Next Article in Journal
Can Lagoons Serve as a Quaternary Treatment for Micropollutants in Wastewater Treatment Plants? Recent Implications for Compliance with the New Urban Wastewater Treatment Directive
Next Article in Special Issue
Seeding Density Alters the Assembly of a Restored Plant Community after the Removal of a Dam in Southern Wisconsin, USA
Previous Article in Journal
A Microplastic Pollution Hotspot: Elevated Levels in Sediments from the San Francisco Bay Area
Previous Article in Special Issue
Mine Site Restoration: The Phytoremediation of Arsenic-Contaminated Soils
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Fin Whale Balaenoptera physalus Historical Sightings and Strandings, Ship Strikes, Breeding Areas and Other Threats in the Mediterranean Sea: A Review (1624–2023)

by
Rocío Espada
1,2,*,
Adrián Camacho-Sánchez
1,
Liliana Olaya-Ponzone
1,3,
Estefanía Martín-Moreno
2,
Daniel Patón
4 and
José Carlos García-Gómez
1,3,*
1
Laboratory of Marine Biology, Department of Zoology, Faculty of Biology, University of Seville, 41012 Sevilla, Spain
2
Ecolocaliza, C/Gibraltar, 183, 6, La Línea de la Concepción, 11300 Cádiz, Spain
3
Seville Aquarium R + D + i Research Area, Seville Aquarium, 41006 Seville, Spain
4
Ecology Unit, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain
*
Authors to whom correspondence should be addressed.
Environments 2024, 11(6), 104; https://doi.org/10.3390/environments11060104
Submission received: 28 March 2024 / Revised: 9 May 2024 / Accepted: 16 May 2024 / Published: 21 May 2024
(This article belongs to the Special Issue Environments: 10 Years of Science Together)

Abstract

:
A review of the last 399 years (1624–2023) on fin whales (Balaenoptera physalus) in the Mediterranean Sea was conducted, based on an extensive compilation of records published in the scientific literature, technical reports, public databases, journals, and social media. A total of 10,716 sightings and 575 mortality events have been computed, analysed by semesters and mapped in order to compare the summer–winter seasons especially and their implications on migration–residence. Visual and acoustic detections, feedings, migrations, primary production areas (chlorophyll), threats and causes of death and their relations have been addressed, and a mini-review on heavy metals and pollutants has been carried out on fin whales in the Mediterranean Sea. Mortality events were most frequent between November and April, coinciding with the decreased sighting period. Ship strikes posed the greatest threat, peaking between May and October, when marine traffic tends to increase in the Mediterranean Sea. Two populations coexist in the Mediterranean Sea, one resident and the other migratory, the latter using the Strait of Gibraltar for its biannual movements. Two areas with a presence of calves (up to 7 m in length) between October and February were detected: one scattered in the northern Mediterranean and the Strait of Gibraltar and its surroundings. A critical zone for collisions has been established according to the results for fin whales in the Mediterranean Sea.

1. Introduction

The fin whale Balaenoptera physalus L. 1758 is the largest animal in the Mediterranean Sea and the second largest on the planet (after the congeneric species B. musculus L. 1758). It is an evolutionary jewel, protected by numerous international, national and regional administrative and legal provisions, notably the International Whaling Commission, which established a zero catch limit [1], the IUCN, where it is classified as “Endangered” [2], the Habitats Directive (92/43/EEC) under Annex IV: Animal and plant species of Community interest requiring strict protection [3] and the Convention on the Conservation of European Wildlife and Natural Habitats (Bern Convention) under Appendix II: strictly protected fauna species [4]. In addition, at the regional level, the Agreement on the Conservation of Cetaceans of the Black Sea, Mediterranean Sea and Contiguous Atlantic Area (ACCOBAMS) facilitates data consolidation through projects and analyses [5]. On the other hand, management tools have been created, such as the Pelagos International Marine Sanctuary (SPAMI) [6], the Marine Protected Area (MPA): “Mediterranean Cetacean Migration Corridor“ (CMC), which covers the whole sea between the Balearic archipelago and the Spanish mainland and recently, the International Maritime Organisation (IMO), who established the north-western Mediterranean as a Particularly Sensitive Area (PSSA), in which protection measures are voluntary [7].
The lack of surveillance [8,9] and the fact that fin whales exceed the limits of the protected areas [10,11] make these conservation measures ineffective. It is only in France that vessels over 24 m are required to install whale positioning devices inside the Pelagos Sanctuary [12].
Before the 19th century, the fin whale had no commercial value given its high swimming speed, the equipment used by the whalers at the time and the fact that it produced less oil than other target species due to its relatively thin layer of blubber (unlike grey or sperm whales); furthermore, it sank once hunted [13]. It was during this century that whaling was boosted, due to advances in the development of the technologies used to capture and process whales, promoting their commercial exploitation throughout the world, including in the Mediterranean. Whales became overexploited, and consequently, hunting was regulated in the 1930s, and although it was resumed, the number of catches never reached those of the beginning of the century [14,15]. In the 1960s and 1970s, the measures adopted by the International Whaling Commission halted, to some extent, the decline of the species on a global scale. Nowadays, hunting is still allowed in some countries such as Greenland, Iceland and Antarctica [16].
Like most mysticetes, fin whales are a migratory species, remaining abundant mainly in cold, temperate offshore waters off the continental shelf [16], where they form independent breeding units [17], although they are sometimes located very close to shore. They are distributed throughout the world’s oceans, although they avoid the poles and tropical waters. In this regard, the absence of the species between approximately 20° N and 20° S was reported by [18], who found that populations in the northern and southern hemispheres do not usually mix. This suggested, together with genetic evidence, the existence of two subspecies, one from the north (B. physalus physalus) and one from the south (B. physalus quoyi) [16]. In general terms, fin whale migration is considered to follow a seasonal pattern [18], in which individuals move to feeding grounds in the summer and breeding grounds in the winter, where food is scarce [16], while there are other populations such as those in the Gulf of California, the East China Sea of Japan and the Mediterranean Sea that are apparently resident year round [19,20].
The current world population of fin whales consists of 100,000 mature individuals [21]. Therefore, an updated study of their presence and movements in the Mediterranean Sea is essential to protect this species from the threats to which it is subjected in this sea, including ship strikes, noise and chemical pollution as well as global warming [22,23,24,25,26,27].

1.1. Objectives

The aim of this work is to review the existing public information on fin whales in the Mediterranean in order to analyse the sightings, deaths, seasonality, feedings, calving grounds, presence near or far from the coast and their main threats, in order to contribute to the improvement of their protection and conservation in the Mediterranean basin.

1.2. Feeding

In the Mediterranean, fin whales usually feed in the water column up to 470 m [28] during the day, but at night, their feeding activity is limited to the surface. In addition, they can filter about 70 m3 of water per gullet [29]. Krill is the main food source of fin whales in the Mediterranean Sea, with two euphausiid species standing out: Nyctiphanes couchi as the common prey [30] and Meganyctiphanes norvegica as the main prey in this sea [16,31,32]. The latter shows very specific vertical movement patterns, settling between 75 m and 800 m depths during the day [33] and migrating to the surface at dusk, settling at depths of 30–50 m [19]. The crustacean M. norvegica is partially phytophagous in the spring and summer [34,35,36,37], which is of great interest, since as we review and discuss in this paper, it is related to the greater presence of the species in areas with higher levels of chlorophyll production. Therefore, the abundance and greater presence of the species appears to be highly dependent on the magnitude of local primary production in the spring.
In the Mediterranean Sea, krill availability during the summer is more confined, making it a more challenging task in the winter to find the feeding grounds. It is now known that during the spring, fin whales concentrate in the Catalan-Balearic Sea [11,38], moving eastwards during the summer towards feeding areas located in the Liguro–Corsico–Provençal basin [38], where upwellings produced by the permanent Ligurian frontal system serve high concentrations of euphausiids.
Some winter-feeding areas of the resident population have been described, such as the waters off the island of Lampedusa [30], but the feeding grounds of northeast Atlantic (NENA) fin whales in the Mediterranean are still uncertain [15]. The intense feeding activity of fin whales in the Liguro–Corsico–Provençal basin during the summer has been confirmed by numerous individual sightings [39,40]. Furthermore, as evidenced by numerous resightings in the area, fin whales have a certain “loyalty” to the area [41].
The Pelagos Sanctuary, located in the north-western Mediterranean, is considered a Special Area of Conservation under the Barcelona Convention of 2002 and was designated as the first internationally protected site for cetaceans [29,42]. The high concentration of individuals is due to high levels of primary production conflicts with the busy shipping routes, making it a very dangerous key area for fin whales [22]. The Tyrrhenian Sea may be the entrance and exit of this area for Mediterranean fin whales, as suggested by numerous sightings [19].

