Efficient and Sustainable Removal of Phosphates from Wastewater Using Autoclaved Aerated Concrete and Pumice
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Pumice Stone Material
2.3. Autoclaved Cellular Concrete
2.4. Characterization of PS and AAC Materials
2.5. Adsorption Experiments
2.5.1. Adsorption Equilibrium Study
- The Langmuir equation
- The Freundlich equation
2.5.2. Description of Models for Kinetic Study
3. Results and Discussion
3.1. Characterization of PS and AAC Materials
3.1.1. X-Ray Diffraction (XRD) Analysis for PS
3.1.2. X-Ray Diffraction (XRD) Analysis for AAC
3.1.3. SEM Analysis for PS
3.1.4. SEM Analysis for AAC
3.1.5. BET Method for PS and AAC
3.2. Adsorption Equilibrium Study
3.3. Kinetic Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ding, Y.; Yi, Q.; Jia, Q.; Zhang, J.; Zhou, Z.; Liu, X. Quantifying phosphorus levels in water columns equilibrated with sediment particles in shallow lakes: From algae/cyanobacteria-available phosphorus pools to pH response. Sci. Total Environ. 2023, 666, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Sun, J.; Zhou, Y.; Gu, L.; Zhao, H.; Wang, J. Variations of different dissolved and particulate phosphorus classes during an algae bloom in a eutrophic lake by 31P NMR spectroscopy. Chemosphere 2017, 169, 577–585. [Google Scholar] [CrossRef]
- Simoni, G.; Cheali, P.; Roslev, P.; Haasler, S.; Reitzel, K.; Smith, A.M.; Haferbier, M.H.S.; Christensen, M.L. Flocculating and dewatering of lake sediment: An in-situ pilot study comparing synthetic polymers and biopolymers for restoring lake water quality and reusing phosphorus. Sci. Total Environ. 2024, 913, 169597. [Google Scholar] [CrossRef]
- Council Directive 91/271/EEC of 21 May 1991 Concerning Urban Waste-Water Treatment. Available online: https://eur-lex.europa.eu/eli/dir/1991/271/oj (accessed on 11 February 2024).
- Council Directive of 21 May 1991 Concerning Urban Waste Water Treatment (91/271/EEC). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31991L0271 (accessed on 11 February 2024).
- Kumar, P.S.; Korving, L.; van Loosdrecht, M.C.M.; Witkamp, G.J. Adsorption as a technology to achieve ultra-low concentrations of phosphate: Research gaps and economic analysis. Water Res. X 2019, 4, 100029. [Google Scholar] [CrossRef]
- Zhou, H.; Margenot, A.J.; Li, Y.; Si, B.; Wang, T.; Zhang, Y.; Li, S.; Bhattarai, R. Phosphorus pollution control using waste-based adsorbents: Material synthesis, modification, and sustainability. Crit. Rev. Environ. Sci. Technol. 2022, 52, 2023–2059. [Google Scholar] [CrossRef]
- Castellar, J.A.d.C.; Formosa, J.; Chimenos, J.M.; Canals, J.; Bosch, M.; Rosell, J.R.; Silva, H.P.d.; Morató, J.; Brix, H.; Arias, C.A. Crushed autoclaved aerated concrete (CAAC) as a reactive filter medium for enhancing phosphorus removal in nature-based solutions—Preliminary batch studies. Water 2019, 11, 1442. [Google Scholar] [CrossRef]
- Egemose, S.; Sønderup, M.J.; Beinthin, M.V.; Reitzel, K.; Hoffmann, C.C.; Flindt, M.R. Crushed concrete as a phosphate binding material: A potential new management tool. J. Environ. Qual. 2012, 41, 647–653. [Google Scholar] [CrossRef]
- Deng, L.; Dhar, B.R. Phosphorus recovery from wastewater via calcium phosphate precipitation: A critical review of methods, progress, and insights. Chemosphere 2023, 330, 138685. [Google Scholar] [CrossRef]
- Mavhungu, A.; Foteinis, S.; Mbaya, R.; Masindi, V.; Kortidis, I.; Mpenyana-Monyatsi, L.; Chatzisymeon, E. Environmental sustainability of municipal wastewater treatment through struvite precipitation: Influence of operational parameters. J. Clean. Prod. 2021, 285, 124856. [Google Scholar] [CrossRef]
- Oguz, E.; Gurses, A.; Yalcin, M. Removal of phosphate from waste waters by adsorption. Water Air Soil Pollut. 2003, 148, 279–287. [Google Scholar] [CrossRef]
- Heibati, B.; Rodriguez-Couto, S.; Turan, N.G.; Ozgonenel, O.; Albadarin, A.B.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Removal of noxious dye—Acid Orange 7 from aqueous solution using natural pumice and Fe-coated pumice stone. J. Ind. Eng. Chem. 2015, 31, 124–131. [Google Scholar] [CrossRef]
- SR EN 1189:1999; Water Quality. Determination of Phosphorus Content. Spectrometric Method with Ammonium Molybdate. ASRO: Bucharest, Romania, 1999.
