossRef]
- Ajila, C.M.; Leelavathi, K.; Prasada Rao, U.J.S. Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. J. Cereal Sci. 2008, 48, 319–326. [Google Scholar] [CrossRef]
- Palafox-Carlos, H.; Ayala-Zavala, J.F.; González-Aguilar, G.A. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J. Food Sci. 2011, 76, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Gawlik-Dziki, U. Changes in the antioxidant activities of vegetables as a consequence of interactions between active compounds. J. Funct. Foods 2012, 4, 872–882. [Google Scholar] [CrossRef]
- Wang, S.; Meckling, K.A.; Marcone, M.F.; Kakuda, Y.; Tsao, R. Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. J. Agric. Food Chem. 2011, 59, 960–968. [Google Scholar] [CrossRef]
- Roongruangsri, W.; Bronlund, J.E. A review of drying processes in the production of pumpkin powder. Int. J. Food Eng. 2015, 11, 789–799. [Google Scholar] [CrossRef]
- Priecina, L.; Karklina, D. Composition of major organic acids in vegetables and spices. CBU Int. Conf. Proc. 2015, 3, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Jirasatid, S.; Chaikham, P.; Nopharatana, M. Thermal degradation kinetics of total carotenoids and antioxidant activity in banana-pumpkin puree using Arrhenius, Eyring-Polanyi and Ball models. Int. Food Res. J. 2018, 25, 1912–1919. [Google Scholar]
- Sikora, M.; Złotek, U.; Świeca, M. Effect of basil leaves and wheat bran water extracts on enzymatic browning of shredded storage iceberg lettuce. Int. J. Food Sci. Technol. 2020, 55, 1318–1325. [Google Scholar] [CrossRef]
- Funamoto, Y.; Yamauchi, N.; Shigyo, M. Involvement of peroxidase in chlorophyll degradation in stored broccoli (Brassica oleracea L.) and inhibition of the activity by heat treatment. Postharvest Biol. Technol. 2003, 28, 39–46. [Google Scholar] [CrossRef]
- Parpinello, G.P.; Chinnici, F.; Versari, A.; Riponi, C. Preliminary study on glucose oxidase–catalase enzyme system to control the browning of apple and pear purees. LWT-Food Sci. Technol. 2002, 35, 239–243. [Google Scholar] [CrossRef]
- Mridula, D.; Sharma, M. Development of non-dairy probiotic drink utilizing sprouted cereals, legume and soymilk. LWT-Food Sci. Technol. 2015, 62, 482–487. [Google Scholar] [CrossRef]
- Chavan, M.; Gat, Y.; Harmalkar, M.; Waghmare, R. Development of non-dairy fermented probiotic drink based on germinated and ungerminated cereals and legume. LWT-Food Sci. Technol. 2018, 91, 339–344. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Świeca, M.; Dziki, D.; Baraniak, B.; Tomiło, J.; Czyz, J. Quality and antioxidant properties of breads enriched with dry onion (Allium cepa L.) skin. Food Chem. 2013, 138, 1621–1628. [Google Scholar] [CrossRef]
- Wootton-Beard, P.C.; Moran, A.; Ryan, L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin—Ciocalteu methods. Food Res. Int. 2011, 44, 217–224. [Google Scholar] [CrossRef]