1.3. Breeding Areas

Although fin whale migration has been well described, there is controversy over the locations of specific breeding areas, as fin whales disperse to tropical waters during the winter, as reported Notarbartolo di Sciara et al. [19]. The same author revealed that the observation of calves in various locations in the Mediterranean may suggest that there are no specific breeding areas. On the other hand, Marini et al. [43] proposed that whales migrated to breeding grounds (Libyan and African coasts) from their feeding grounds during the winter, also reporting sightings of “females with calves” around the Sicilian island of Lampedusa [44]. Cotté et al. [45] suggested that Mediterranean fin whales remained at low/mid latitudes, although others remained more dispersed in the north-western feeding grounds during the winter months; the observation of young individuals in the Pelagos Sanctuary throughout the year by Orsi Relini [46] might suggest that fin whales also breed in this area. In contrast, Viale [47,48] suggested that whales entering the Strait of Gibraltar in the winter came from northwest Scotland, but the authors of [24] established that whales from the northeast Atlantic extend their wintering grounds south of the Mediterranean basin, and whales detected in the Strait during the winter belong to this population and are independent of the Mediterranean subpopulation.

1.4. Natural and Anthropogenic Hazards

Fin whales in the Mediterranean face both natural and anthropogenic threats. Over the past 25 years, several strains of dolphin morbillivirus (DMV) have caused epizootics in odontocetes and mysticetes [49], including fin whales (Balaenoptera physalus) [50,51,52], causing pulmonary and neurological diseases and triggering individual or mass strandings [53]. Killer whales (Orcinus orca) are predators of fin whales [16], although the natural threat (especially to calves) does not exist in the Mediterranean, as the presence of the predator In this sea is exceptional. Notarbartolo di Sciara [19] suggested that the great white shark may be a predator, but no attacks have been documented in the Mediterranean.
It is known that 220,000 vessels over 100 tonnes transit the Mediterranean Sea [54]. The total capacity of all littoral states, including other types of vessels such as gas/chemical tankers and ferries/passenger ships, is 248,304 deadweight tonnes (dwt), representing 13% of the world’s vessel capacity. Furthermore, the Mediterranean is the second most used sea area for cruises after the Caribbean (15.8% of the global cruise fleet deployment in 2017). In addition, there are more than 400,000 berths in 940 marinas [55,56] spread across France, Spain and Italy. Recreational vessels are of increasing concern in terms of their impacts on marine mammal noise (e.g., area avoidance) and subtle effects (e.g., changes in acoustic behaviours or elevated cortisol levels) [57].
Whale-watching activities are known to have adverse effects on fin whales. Whales in the Gulf of Maine reduced their dives, duration and number of blows per surface sequence in the presence of vessels [58]. In Chile, fin whales also showed evasive responses to the presence of whale-watching vessels [59]. In the Mediterranean, an increase in speed and zigzagging movements together with a decrease in blowing frequency was reported as an avoidance response to the presence of vessels [19]. In contrast, on the island of Ischia, indifference to passing vessels at 100 m was recorded [60].
The development of their migration patterns so close to the coast means that fin whales are exposed to the effects of human activities (Figure 1), including chemical and noise pollution, maritime traffic and the consequent risk of collision [61,62,63], making them the cetacean most affected by these phenomena [42].
In the Marine Mammal Assessment Report for the Marine Strategy Framework Directive for France [64], ship strikes are recognised as an anthropogenic pressure on large cetaceans and are assessed, where possible, in sub-regions. Of these, the Mediterranean sub-region shows the highest occurrence of ship strikes with large cetaceans (fin whales and sperm whales), with a particular risk in the Gulf of Lions, west of the Pelagos Sanctuary. The area is crossed by a network of busy shipping routes connecting Italian, French and Spanish ports and the mainland with several islands, and it is the area with the highest density of fin whales during the summer [65]. Maritime traffic is expected to intensify significantly globally in the future [65,66,67,68], and consequently, pressures on marine environments will have implications for the welfare and persistence of at-risk and threatened species [69,70].
Noise pollution from anthropogenic sources has increased over the last 50 years, as all marine operations generate sound: maritime traffic, seismic exploration for the oil and gas industry, sonar use for defence and commercial activities, tourism, recreational activities, fishing, offshore mineral extraction, offshore wind energy, hydropower and coastal and near-shore activities [71,72]. Noise derived from shipping traffic, mainly from propeller cavitation as the ship moves, producing a broadband noise spectrum ranging from a few Hz to more than 100 kHz [73], has become the major source of anthropogenic noise pollution in the oceans and is responsible for a steady increase of 3 dB per decade in low-frequency (10–100 Hz) ambient noise in many ocean regions [74,75,76,77,78]. Such noise is directly masked by the frequency band of mysticetes’ acoustic communication signals [79,80,81,82], because they use low frequencies and long wavelengths in their acoustic repertoire, allowing them to communicate over long distances [82,83]. This environmental noise disturbance from shipping traffic is much more severe for right whales than for humpback and fin whales [57]. Whales in studies of ship noise exposure decreased both the duration and bandwidth of their calls [23]. In addition, under high noise conditions, altering the frequency of the call could make it more energy consuming and less efficient, which could significantly affect the reproductive rate of this species [23].
Another major treat to fin whales is climate change, which may affect their prey in the Mediterranean [84,85,86]. As mentioned above, their main prey is the northern krill Meganycthiphanes norvegica, a dominant species in the Ligurian Sea [42] due to its extreme level of thermal adaptability, as it is at the southern limit of its geographical distribution (northern hemisphere), with a northern geographical limit (“unable to ‘escape’ further north within this sea”). Consequently, rising temperatures could significantly reduce the availability of this prey, and thus, the prevalence of cetaceans in Mediterranean waters. Studies have mathematically linked the presence of fin whales to the seawater temperature, chlorophyll levels, nutrient inputs from watersheds and bathymetry, all of which are considered causal factors for the presence of krill [87].
The effects of pollution are also evident in fin whales. The high toxicity, persistence and bioaccumulation of contaminants (e.g., POPs such as organochlorines and polybrominated diphenyl ethers) combined with the cetacean´s biomagnification capacity due to the amount of blubber, their high metabolic rate and poor ability to excrete these compounds [88] leads to high levels of accumulation in marine predators [89], resulting in the most significant toxic effects [90]. Fin whales are excellent indicators for contaminant assessment, because they migrate long distances, consume substantial amounts of water and are relatively abundant in the ocean [16]. Although they have lower contaminant concentrations than odontocetes, since fin whales feed on planktonic crustaceans with lower contaminant levels [91], fin whales in the Ligurian Sea are more exposed to organochlorine compounds than those in the Atlantic [92]. These pollutants act as hormonal [93,94,95] and endocrine disruptors [96,97], are neurotoxic [94,98,99,100,101,102], immunotoxic [103,104], reproduction toxic [105,106,107] and carcinogenic [108,109,110] disruptors. In addition, epigenetic changes have recently been described that may be associated with adverse health effects of POPs and other classes of contaminants in fin whales [111]. On the other hand, heavy metals of natural [112] or anthropogenic [113,114,115] origin are highly bioaccumulative and toxic [116]. These include mercury and lead [117,118] as well as cadmium, zinc and copper because of their toxicological effects and their relative abundance of metal inputs to the marine environment [119]. High concentrations of copper can enhance cell membrane Na+/K+-ATPase and limit potassium regulation and osmotic balance; Zn protects against ultraviolet light, which destroys DNA. Mercury affects the endocrine and nervous systems, causing dysfunctions in osmoregulation, prey location, orientation and interspecific communication, while Pb causes behavioural abnormalities that impair survival, metabolism and learning [120,121,122,123,124,125,126,127]. The accumulation of heavy metals in mysticete prey is low compared to that of odontocetes [128]. In addition, an estimated 100,000 objects per km float in the Mediterranean2, and given the constant flow of water from the Atlantic, these floating pollutants tend to remain in the Mediterranean basin [29]. The filter-feeding activity of fin whales makes them susceptible to ingesting microscopic plastic particles each day [129], indirectly through contaminated prey [130,131] or directly [132,133]. Recent studies have correlated the feeding grounds used by fin whales with areas of high microplastic concentrations, showing a clear relationship [29]. One such area is the Pelagos Sanctuary [134].
In addition, plastics can release harmful particles such as polyethylene, polypropylene and phthalates [134], which is a serious threat given the lifespan of fin whales, and also act as vectors for the dispersal of invasive species [135], which could introduce disease-causing pathogens, posing another major threat, especially to newborns and calves with weak immune systems [134].