- SR ISO 7875/1—1996; Water Quality—Determination of Surfactants—Part 1: Determination of Anionic Surfactants by the Methylene Blue Spec-trometric Method. ASRO: Bucharest, Romania, 1996.
- SR ISO 7875/2—1996; Water Quality—Determination of Surfactants—Part 2: Determination of Anionic Surfactants by the Methylene Blue Spec-trometric Method. ASRO: Bucharest, Romania, 1996.
- STAS 10064—75; Water Quality. Determination of Total Phosphorus Content. ASRO: Bucharest, Romania, 1975.
- Du, M.; Zhang, Y.; Wang, Z.; Lv, M.; Tang, A.; Yu, Y.; Qu, X.; Chen, Z.; Wen, Q.; Li, A. Insight into the synthesis and adsorption mechanism of adsorbents for efficient phosphate removal: Exploration from synthesis to modification. Chem. Eng. J. 2022, 442, 136147. [Google Scholar] [CrossRef]
- Abou-Elela, S.I.; Abo-El-Enein, S.A.; Hellal, M.S. Utilization of autoclaved aerated concrete solid waste as a biocarrier in an immobilized bioreactor for municipal wastewater treatment. Desalin. Water Treat. 2019, 168, 108–116. [Google Scholar] [CrossRef]
- Bao, T.; Yu, Z.M.; Damtie, M.M.; Wu, K.; Jin, J.; Zhang, Y.; Wei, X.L.; Frost, R.L. Use of autoclaved aerated concrete particles for simultaneous removal of nitrogen and phosphorus as filter media from domestic wastewater. Environ. Technol. 2020, 41, 3032–3042. [Google Scholar] [CrossRef]
- Martemianov, D.; Xie, B.-B.; Yurmazova, T.; Khaskelberg, M.; Wang, F.; Wei, C.-H.; Preis, S. Cellular concrete-supported cost-effective adsorbents for aqueous arsenic and heavy metals abatement. J. Environ. Chem. Eng. 2017, 5, 3930–3941. [Google Scholar] [CrossRef]
- Sayğılı, G.A.; Güzel, F. Chemical modification of a cellulose-based material to improve its adsorption capacity for anionic dyes. J. Dispers. Sci. Technol. 2017, 38, 381–392. [Google Scholar] [CrossRef]
- Kasraee, M.; Dehghani, M.H.; Mahvi, A.H.; Nabizadeh, R.; Arjmand, M.M.; Salari, M.; Hamidi, F.; Mubarak, N.M.; Tyagi, I. Adsorptive removal of humic substances using cationic surfactant-modified nano pumice from water environment: Optimization, isotherm, kinetic and thermodynamic studies. Chemosphere 2022, 307, 135983. [Google Scholar] [CrossRef] [PubMed]
- Asgari, G.; Roshani, B.; Ghanizadeh, G. The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone. J. Hazard. Mater. 2012, 217–218, 123–132. [Google Scholar] [CrossRef]
- Elkhlifi, Z.; Lahori, A.H.; Shahib, I.I.; Iftikhar, J.; Wang, S. Comparative assessment of phosphate adsorption properties and mechanisms on Mg/Al-engineered sewage sludge biochar in aqueous solution. J. Water Proc. Eng. 2023, 56, 104443. [Google Scholar] [CrossRef]
- Karaca, S.; Gürses, A.; Ejder, M.; Açıkyıldız, M. Kinetic modeling of liquid-phase adsorption of phosphate on dolomite. J. Colloid Interface Sci. 2004, 277, 257–263. [Google Scholar] [CrossRef]
- Kudeyarova, A.Y. Chemisorption of phosphate ions and destruction of organomineral sorbents in acid soils. Soil Chem. 2010, 43, 635–650. [Google Scholar] [CrossRef]