- Del Pino-García, R.; González-Sanjosé, M.L.; Rivero-Pérez, M.D.; García-Lomillo, J.; Muñiz, P. Total antioxidant capacity of new natural powdered seasonings after gastrointestinal and colonic digestion. Food Chem. 2016, 211, 707–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Świeca, M.; Sȩczyk, Ł.; Gawlik-Dziki, U.; Dziki, D. Bread enriched with quinoa leaves – the influence of protein—Phenolics interactions on the nutritional and antioxidant quality. Food Chem. 2014, 162, 54–62. [Google Scholar] [CrossRef] [PubMed]
Sample | TPC (mg GAE/g) | Carotenoids (mg/g) | Vitamin C (mg/g) | ABTS (mg TE/g) | RP (mg TE/g) |
---|---|---|---|---|---|
MO1 | 3.6 ± 0.5 a | 1.7 ± 0.02 ab | 0.7 ± 0.03 a | 5.0 ± 0.15 d | 2.2 ± 0.10 a |
MO2 | 6.9 ± 0.6 e | 1.6 ± 0.02 a | 1.0 ± 0.11 b | 4.6 ± 0.16 c | 4.2 ± 0.32 e |
MO3 | 6.5 ± 0.6 de | 1.7 ± 0.01 ab | 2.02 ± 0.06 d | 5.2 ± 0.28 d | 3.7 ± 0.19 d |
MO4 | 4.9 ± 0.4 b | 1.6 ± 0.06 ab | 0.8 ± 0.01 a | 6.2 ± 0.21 ef | 2.7 ± 0.08 b |
MO5 | 6.5 ± 0.5 de | 1.7 ± 0.10 ab | 1.4 ± 0.07 c | 3.6 ± 0.18 b | 4.1 ± 0.20 e |
MO6 | 5.7 ± 0.6 bcd | 1.7 ± 0.10 ab | 0.8 ± 0.01 a | 6.0 ± 0.12 e | 3.7 ± 0.13 d |
MO7 | 5.5 ± 0.4 bc | 1.7 ± 0.06 ab | 1.3 ± 0.03 c | 6.3 ± 0.51 f | 3.1 ± 0.14 c |
MO8 | 5.9 ± 0.7 cd | 1.8 ± 0.06 b | 1.1 ± 0.01 b | 3.2 ± 0.10 a | 3.6 ± 0.09 d |
Parameter | |||||||
---|---|---|---|---|---|---|---|
Sample | L* | a* | b* | pH | WAI | WSI | |
Rehydratation in 20 °C | MO1 | 32.73 ± 0.65 c | 6.59 ± 0.13 a | 14.41 ± 0.27 f | 6.22 ± 0.1 i | 122 ± 2.2 b | 50 ± 0.9 a |
MO2 | 32.69 ± 0.62 bc | 8.58 ± 0.16 f | 14.01 ± 0.27 e | 5.16 ± 0.1 b | 83 ± 1.49 a | 51 ± 0.92 ab | |
MO3 | 33.22 ± 0.63 e | 7.85± 0.15 d | 13.35 ± 0.25 d | 5.50 ± 0.11 f | 83 ± 1.49 a | 54 ± 0.97 abc | |
MO4 | 31.50 ± 0.60 a | 9.61 ± 0.18 g | 14.68 ± 0.28 g | 5.96 ± 0.12 h | 84 ± 1.53 a | 56 ± 0.99 cd | |
MO5 | 32.76 ± 0.62 c | 8.05 ± 0.15 e | 12.95 ± 0.25 b | 5.27 ± 0.11 c | 84 ± 1.51 a | 50 ± 0.90 a | |
MO6 | 32.74 ± 0.62 c | 8.04 ± 0.15 e | 13.21 ± 0.25 c | 5.31 ± 0.11 c | 84 ± 1.51 a | 52 ± 0.92 abc | |
MO7 | 33.03 ± 0.63 d | 7.26 ± 0.14 b | 12.53 ± 0.24 a | 5.48 ± 0.11 ef | 82 ± 1.48 a | 54 ± 0.97 abc | |
MO8 | 32.56 ± 0.63 b | 7.51 ± 0.14 c | 13.02 ± 0.25 b | 5.42 ± 0.11 de | 81 ± 1.46 a | 54 ± 0.97 abc | |
Rehydratation in 80 °C | MO1 | 32.54 ± 0.62 a | 8.94 ± 0.17 a | 15.34 ± 0.29 a | 5.92 ± 0.12 h | 125 ± 2.25 b | 55 ± 0.97 bcd |
MO2 | 33.73 ± 0.64 d | 10.41 ± 0.2 e | 18.75 ± 0.36 e | 4.99 ± 0.1 a | 121 ± 2.18 b | 56 ± 0.99 cd | |
MO3 | 33.43 ± 0.64 c | 10.36 ± 0.2 e | 18.37 ± 0.35 d | 5.29 ± 0.11 c | 122 ± 2.20 b | 56 ± 0.98 cd | |
MO4 | 32.77 ± 0.62 b | 9.59 ± 0.18 d | 17.21 ± 033 b | 5.74 ± 0.1 g | 129 ± 2.32 b | 59 ± 1.1 d | |
MO5 | 33.65 ± 0.64 d | 10.81 ± 0.21 f | 19.78 ± 0.38 f | 5.11 ± 0.1 b | 123 ± 2.21 b | 54 ± 0.96 abc | |
MO6 | 33.49 ± 0.64 c | 10.40 ± 0.2 e | 18.91 ± 0.36 e | 5.26 ± 0.11 c | 122 ± 2.20 b | 56 ± 0.99 cd | |