2. Materials and Methods

A literature review was carried out for the period 1624–2023 using scientific search engines (Web of Science, Scopus, Research Gate, Academia and Google Scholar), cetacean-related databases such as MEDACES (Mediterranean Database of Cetacean Strandings), OBIS-SEAMAP, the Biodiversity Data Bank of the Valencian Community and REDIAM (Environmental Information Network of Andalusia), as well as news, social networks and the rich bibliography on the subject, which was consulted previously in numerous sources. Information on B. physalus was collected on sightings and mortalities (location, number, origin, length at stranding, decomposition code and cause of death) in different sectors of the Mediterranean. In order to achieve the highest possible scientific rigour and to facilitate the traceability of the search and the location of sources for future authors, anonymous sources were first removed, as well as the sources with a high lack of information (Figure 2).
Histograms of sightings, strandings, collisions and other selected mortality descriptors were plotted, classified as “May–October” and “November–April” semesters to detect differences between the periods. Only the minimum number of individuals for which sightings were certain was taken into account. A distinction was made between information from strictly scientific sources (following a pure scientific methodology and species identification was accurate) and information from other sources that did not fit into this category. In the histogram of sightings, the descriptor “Sightings of cetaceans” was introduced, providing data from cetacean sighting platforms. The category “Other sources” included citations outside the context of scientific publications, such as from databases, reports, social media, news, volunteers and fishermen’s records. In addition, journalistic and social media citations accompanied by reference images or videos were considered in order to identify the species. Scientific sources that did not provide enough information as required for the strictly scientific category were included in this group. If an article reported “three groups sighted” without specifying the number of individuals, 3 specimens were counted. When, for example, the presence of “more than three individuals” was mentioned, 4 individuals were counted (the minimum number of animals observed with certainty). Many papers provided information on sightings in the Mediterranean Sea but lacked sufficient information to include them in the count, e.g., [136], or mixed sightings in different sectors of the Mediterranean, e.g., [137]. Similarly, other papers contained valuable information on B. physalus sightings but were outside the study area of interest, e.g., [138]. Information that did not provide specific coordinates was approximated according to the description of the location provided by the authors. If the data lacked location information, they were disregarded. Data that could correspond to other data already recorded, for example, those included in the REDIAM database, which included data on deaths and sightings, were substituted and excluded. As for deaths, data that coincided with others already identified or that belonged to areas outside the study area were discarded.
Where there was evidence of different data from two different sources in the same locality, these were taken into account, such as the data from [139], which coincided with some of those published by [15]. The indications in their methodologies and the non-coincidence of the total number in each case suggested that they were independent data. On the other hand, the distinction between information from strictly scientific sources and that from other sources introduced bias, especially in the case of the histogram of sightings, since by being divided by areas, some of them (for reasons such as greater popularity or relevance, among others) tended to be more studied and published in the scientific literature than others. This is the case of the Ligurian Sea, part of the Pelagos Sanctuary, where most of the reported sightings come from strictly scientific sources.
Venn diagrams were developed to visualise and analyse the relationships between different datasets, representing all possible combinations and the 885 elements contained in each of them [140] using the generator available in [141]. These diagrams allow for the visual identification of common (overlapping circles) and unique (independent areas of the circles) descriptor spaces. For this purpose, the data inherent to all relevant fields or descriptors in the diagram literature were used, i.e., if they lacked information on their seasonality, location sector or, in the case of the mortality diagram, on the cause of death, they were excluded. Thus, the fractions of the circles in the graph that fell outside the intersections between them would be representative of the periods, locations or types of events excluded from those used in the diagram. That is, the fraction of the data outside the intersection with the area corresponding to the May–October period would report data relating to the November–April period, and thus, respectively, to the locations and types of mortality events.
The Q-GIS tool was used for mapping. Map overlays of the locations of sightings or mortalities (1624–2023) were also produced using the vessel density map for 2019 in order to visualise the most critical areas for conservation. The vessel density layers represent the total hours spent by vessels in a 1 km × 1 km resolution grid cell during 2019. These layers were consulted on the 2019 EMODnet human activities portal, created by the European Maritime Safety Agency [142]. The types of vessels included were passenger vessels, cargo, tanker, fishing, recreational, etc. The density of sightings/mortalities was provided with transparent symbology to visualise overlaps with route densities.
Moreover, to clarify the information on the areas and periods of presence of fin whale calves in the Mediterranean, the total lengths of stranded animals were reviewed. The mean length of fin whale calves in the Mediterranean is 5.2 m, as published in [19], being smaller than those in the North Pacific, which have a mean length of 6.4 m [143]. Although the length class for calves has been stipulated to be between 4 and 8 m [92], all records of stranded fin whales below 7 m were selected, as fin whales are characterised by rapid growth in the early part of their life [144] and classified by months. In addition, their state of decomposition was also recorded and classified into 5 classes, live, fresh, slightly decomposed, decomposed and mummified [145] in order to detect breeding seasons and plot the locations where live, fresh or slightly decomposed neonates and calves were stranded.