- Fetene, Y.; Addis, T. Adsorptive removal of phosphate from wastewater using Ethiopian Rift pumice: Batch experiment. Air Soil Water Res. 2020, 13, 1178622120969658. [Google Scholar] [CrossRef]
- Li, W.; Zeng, L.; Kang, Y.; Zhang, Q.; Luo, J.; Guo, X. A solid waste, crashed autoclaved aerated concrete, as a crystalline nucleus for the removal of low concentration of phosphate. Desalin. Water Treat. 2016, 57, 14169–14177. [Google Scholar] [CrossRef]
- Kuhn, D.C.; Bottini, R.C.R.; Rambaldi, J.G.; de Luna, F.M.; Perretto, F.; Bottini, R.C.; Lied, E.B.; Mymrin, V.; Nagalli, A.; Passig, F.H.; et al. White cement as a nontoxic and eco-friendly adsorbent for phosphate adsorption/desorption: Characterization, optimization, and modeling studies. ACS EST Water 2024, 4, 2731–2745. [Google Scholar] [CrossRef]
- Lu, S.G.; Bai, S.Q.; Zhu, L.; Shan, H.D. Removal mechanism of phosphate from aqueous solution by fly ash. J. Hazard. Mater. 2009, 161, 95–101. [Google Scholar] [CrossRef]
- SR EN ISO 6878:2005; Water Quality. Determination of Phosphorus. Spectrophotometric Method with Ammonium Molybdate. ASRO: Bucharest, Romania, 2005.
- SRM 676 A; Alumina Internal Standard for Quantitative Analysis by X-Ray Powder Diffraction. NIST: Gaithersburg, MD, USA, 2005.
- Samarghandi, M.R.; Zarrabi, M.; Sepehr, M.N.; Amrane, A.; Safari, G.H.; Bashiri, S. Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: Kinetic, equilibrium and thermodynamic studies. J. Environ. Health Sci. Engineer. 2012, 9, 9. [Google Scholar] [CrossRef]
- Alemayehu, E.; Lennartz, B. Virgin volcanic rocks: Kinetics and equilibrium studies for the adsorption of cadmium from water. J. Hazard. Mater. 2009, 169, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Buriánek, J.; Václavíková, M.; Havelcová, M.; Klementová, M.; Novák, F. Phosphates adsorption from water by recycled concrete. GeoSci. Eng. 2014, 60, 1–8. [Google Scholar] [CrossRef]
- Tran, H.S.; Tran, N.T.V.; Duong, T.H.; Nguyen, L.H.; Kawamoto, K. Autoclaved aerated concrete grains as alternative absorbent and filter media for phosphorus recovery from municipal wastewater: A case study in Hanoi, Vietnam. Environ. Technol. Innov. 2023, 31, 103175. [Google Scholar] [CrossRef]
- Gong, C.; Huo, L.; Wang, Z.; Sun, C.; Wang, Y.; Cheng, X. Phosphorus removal by porous aggregate from aerated concrete waste residues: Simulating porous structure, performance optimisation, adsorption mechanisms. J. Environ. Chem. Eng. 2023, 5, 111075. [Google Scholar] [CrossRef]
- Wang, J. Comparison of linearization methods for modeling the Langmuir adsorption isotherms. J. Mol. Liq. 2019, 296, 111850. [Google Scholar] [CrossRef]
- Mekonnen, D.T.; Alemayehu, E.; Lennartz, B. Adsorptive removal of phosphate from aqueous solutions using low-cost volcanic rocks: Kinetics and equilibrium approaches. Materials 2021, 14, 1312. [Google Scholar] [CrossRef] [PubMed]