MO7 | 33.74 ± 0.65 d | 9.02 ± 0.17 b | 17.77 ± 0.34 c | 5.40 ± 0.11 d | 125 ± 2.25 b | 55 ± 0.99 bcd | |
MO8 | 34.03 ± 0.65e | 9.50 ± 0.18 c | 18.85 ± 0.36 e | 5.25 ± 0.11 c | 127 ± 2.29 b | 56 ± 0.99 cd |
ABTS (mg TE/100 mL) | RP (mg TE/100 mL) | ||||||
---|---|---|---|---|---|---|---|
Sample | CE | DE | REFABTS | CE | DE | REFRP | |
Rehydrated in 20 ˚C | MO1 | 7.5 ± 0.1 a | 75.1 ± 0.10 a | 10.1 | 19.0 ± 1.0 a | 10.6 ± 0.90 a | 0.6 |
MO2 | 10.4 ± 0.3 e | 74.2 ± 4.0 a | 7.2 | 42.1 ± 2.0 g | 31.5 ± 2.1 e | 0.8 | |
MO3 | 10.0 ± 0.1 d | 74.8 ± 2.2 a | 7.5 | 36.2 ± 1.7 e | 25.3 ± 2.0 d | 0.7 | |
MO4 | 8.5 ± 0.4 b | 74.5 ± 2.8 a | 8.8 | 26.6 ± 0.8 b | 18.2 ± 2.3 b | 0.7 | |
MO5 | 10.1 ± 0.2 de | 73.6 ± 2.5 a | 7.3 | 38.5 ± 1.6 f | 30.3 ± 1.6 e | 0.8 | |
MO6 | 8.7 ± 0.5 b | 73.6 ± 1.5 a | 8.5 | 34.0 ± 1.2 b | 25.2 ± 2.3 d | 0.7 | |
MO7 | 9.2 ± 0.1 c | 82.5 ± 2.0 b | 9.0 | 31.0 ± 1.4 c | 22.2 ± 0.8 c | 0.7 | |
MO8 | 9.1 ± 0.2 c | 75.8 ± 2.6 a | 8.3 | 33.2 ± 1.6 d | 22.7 ± 2.6 cd | 0.7 | |
Rehydrated in 80 ˚C | MO1 | 9.3 ± 0.1 a | 53.9 ± 4.06 a | 5.8 | 23.9 ± 0.4 a | 16.2 ± 0.6 a | 0.7 |
MO2 | 12.1 ± 0.1 f | 61.3 ± 1.96 bc | 5.1 | 48.1 ± 1.1 d | 29.9 ± 2.9 e | 0.6 | |
MO3 | 12.0 ± 0.1 e | 62.6 ± 4.5 bcd | 5.2 | 45.1 ± 1.5 d | 30.5 ± 1.6 e | 0.7 | |
MO4 | 9.7 ± 0.1 b | 64.3 ± 4.3 bcd | 6.7 | 30.0 ± 1.9 b | 18.8 ± 1.0 b | 0.6 | |
MO5 | 12.1 ± 0.1 ef | 66.4 ± 1.4 d | 5.5 | 46.1 ± 1.6 d | 35.9 ± 1.8 f | 0.8 | |
MO6 | 11.3 ± 0.1 d | 60.2 ± 3.9 b | 5.3 | 39.5 ± 4.1 c | 30.1 ± 1.6 e | 0.8 | |
MO7 | 11.4 ± 0.2 d | 65.5 ± 4.0 cd | 5.8 | 39.3 ± 2.8 c | 27.2 ± 0.9 d | 0.7 | |
MO8 | 10.9 ± 0.1 c | 63.7 ± 3.3 bcd | 5.9 | 39.7 ± 2.1 c | 24.3 ± 0.8 c | 0.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bochnak-Niedźwiecka, J.; Świeca, M. Quality of New Functional Powdered Beverages Enriched with Lyophilized Fruits—Potentially Bioaccessible Antioxidant Properties, Nutritional Value, and Consumer Analysis. Appl. Sci. 2020, 10, 3668. https://doi.org/10.3390/app10113668
Bochnak-Niedźwiecka J, Świeca M. Quality of New Functional Powdered Beverages Enriched with Lyophilized Fruits—Potentially Bioaccessible Antioxidant Properties, Nutritional Value, and Consumer Analysis. Applied Sciences. 2020; 10(11):3668. https://doi.org/10.3390/app10113668
Chicago/Turabian StyleBochnak-Niedźwiecka, Justyna, and Michał Świeca. 2020. "Quality of New Functional Powdered Beverages Enriched with Lyophilized Fruits—Potentially Bioaccessible Antioxidant Properties, Nutritional Value, and Consumer Analysis" Applied Sciences 10, no. 11: 3668. https://doi.org/10.3390/app10113668
APA StyleBochnak-Niedźwiecka, J., & Świeca, M. (2020). Quality of New Functional Powdered Beverages Enriched with Lyophilized Fruits—Potentially Bioaccessible Antioxidant Properties, Nutritional Value, and Consumer Analysis. Applied Sciences, 10(11), 3668. https://doi.org/10.3390/app10113668