3. Results

3.1. Fin Whales in the Mediterranean Sea

Fin whales are the only regularly observed mysticete [42] in the Mediterranean, but their distribution is not homogeneous. The abundance of this cetacean is notably higher in the west than in the east, with the coast of France being the most important area, together with Corsica and Sardinia. On the other hand, on the coasts of Greece, Turkey, Israel and Egypt, it is practically absent [19], but in the Strait of Gibraltar, its eventual presence is also notable, as fin whales cross from the Atlantic to the Mediterranean between November and April and leave for the Atlantic between May and October [15]. Generally, they do not form stable groups, which is common in whales, although numerous specimens often aggregate in feeding areas. In the Bay of Biscay (Iberian Peninsula), an Atlantic area close to the Strait of Gibraltar, an abundance of 977 specimens has recently been estimated during the summer [146], a period of the year in which Walker [147] established the greatest presence of the species in August. In contrast, the authors of [10] estimated an abundance of 250 specimens during the winter.
In the Mediterranean, there is evidence of two populations of fin whales: a small resident population and a NENA population (referred to above) that migrates to the Mediterranean basin on a seasonal basis [15,17,24,30,148,149]. It has been suggested that some individuals of the NENA population may even migrate biannually, entering and leaving the Mediterranean at least twice a year [15]. On the other hand, individuals from the resident Mediterranean population also make seasonal movements, independently of those made by individuals from the NENA population [15]. These individuals remain year round in the Mediterranean and feed in both the summer and winter; they usually aggregate in the summer in feeding areas and then disperse throughout the rest of the Mediterranean basin [148]. This has been demonstrated through a study of their acoustic signals, as these differ between individuals from both subpopulations [24], determining that fin whales from the Atlantic, during the winter in the Mediterranean, were concentrated in the Alboran Sea and in the area of the Strait of Gibraltar, while the resident Mediterranean population was not present in these areas during this time of the year [148,150]. The areas occupied by both populations when they are present in the Mediterranean can be seen in Figure 3. Some data seem to indicate that there is an overlap of both populations from the Balearic Sea to the Ligurian Sea [148].
Studies on the 15 N and 13 C isotope levels in the baleens of fin whales have also contributed to the differentiation of the two subpopulations [150], in addition to results on the levels of organochlorines in their blubber layer, mainly PCBs and DDT [92]. In Atlantic individuals, the levels of the aforementioned isotopes are higher than in Mediterranean individuals [150], while PCBs and DDT are more notable in Mediterranean individuals, as the sea is almost enclosed [92,150]. On the other hand, it was observed that in the baleens of individuals belonging to the Mediterranean NENA subpopulation, the outermost layer of the baleen acquired isotopic values typical of the Mediterranean krill M. norvegica [150].
Differences in the mitochondrial DNA have been found between the two populations, as well as discrete gene flows in relation to nuclear DNA [17,42]. Although some authors consider that they may reach the Atlantic waters of southern Portugal and Morocco [42], the distribution limits of the resident population in the Mediterranean are unclear [16]. However, it seems that the results of genetic studies describe a situation that is only possible if gene flow takes place through males, suggesting that male Atlantic fin whales may reach beyond the Alboran Sea and mate with females from the resident population [42].
The data analysed for the resident population indicate that they aggregate in the Ligurian Sea during the summer and disperse during the rest of the year. In fact, strandings off the North African coast suggest that fin whales are more concentrated in the south during the winter [148]. Furthermore, the waters off the island of Lampedusa have been shown to be a winter-feeding ground [30]. Data from Panigada et al. [39] support this observation. However, some individuals remain all year round in the Ligurian Sea and others move to the Balearic Islands at the end of the summer. This makes it impossible to establish a specific migratory pattern for this population. The intense feeding activity in the Liguro–Corsico–Provençal basin during the summer is confirmed by the high number of sightings and the presence of droppings. It is also known that fin whales have a certain “loyalty” to this area, as indicated by the numerous resightings of individuals in the area. The point of entry and exit from this area for Mediterranean resident fin whales may be the Tyrrhenian Sea, as suggested by numerous sightings [19]. The specific breeding areas are unknown, so it has been assumed that because the Mediterranean is such an enclosed sea, individuals can still communicate with each other despite being dispersed, allowing mating to occur in any area of the Mediterranean basin [148].

3.2. Chronology and Analysis of Sightings (1904–2022)

A detailed review of the total recorded sightings in the Mediterranean during the period 1904–2022 is illustrated in Figure 4a by means of a histogram constructed from information obtained directly or indirectly from the following strictly scientific sources: [11,15,19,28,29,30,31,39,44,45,48,139,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207]. The category named as “Whale watching” includes information from [208], which includes data from the ecotourism company Cetáceos y Navegación S. L. [15], whose data from 1999–2001 correspond to the type of methodology shown in [209,210,211] and [212]. The rest of the sources consulted (“Other sources” category in the histogram) were quantified between 1 and 3 according to their degree of professionalism, with 3 being the maximum value. Value 1 included the following: [213,214,215,216] and citations from [217,218,219,220,221,222,223,224,225,226]. Value 2 included the following: [5,30,202,227,228,229,230,231], datasets [232,233,234,235] and OBIS-SEAMAP datasets (basic data) [236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255]. Value 3 included the following: [256,257].
The histogram (Figure 4a) confirms the distribution trend commonly considered for B. physalus: a higher presence in the western half of the Mediterranean (SG, AS, WB, LS, TS, SS and SM sectors) with respect to the eastern half (IS, SO, ADS, AGS, LBS and LVS). The Ligurian Sea sector stands out for the highest number of sightings (more than 4941) compared to the sector with the second highest number of sightings (Western Basin). The comparison between these two sectors, especially considering the sizes of both (see Figure 4a), highlights the importance of the Ligurian Sea for this species.
The Venn diagram (Figure 4b) of the sightings provides complementary information for both six-month periods. It shows more clearly that of the sightings in the Ligurian Sea, the vast majority took place in May–October. Thus, the importance of this area during this six-month period was also reinforced by the fact that most sightings in the whole Mediterranean during this period were recorded in the Ligurian Sea. This is consistent with the traditional consideration of this sea as an area where fin whales gather to feed during the summer months.
The detailed analysis of two six-month periods of the year (May–October and November–April) has allowed us to delimit the information, revealing differences, especially between the summer and winter, which deserve to be discussed. Figure 5a shows that during the May–October period, the percentage of sightings in the Ligurian Sea is much higher than that corresponding to the November–April period or to the total chart.
During the November–April period (Figure 5b), the relevance of the Ligurian Sea for the species in question is reduced, and straits, such as those of Gibraltar and Sicily, become more important. This, together with the fact that sightings seem to be more distributed among the different sectors of the western half, is consistent with the idea that Mediterranean resident fin whales tend to disperse during the winter months (still more frequent in the western half than in the eastern half). Among the few known winter-feeding areas, the island of Lampedusa stands out, which may explain the relevance of the Strait of Sicily during this period. On the other hand, the importance of the Strait of Gibraltar (evident in all the graphs, although especially in November–April) is obvious, as it is the obligatory passage through which the Atlantic migratory population enters and leaves the Mediterranean.
A density map was made including the revised sightings from all years and overlapped with the 2019 ship density map (all types). Three important areas of fin whale presence can be observed, which are also critical due to the high density of maritime traffic (see Figure 6).

3.3. Sightings “Near–Far” from the Shore in the Mediterranean Sea

Fin whales are mainly abundant in cold, temperate waters off the continental shelf, i.e., in deep waters far from the coast [10,16,146,258], so the probability of sightings should be higher offshore than near the coast. However, many scientific sources did not specify any exact location or whether the sightings were near or far from the coast [160,168,174,176,178,183,188,192,205,206]. Several scientific papers provided approximate information on the location of the sightings, and others used geographical features. Those that used geographical features were classified as near-shore sightings, while those that did not specify the position or reference at sea were categorised as distant.
Most sightings have been recorded “offshore” [15,28,29,31,39,48,153,159,160,161,162,163,164,165,166,167,169,171,172,173,177,179,184,185,187,189,191,196,197,198,200,201,204,205,206,207]. Comparatively, sightings in the Mediterranean “near the coast” are testimonials [11,30,44,151,152,154,155,156,157,158,181,182,186,190,194,199,200,202]. In any case, the authors consulted in this review do not explain what they mean by “offshore or near” the coast.