- Nechifor, G.; Pascu, D.-E.; Pascu, M. Comparative study of Temkin and Flory-Huggins isotherms for adsorption of phosphate anion on membranes. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2017, 79, 129–136. [Google Scholar]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Egemose, S.; Reitzel, K.; Andersen, F.Ø.; Flindt, M.R. Chemical Lake Restoration Products: Sediment Stability and Phosphorus Dynamics. Environ. Sci. Technol. 2010, 44, 985–991. [Google Scholar] [CrossRef]
- Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; Bolan, N.S. Removal and recovery of phosphate from water using sorption. Crit. Rev. Environ. Sci. Technol. 2014, 44, 847–907. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, B.; Yao, Y.; Xue, Y.; Inyang, M. Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chem. Eng. J. 2012, 210, 26–32. [Google Scholar] [CrossRef]
- Onar, A.N.; Öztürk, N. Adsorption of phosphate onto pumice powder. Environ. Technol. 1993, 14, 605–612. [Google Scholar] [CrossRef]
- Chrispim, M.C.; Nolasco, M.A.; von Sperling, M. Phosphorus recovery from municipal wastewater treatment: Critical review of challenges and opportunities for developing countries. J. Environ. Manag. 2019, 248, 109268. [Google Scholar] [CrossRef]
- Egle, L.; Rechberger, H.; Krampe, J.; Zessner, M. Phosphorus recovery from municipal wastewater—An integrated comparative technological, environmental and economic assessment of P recovery processes. Crit. Rev. Environ. Sci. Technol. 2016, 46, 908–971. [Google Scholar] [CrossRef]
Quality Indicator | M.U. | Limit Values | Reference |
---|---|---|---|
Total phosphorus | mg/L | 1 (2) | SR EN 1189:1999 [14] |
Synthetic detergents | mg/L | 0, 5 | SR ISO 7825/1—1996 [15] SR ISO 7825/2—1996 [16] |
Quality Indicator | M.U. | Limit Values | Reference |
---|---|---|---|
Total phosphorus | mg/L | 5 | STAS 10064—75 [17] |
Compound | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Others |
---|---|---|---|---|---|---|
Concentration, % | 51.26 | 14.84 | 3.16 | 28.08 | 2.04 | 0.61 |
Compound | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Others |
---|---|---|---|---|---|---|
Concentration, % | 61.01 | 13.05 | 2.93 | 21.73 | 1.01 | 0.26 |
Material | BET (m2/g) | Langmuir (m2/g) | Adsorbed Pore Volume (cm3/g) | Observations |
---|---|---|---|---|
initial material PS | 16.37 | 24.67 | 0.04315 | Low specific surface area |
PS pH = 3 | 20.97 | 31.02 | 0.04519 | Significant increase at acidic pH |
initial material AAC | 30.99 | 45.57 | 0.06761 | Highest BET surface area |
AAC pH = 3 | 23.86 | 35.61 | 0.05407 | Decrease at acidic pH |
pH | Langmuir | Freundlich | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
K (L/mg) | amax (mg/kg) | R2 | RMSE | χ2 | K | 1/n | R2 | RMSE | χ2 | |
3 | 0.134 | 1006.69 | 0.9174 | 0.169 | 0.131 | 141.939 | 0.597 | 0.9755 | 0.071 | 0.032 |
9 | 0.042 | 924.14 | 0.9204 | 0.119 | 0.060 | 67.82 | 0.594 | 0.9540 | 0.087 | 0.034 |