3.4. Why Atlantic–Mediterranean Migration?

The migration of this species is not entirely clear, as there are individuals that do not develop seasonal migration patterns, remaining at high latitudes during the colder months or at low latitudes during the warmer months [18]. Gauffier et al. [15] indicated that the migratory population enters the Mediterranean between November and April and returns to the Atlantic between May and October, often accompanied by their young, suggesting that they use the Mediterranean as a breeding area during the winter (and as a feeding area, as prey availability is lower in the summer) and the high latitudes of the Atlantic in the summer for feeding. This follows the traditional seasonal pattern of fin whales moving to feeding grounds in the summer and breeding grounds in the winter [16], but to some extent, implies that they do not feed during the winter. This pattern is not strictly followed by Atlantic fin whales migrating to the Mediterranean, as this work shows, since whales have been shown to feed during their migrations [259] that were associated with coastal fronts [260]. This was specifically observed in the Algeciras Bay with the unprecedented presence of a humpback whale (Megaptera novaeangliae) [261], exposing feeding behaviours coinciding with the detection of massive numbers of the Nordic krill M. norvegica. In this sense, a relationship has been established between sightings of fin whales in the Ligurian Sea with masses of M. norvegica, which in turn, corresponded with areas of high primary production [32,201], suggesting that in years of low primary production, their distribution would be related to short-term productive areas and thermal fronts [262,263], which would represent areas of concentration of these euphausiids [215]. This hypothesis has also been proposed in the results of [87], using neural network models on variables that define the presence of krill and coincide with the presence of fin whales [87].
By comparing the locations of the updated Mediterranean sightings with the satellite images of chlorophyll concentrations in the winter and summer (2018) produced using the Giovanni tool through the MODIS-aqua sensor at a 4 km resolution and the MODIS-Aqua MODISA L3_8d_4km_v2018 dataset [264] shown in Figure 7, we found, as a result, a high coincidence, in the Western Basin, of the presence of fin whales with the areas of highest chlorophyll concentration. This is especially relevant in the winter far from the coast (which does not occur in the summer), when fin whales are found in the Mediterranean, which seems to be explained by reasons of reproduction and food resources, as opposed to the summer season, which is characterised by a drop in primary production, clear in the aforementioned images.
Areas with higher chlorophyll-a concentrations are, in turn, hotspots of marine productivity, as they provide food for zooplankton, which form part of the diet of other links in the food chain, including fin whales [39]. Therefore, the relationship between fin whale abundance and chlorophyll levels suggests a feeding pattern, which could be one of the drivers of NENA population migration.
Recently, seasonal movements driven by feeding have been described from the Catalan–Balearic Sea, where fin whales have been identified feeding during the spring, moving eastwards towards the north-western Mediterranean Sea [38].
On the other hand, movements of fin whales have been related through recaptures between the waters of the Valencian Community and the Strait of Gibraltar at the beginning of the summer, establishing a correlation in the number of days between the two areas [212].
Sightings in the Nile Delta and off the coast of Israel are surprising considering how oligotrophic this area is (Figure 7). It is possible that prior to the construction of the Aswan Dam in Egypt, fin whales visited this area more frequently, and that after the construction of the dam, the flow of nutrients from the Nile River into the Mediterranean was reduced, favouring the oligotrophy that characterises the eastern Mediterranean basin [265]. However, sightings prior to the Aswan High Dam were very rare, possibly not because they did not occur, but because there has traditionally been less scientific effort made in this part of the Mediterranean [19].

3.5. Collisions, Strandings and Deaths at Sea

The likelihood of fin whale collisions with large vessels is an increasing reported threat to shipping routes in the high seas, externally to the edge of continental shelves, where the species has its preferred habitat [63,266]. To compare collision records in the Mediterranean and the extent to which the threats described in this paper merit an action plan in the Strait of Gibraltar, a review was from published records of collisions (12.52%) for individuals of this species from 1624 to 2023 and, comparatively, of strandings (74.78%), individuals found dead floating at sea (10.44%) and by-catch (2.26%).
The results of the search from the sources consulted are presented graphically in Figure 7. As strictly scientific sources, we consulted the following: [11,19,22,50,61,151,153,155,156,157,174,175,180,182,192,199,202,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348] and Verona Natural History Museum in [22].
On the other hand, using the same method, the rest of the sources used in this histogram (“Other sources”) were rated between 1 and 3 according to their perceived degree of professionalism (3 being the highest value). In category 1 (several journalistic and some strictly scientific quotations that did not provide data on the season, state of decomposition and duration of most strandings) we used data from the following: [32,229,309,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378]. In category 2, we used data from the MEDACES database (SFAX, ARION, ICBIBE, RNE-GECEM, Fundacion Aspro Natura, BIOPOLMARINE, CREMA, Fundación Museo del Mar de Ceuta y Asociación Septem Nostra- Ecologistas en Acción, CSCET, FVMUZ, CARM, EGALIBY, IMMRAC, INSTM, CREM IBIZA, Red de Rescate de Fauna Marina de la Generalitat and Zoo de Barcelona) [379], the Environmental Information Network of Andalusia [380] and UNISI- University of Siena [381]. In category 3, annual reports were included: [382], annual stranding reports from the Réseau Narional Echouages (RNE) in France [383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405], Centro Studi Cetacei [406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423] IZS Sardegna, Museo de Tourin, Museo di Storia Naturale di Genova, Di Natale and Cagnolaro pers. comm., Universitá di Padova, Pintore, A in [331,345,424,425,426]. Strandings (where the cause of death was not publicly published or could not be determined) are the predominant mortality events for B. physalus in the Mediterranean (Figure 8a). After strandings, collisions are the second most frequent mortality descriptor.
The Venn diagram (Figure 8b) illustrates the differences found between mortality events and descriptors in the May–October and November–April semesters, with the differences between the two being clearly visible, as the areas outside the intersections with the May–October circle represent the November–April data.
Distinguishing between seasons (Figure 9), it should be noted that collisions are twice as frequent in the May–October period than in November-–April, which can be explained by a higher volume of maritime traffic, especially from fast boats and ferries. By-catch does not seem to be a serious threat to this cetacean, although it could be the origin of some strandings. These are more abundant in November–April, a period when there should be more fin whales in the Mediterranean due to the greater presence of Atlantic–Mediterranean migrants in the winter, and strandings are easy to record on the coast at any time of the year, given the size of the animals, without requiring observation campaigns or sampling efforts, nor being conditioned by the weather. On the contrary, the summary of sightings reviewed in this period (in which resident and migratory populations coincide), compared with the May–October period (see Figure 4 and Figure 5), shows the opposite situation, which is possibly explained by the lower sampling effort between November and April given the more unfavourable weather conditions during this six-month period. This may also be influenced by the fact that, as mentioned above [215], in the months between May and October, the resident population tends to cluster in feeding areas, which may facilitate a higher number of sightings. The number of collisions is almost twice as high in the May–October period as in November–April, as well as the number of mortalities at sea, which is congruent with the existence of more maritime traffic (especially fast boats) and the greater ability to detect floating carcasses at the beggining of both semesters.
Figure 10a shows the full-year representation of mortality events (1624–2023) overlapping with the density of all 2019 vessels in the Mediterranean, while Figure 10b only represents the densities of vessel collision events.
The north-western Mediterranean is a high collision risk area (Figure 10b) [207]. In 2018, there were 58 cases of stranded whales, and 24 showed a high probability of having died from a collision [427]. Of these, 69% of the cases had occurred in fin whales. Of 383 whales that were photo identified in the Ligurian Sea between 1990 and 2001, 9 whales showed evidence of a collision on their bodies [22]. The most crucial factors contributing to the risk of collision are the overlap between areas of intense maritime traffic and the presence of cetaceans [428,429]. In addition, the risk increases in the summer, as both animal and vessel densities increase [136,430]. Eighty-two percent of lethal collisions occur in or near the waters of the Pelagos Sanctuary, showing the highest mortality rate (3.25) than in the rest of the Mediterranean [22]. David et al. [207] detected 2775 fin whales and 43 “near-collision events” between 2008 and 2009 in the Liguro–Corsico–Provençal area in the summer, coinciding with the highest abundance of fin whales. During this study, 63.4% of the whales appeared in front of the boats at less than 50 metres, and the avoidance behaviour developed by the animals was direct diving, non-reaction or change of direction. Tort et al. [11] photographed seven live animals on the Garraf coast (where fin whales feed) with collision-related injuries, indicating that the risks of this threat are increasing. They highlighted that between March and May (with the highest number of sightings in April), cargo ships are the type of vessel presenting the highest risk of collision for fin whales. These vessels travel at speeds between 10 and 20 knots, with a collision probability of 79% [431,432]. Although passenger vessels did not show a high risk of collision in the study area, they do constitute a high risk along the Catalan coast and the Balearic Sea, as these vessels travel at speeds of 20 knots during the summer (high tourist season) [11].
An average of 116,128 vessels transits the Strait of Gibraltar per year [433] according to data from Salvamento Marítimo’s VTS Traffic Tarifa, http://www.salvamentomaritimo.es (accessed on 23 April 2022), for the years 2018 and 2019. In addition, there is evidence of a negative correlation between ferry traffic and bottlenose dolphins (Tursiops truncatus), affecting annual apparent survival [434]. There is evidence of collision events reported in [15], in addition to those reported by the authors of this manuscript (Figure 1b,c).
Two collisions with fin whales have been recorded in the Strait of Gibraltar, one in July 2012 and one in May 2014 [435], on their way out into the Atlantic. In addition [436], two other collisions were reported in 2002 and 2004, but these have not been included in this review, because they could not be linked to the published data (no day or month given). In addition, three other strandings of fin whales with injuries compatible with collisions were reported in Andalusia (Spain) [435]. Scuderi et al. [433] recorded eight sightings of fin whales from the ferries Algeciras–Ceuta and Algeciras–Tangier and observed one collision Near-Miss Event (NME).