pH | Langmuir | Freundlich | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
K (L/mg) | amax (mg/kg) | R2 | RMSE | χ2 | K | 1/n | R2 | RMSE | χ2 | |
3 | 0.087 | 859.20 | 0.8271 | 0.225 | 0.224 | 88.66 | 0.6188 | 0.9304 | 0.127 | 0.088 |
9 | 0.058 | 630.50 | 0.8209 | 0.176 | 0.136 | 68.369 | 0.5153 | 0.9047 | 0.122 | 0.072 |
pH | PS | ACC | ||
---|---|---|---|---|
A (Slope) | B (Ordinate) | A (Slope) | B (Ordinate) | |
3 | 0.597 | 4.9554 | 0.6188 | 4.4848 |
9 | 0.594 | 4.2169 | 0.5153 | 4.2249 |
pH | C0 (mg/L) | Pseudo First Order | Pseudo Second Order | ||||
---|---|---|---|---|---|---|---|
k′ (min−1) | R2 | k″ (kg/(min·mg) | v0 (mg/(g·min)) | aeq (mg/kg) | R2 | ||
3 | 10 | 0.0271 | 0.9839 | 6.639 · 10−4 | 5.8644 | 93.9815 | 0.9778 |
40 | 0.0284 | 0.9730 | 1.855 · 10−4 | 26.4275 | 377.4078 | 0.9869 | |
100 | 0.045 | 0.9344 | 2.536 · 10−4 | 139.0584 | 740.4479 | 0.9909 | |
9 | 10 | 0.0240 | 0.9531 | 9.796 · 10−4 | 2.9603 | 54.9713 | 0.9949 |
40 | 0.0259 | 0.9722 | 2.361 · 10−4 | 13.9092 | 242.7118 | 0.9848 | |
100 | 0.036 | 0.9254 | 2.070 · 10−4 | 82.5609 | 631.5199 | 0.9974 |
Material | Adsorption Capacity (mg/g) | Reference |
---|---|---|
Pumice (natural) | 7.4–12.5 | [28] |
Pumice (natural) | 1.114 | [46] |
Pumice (Fe-coated) | 18.9–29.6 | [34] |
Crushed AAC (construction waste) | 7.3–15.8 | [8,43] |
Modified AAC (calcined) | 16.4 | [10] |
Pumice (this study) | 1.006 (pH 3) | This work |
AAC (this study) | 0.859 (pH 3) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orbuleț, O.D.; Modrogan, C.; Bosomoiu, M.; Cișmașu, M.; Cîrjilă, E.R.; Scarlat, A.-A.; Airinei, D.N.; Miu, A.; Grinzeanu, M.; Dăncilă, A.M. Efficient and Sustainable Removal of Phosphates from Wastewater Using Autoclaved Aerated Concrete and Pumice. Environments 2025, 12, 288. https://doi.org/10.3390/environments12080288
Orbuleț OD, Modrogan C, Bosomoiu M, Cișmașu M, Cîrjilă ER, Scarlat A-A, Airinei DN, Miu A, Grinzeanu M, Dăncilă AM. Efficient and Sustainable Removal of Phosphates from Wastewater Using Autoclaved Aerated Concrete and Pumice. Environments. 2025; 12(8):288. https://doi.org/10.3390/environments12080288
Chicago/Turabian StyleOrbuleț, Oanamari Daniela, Cristina Modrogan, Magdalena Bosomoiu, Mirela Cișmașu (Enache), Elena Raluca Cîrjilă (Mihalache), Adina-Alexandra Scarlat (Matei), Denisa Nicoleta Airinei, Adriana Miu (Mihail), Mădălina Grinzeanu, and Annette Madelene Dăncilă. 2025. "Efficient and Sustainable Removal of Phosphates from Wastewater Using Autoclaved Aerated Concrete and Pumice" Environments 12, no. 8: 288. https://doi.org/10.3390/environments12080288
APA StyleOrbuleț, O. D., Modrogan, C., Bosomoiu, M., Cișmașu, M., Cîrjilă, E. R., Scarlat, A.-A., Airinei, D. N., Miu, A., Grinzeanu, M., & Dăncilă, A. M. (2025). Efficient and Sustainable Removal of Phosphates from Wastewater Using Autoclaved Aerated Concrete and Pumice. Environments, 12(8), 288. https://doi.org/10.3390/environments12080288