3.6. Acoustic Locations

Although they are not sightings per se, the detection of fin whales by acoustic signals should be considered in the monitoring, protection and conservation of the species where they may go unnoticed visually, but not to their acoustic signals. Maps of areas where these signals are recurrent will help to prevent collisions with these animals. For the Strait of Gibraltar, the authors of [23] obtained 89 records (5718 h of recording) between 2006 and 2009 and 37 records (8565 h of recording) between October 2008 and January 2009. Studies of fin whale acoustic signals in areas close to the SG concluded that during winter, Atlantic fin whales were concentrated in the Alboran Sea and the Strait of Gibraltar, while the resident Mediterranean population was absent from these areas during this time of year [148,150]. In addition, fin whale acoustic signals have been detected in the western Mediterranean in Provence, Columbretes Islands, the Ibiza Channel, Alboran Sea and Strait of Gibraltar during 2006 and 2009 [24], with special sampling efforts in eastern Sicily in 2012 and 2013, with 338 records in one day (21 February 2013) during seven hours of recording [437]. This technique is very useful to study the distribution and movements of cetaceans, which shows that fin whales are present in the Ionian Sea throughout the year [437].

3.7. Breeding Season and Calves’ Location Areas

All dead fin whales measuring up to 7 metres in length were selected, resulting in 78 events. Two entries without month information were removed, and the remaining seventy-six were organised by month; the means, maxima and minima were calculated (Table 1), and the results plotted (Figure 11).
Most strandings of fin whales smaller than 7 metres in length are distributed between October and February, which is consistent with what has been reported by [48] for Mediterranean fin whales, although according to [438], Mediterranean fin whales have adapted to the environmental conditions of the Mediterranean Sea by “extending and overlapping both their calving and feeding seasons”, as already noted Notarbartolo di Sicara et al. [19]. According to the data collected in this work for the entire Mediterranean Sea, a peak occurs in November, with up to seventeen immature stranded individuals ranging in length, from a minimum of 4 metres to a maximum of 6.8 metres. In order to visualise possible breeding areas, only animals that stranded alive, fresh or slightly decomposed during the months of maximum immature stranding (October–February) were selected, and a density map was drawn, also representing decomposed animals as pink dots (Figure 12).
The density map (Figure 12) represents the animals stranded below 7 m in length between October and February, which are classified as live, fresh or slightly decomposed, occurring in two specific areas of the Mediterranean Sea: the Ligurian Sea, such as the Gulf of Lions, part of the northern Tyrrhenian Sea and the Strait of Gibraltar. The length previously proposed by Notarbartolo di Sciara et al. [19] for a newborn in the Mediterranean Sea was 5.2 m, suggesting that they are smaller in Pacific congeners of 6.4 m [143]. In the present work, the mean length of the fin whales considered from October to February was 5.68 cm. This difference may be due to the inclusion of stranded fin whales in the Strait of Gibraltar from the northeast Atlantic population in the analysis.

3.8. Chemical Contamination

A small review of the concentrations of different pollutants found in the tissues of Mediterranean fin whales in recent decades has been carried out. These are polychlorinated biphenyls (PCBs), dichloro diphenyl trichloroethane (DDT), flame retardants such as polybrominated diphenyl ethers (PBDEs) (ng g−1), microplastic elements (m−3), MEHP (mono-2-ethylhexyl phthalate) (ng/g) and some heavy metals such as cadmium, mercury, copper, lead, selenium and zinc (Table 2 and Table 3).

3.9. Diseases

Dolphin morbillivirus (DMV) is the culprit of epizootics in odontocetes and mysticetes [49], including fin whales (Balaenoptera physalus) in the Mediterranean [50,51,52]. In the last 25 years, different strains of DMV have caused neurological and pulmonary diseases in cetaceans, triggering single- or mass-stranding events [53]. Sequences of herpesviruses of the Alphaherpesvirinae family have also been detected using phylogenetic analysis in Mediterranean whales [335], which also have immunosuppressive effects in cetaceans [448]. On the other hand, the ectoparasitic copepod Penella balaenopterae (Koren and Danielssen, 1877) [325] is also described, which is considered to be common on the skin of fin whales in the Pelagos Sanctuary [19] along the Italian, Tyrrhenian and Turkish coasts [325,338,449]. In addition, other metazoan parasites, such as Ogmogaster antarcticus Johnston, 1931, Bolbosoma sp. and Tetrabothius ruudi, were also found in seven fin whales analysed in [338]. This author also detected Crassicauda boopis infections of previously reported nematodes in an animal that also presented nephropathologies and severe lesions in the mesentery [450]. In the Strait of Gibraltar, specifically in 2014, a specimen stranded in Huelva (Andalusia, Spain) presented severe parasitic vascular obstruction compatible with C. boopis [435].

4. Discussion

Conservation Strategies

Collisions are the main threat and must be addressed in conservation management. Unknown causes of strandings are the most common mortality event in the region, and although they may include natural or human-related causes, it is noted that in many cases, necropsies are not carried out, the results of necropsies are not published or are inconclusive. They also highlight the problem of noise pollution and the disorientation of whales, as well as other possible causes of various origins (including collisions). Although Sciacca et al. [437] have confirmed that noise levels from human activities are high in the Mediterranean, Castellote et al. [23] argue that noise levels in the Mediterranean are higher than in any other ocean basin and are mainly caused by ships and reflection seismology.
It is important to note the relationship between the threats to fin whales and the areas of greatest importance for the species in the Mediterranean Sea, as this is where conservation efforts should be focused. For example, given that collisions account for a significant percentage of mortality, the control of maritime traffic in areas such as the Ligurian Sea, the Western Basin and the Strait of Gibraltar are fundamental. From the information obtained here, it is possible to identify the western Mediterranean area that is shown on the map in Figure 13 as the most vulnerable (including the Pelagos Sanctuary, where the highest number of collisions has been recorded), as it integrates a high concentration of sightings and mortalities (with a record number of collisions in the Mediterranean), as well as maritime traffic. For this reason, the competent authorities should carry out strict environmental monitoring, as well as impose legal requirements for speed reduction to avoid collisions and the introduction of early warning systems for the ability to detect animals on likely collision routes early.
To this end, it is essential to have good knowledge of the migratory routes of fin whales to be able to predict the periods and specific areas where they will be detected. This would imply, as indicated by Panigada et al. [22], the implementation of proposals to modify and regulate maritime routes according to the presence or absence of the species. In addition to the measures described above, in order to protect these areas, other measures to reduce the level of noise pollution should be implemented, regulating or limiting the activities that generate underwater noise [42].
However, global solutions are not effective. Detailed knowledge of the local areas and time periods when fin whales are feeding or migrating is essential to manage the collision risk in the Mediterranean. The most effective measures to date have been “re-routing”, which is defined as keeping whales away from major shipping lanes through traffic separation schemes, and reducing vessel speeds, although these measures are not feasible in the north-west Mediterranean due to the wide distribution of fin whales. Instead, permanent or seasonal speed restriction zones throughout the risk area, based on the northwestern IMMA, the new Critical Cetacean Habitat and the high-risk exposure maps from this and other studies may be the best option [451]. It has been shown that a speed of 8.8 knots would reduce collisions with vessels by 50% [431,432] and that even below 13 knots, a reduction in “near-collision” events would be feasible, improving sighting distances and minimising mortalities [452,453,454,455].
The Spanish government (Royal Decree 699/2018) declared a new MPA, the CMC between the Catalan–Valencian coast and the Balearic archipelago, as these waters constitute a Cetacean Migration Corridor for cetaceans. In 2019, and within the framework of the Barcelona Convention (BOE no. 158, 30 June 2018), this area has been included in the list of Specially Protected Areas of Mediterranean Importance (SPAMI list) [456]. Recently, it has been published that the fin whales use this area as a seasonal feeding ground, rather than as a transit area, resulting in poor and ill-adapted protection measures, creating the need to adapt management and protection measures for fin whales in this area during the spring and summer months [38]. In the same work, it was found that the recent NW Mediterranean PSSA covers most of the feeding grounds of fin whales, but management measures are voluntary, so it is important that more restrictive protection measures are implemented [38].
To reduce the risk of ship collisions with marine mammals and unidentified floating objects (UFOs), automated detection systems (e.g., SEADETECT) are being developed to detect and identify cetaceans up to 1 km from a ship and alert the crew in time to take appropriate action [457].
Awareness programmes or crew training as part of an overall proactive avoidance system [458] could improve the effectiveness of such mitigation measures. A survey of ferry passengers crossing the Pelagos Sanctuary showed that more than 75% of passengers would prefer to choose a company that reduced the speed of the ferry if it reduced the risk of collision with vessels [459].
Activities related to tourism, fishing, shipping and marine industries pose a risk of accumulation of marine litter pollution [460]. The Mediterranean Sea is a major accumulation area for this waste, particularly in the Ligurian Sea, and regulation or elimination of sources is necessary for the effective conservation of the species concerned.
By-catch does not represent a major threat. According to [461], fin whales can sometimes escape from nets when entangled, but there are reports of deaths in pelagic driftnets [409,462], so this threat needs to be addressed. Innovative designs and projects are being developed to prevent the entanglement of cetaceans in fishing gear. A particular case in point is the North Atlantic right whale (Eubalaena glacialis), which is critically endangered by mussel traps. Fin whales become entangled in the lines connecting these traps to buoys floating on the surface. To avoid this problem, the use of GPS-locatable ropeless traps has already been proposed [463]. This raises the possibility of conducting studies on fishing gear in the Mediterranean and its impact on fin whales, so that new nets or traps can be designed to reduce their impact in an analogous way to the North Atlantic fin whale.
Since the Mediterranean is a semi-enclosed sea in which the outflow occurs at depth, combined with that of the current circulation system, ocean eddies, wind drift, high human pressure and river discharge, among others [464,465], it is considered one of the most polluted areas by marine litter, mainly small plastics [466,467,468], with a total surface load of floating marine litter that is estimated to be between a few thousand tons to 30,000 tons [466,469]. In places such as in the Sardinian–Balearic sub-basin, the Catalan coast, the Gulf of Lions and the NW Mediterranean basin, marine litter accumulates mainly in the spring and summer [468,470,471,472]. These plastic convergence zones overlap with important feeding areas for fin whales, which, at least in the NW Mediterranean Sea, present fidelity to these feeding grounds [41], making plastic a great threat to these animals due to the potential ingestion of these particles during feeding activity [468]. Knowing this, solutions are proposed, such as locating and categorizing potential sources of marine litter through model simulations, in addition to reducing single-use plastics, among other measures [468].

5. Conclusions

The conclusions reached on the current state of knowledge of the fin whale (B. physalus) in the Mediterranean Sea based on an extensive review of public information over the last four centuries are as follows:
(1) There are two distinct populations (resident and migratory). The migratory population enters the Mediterranean Sea between November and April and returns to the Atlantic Ocean between May and October, often with their young. (2) Collisions with vessels are the cause of most mortalities, although the largest number of recorded mortalities are strandings without the identification of the cause of death (although it is possible that most of these are due to seismic reflection noise and noise generated by vessels). (3) The highest number of strandings were recorded between November and April and the lowest number between May and October, in contrast to the lowest number of sightings between November and April and the highest number between May and October. (4) Bycatch mortalities are residual. (5) There is a high overlap between sighting locations and feeding and primary (chlorophyll) production areas. This is particularly relevant in the winter far from the coast when fin whales are found in the Mediterranean Sea, which seems to be explained by synergistic reasons of reproduction and food resources. (6) A map of overlaps between high-density sea routes in 2019 and detected areas with different causes of B. physalus mortality is produced. (7) An integrated representation map of the results obtained was produced. It integrates sightings and mortalities (strandings, collisions, deaths of animals that appear floating for unknown reasons and accidental captures). (8) A large area with a maximum risk of collisions has been identified, which can assist the authorities in the management and implementation of an environmental monitoring plan to help prevent and mitigate this threat (Figure 12). (9) The review and counting of small and low-stranding decomposition events of fin whales provides new information for the detection of breeding areas of this species.

Author Contributions

Conceptualisation, J.C.G.-G. and A.C.-S.; methodology, J.C.G.-G.; software, R.E.; validation, J.C.G.-G., A.C.-S. and R.E.; formal analysis, A.C.-S.; investigation, R.E.; resources, J.C.G.-G.; data curation, R.E. and E.M.-M.; writing—original draft preparation, J.C.G.-G., R.E. and A.C.-S.; writing—review and editing, D.P., E.M.-M. and L.O.-P.; visualisation, R.E.; supervision, J.C.G.-G.; project administration, J.C.G.-G.; funding acquisition, J.C.G.-G. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

No new data were created or analysed in this study. Data sharing is not applicable to this article. Data permission for MEDACES was required and given to the emails provided. The rest of the datasets were public, as only basic information was consulted.

Acknowledgments

This work has benefited collaterally from scientific projects (related to marine environmental research implemented in Bay of Algeciras, Gibraltar) funded by FIUS (Research Foundation of the University of Seville), with the support of the Port Authority of Algeciras (APBA), CEPSA Foundation and Red Eléctrica de España (REE).

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Stoett, P. Irreconcilable Differences: The International Whaling Commission and Cetacean Futures. Rev. Policy Res. 2011, 28, 631–634. [Google Scholar] [CrossRef]
  2. Panigada, S.; Gauffier, P.; Notarbartolo di Sciara, G. Balaenoptera physalus (Mediterranean subpopulation). In The IUCN Red List of Threatened Species; International Union for Conservation of Nature and Natural Resources: Gland, Switzerland, 2021; p. e.T16208224A50387979. [Google Scholar]
  3. Directive, H. Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora. Off. J. Eur. Union 1992, 206, 7–50. [Google Scholar]
  4. Council of Europe (CE). The Bern Convention (19 September 1979) on the Conservation of European Wildlife and Natural Habitats; Document 104; Council of Europe: Strasbourg, France, 1979. [Google Scholar]
  5. ACCOBAMS. Estimates of Abundance and Distribution of Cetaceans, Marine Mega-Fauna and Marine Litter in the Mediterranean Sea from 2018–2019 Surveys; Panigada, S., Boisseau, O., Canadas, A., Lambert, C., Laran, S., McLanaghan, R., Moscrop, A., Eds.; ACCOBAMS: Monaco City, Monaco, 2021; 177p. [Google Scholar]
  6. Notarbartolo di Sciara, G.; Agardy, T.; Hyrenbach, D.; Scovazzi, T.; Van Klaveren, P. The Pelagos sanctuary for 570 Mediterranean Marine Mammals. Aquat. Conserv. Mar. Freshw. Ecosyst. 2008, 18, 367. [Google Scholar] [CrossRef]
  7. IMO. Designation of the North-Western Mediterranean Sea as a Particularly Sensitive Mediterranean Sea Area; Resolut. MEPC38080; IMO: London, UK, 2023; Volume 26, pp. 1–24. [Google Scholar]
  8. Carlucci, R.; Manea, E.; Ricci, P.; Cipriano, G.; Fanizza, C.; Maglietta, R.; Gissi, E. Managing Multiple Pressures for Cetaceans’ Conservation with an Ecosystem-Based Marine Spatial Planning Approach. J. Environ. Manag. 2021, 287, 112240. [Google Scholar] [CrossRef] [PubMed]
  9. Campbell, E.; Alfaro-Shigueto, J.; Aliaga-Rossel, E.; Beasley, I.; Briceño, Y.; Caballero, S.; da Silva, V.M.F.; Gilleman, C.; Gravena, W.; Hines, E.; et al. Challenges And Priorities For River Cetacean Conservation. Endanger. Species Res. 2022, 49, 13–42. [Google Scholar] [CrossRef]
  10. Laran, S.; Pettex, E.; Authier, M.; Blanck, A.; David, L.; Dorémus, G.; Falchetto, H.; Monestiez, P.; Van Canneyt, O.; Ridoux, V. Seasonal Distribution and Abundance of Cetaceans within French Waters—Part I: The North-Western Mediterranean, Including The Pelagos Sanctuary. Deep Sea Res. Part II Top. Stud. Oceanogr. 2017, 141, 20–30. [Google Scholar] [CrossRef]
  11. Tort Castro, B.; Prieto González, R.; O’Callaghan, S.A.; Dominguez Rein-Loring, P.; Degollada Bastos, E. Ship Strike Risk for Fin Whales (Balaenoptera Physalus) off the Garraf Coast, Northwest Mediterranean Sea. Front. Mar. Sci. 2022, 9, 867287. [Google Scholar] [CrossRef]
  12. Beaussonie, G. Loi N◦ 2016-1087 Du 8 Août 2016 Pour La Reconquête de La Biodiversité, de La Nature et Des Paysages; Revue de Science Criminelle et de Droit Pénal Comparé: Tolouse, France, 2017; p. 814. Available online: https://shs.hal.science/halshs-02245415/ (accessed on 27 March 2024).
  13. Scoresby, W. An Account of the Arctic Regions, with a History and Description of the Northern Whale-Fishery; A. Constable & Co.: Edinburgh, UK, 1820. [Google Scholar]
  14. Aguilar, À. Chimán. La Pesca Ballenera Moderna En La Península Ibérica; Edicions Universitat Barcelona: Barcelona, Spain, 2013; ISBN 9788447537631. [Google Scholar]
  15. Gauffier, P.; Verborgh, P.; Giménez, J.; Esteban, R.; Salazar Sierra, J.; de Stephanis, R. Contemporary Migration of Fin Whales Through The Strait Of Gibraltar. Mar. Ecol. Prog. Ser. 2018, 588, 215–228. [Google Scholar] [CrossRef]
  16. Aguilar, A.; García-Vernet, R. Fin whale (Balaenoptera physalus). In Encyclopedia of Marine Mammals, 3rd ed.; Würsig, B., Thewissen, J.G.M., Kovacs, K.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 368–371. [Google Scholar]
  17. Bérubé, M.; Aguilar, A.; Dendanto, D.; Larsen, F.; Notarbartolo di Sciara, G.; Sears, R.; Sigurjónsson, J.; Urban-R, J.; Palsbøll, P.J. Population Genetic Structure of North Atlantic, Mediterranean Sea and Sea of Cortez Fin Whales, Balaenoptera Physalus (Linnaeus 1758): Analysis of Mitochondrial and Nuclear Loci. Mol. Ecol. 1998, 7, 585–599. [Google Scholar] [CrossRef] [PubMed]
  18. Edwards, E.F.; Hall, C.; Moore, T.J.; Sheredy, C.; Redfern, J.V. Global Distribution of Fin Whales Balaenoptera Physalus in the Post-Whaling Era (1980–2012). Mamm. Rev. 2015, 45, 197–214. [Google Scholar] [CrossRef]
  19. Notarbartolo-di-Sciara, G.; Zanardelli, M.; Jahoda, M.; Panigada, S.; Airoldi, S. The Fin Whale Balaenoptera physalus (L. 1758) in the Mediterranean Sea. Mamm. Rev. 2003, 33, 105–150. [Google Scholar] [CrossRef]
  20. Notarbartolo di Sciara, G.; Castellote, M.; Druon, J.-N.; Panigada, S. Fin Whales, Balaenoptera physalus. Adv. Mar. Biol. 2016, 75, 75–101. [Google Scholar] [PubMed]
  21. Cooke, J.G. Balaenoptera physalus. In The IUCN Red List of Threatened Species. 2018. p. e. T2478A50349982. Available online: https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T2478A50349982.en (accessed on 21 March 2022).
  22. Panigada, S.; Pesante, G.; Zanardelli, M.; Capoulade, F.; Gannier, A.; Weinrich, M.T. Mediterranean Fin Whales at Risk from Fatal Ship Strikes. Mar. Pollut. Bull. 2006, 52, 1287–1298. [Google Scholar] [CrossRef] [PubMed]
  23. Castellote, M.; Clark, C.W.; Lammers, M.O. Acoustic and Behavioural Changes by Fin Whales (Balaenoptera Physalus) in Response to Shipping and Airgun Noise. Biol. Conserv. 2012, 147, 115–122. [Google Scholar] [CrossRef]
  24. Castellote, M.; Clark, C.W.; Lammers, M.O. Fin Whale (Balaenoptera physalus) Population Identity in the Western Mediterranean Sea. Mar. Mamm. Sci. 2012, 28, 325–344. [Google Scholar] [CrossRef]
  25. Williams, R.; Wright, A.J.; Ashe, E.; Blight, L.K.; Bruintjes, R.; Canessa, R.; Clark, C.W.; Cullis-Suzuki, S.; Dakin, D.T.; Erbe, C.; et al. Impacts of Anthropogenic Noise on Marine Life: Publication Patterns, New Discoveries, and Future Directions in Research and Management. Ocean Coast. Manag. 2015, 115, 17–24. [Google Scholar] [CrossRef]
  26. Van Weelden, C.; Towers, J.R.; Bosker, T. Impacts of Climate Change on Cetacean Distribution, Habitat and Migration. Clim. Change Ecol. 2021, 1, 100009. [Google Scholar] [CrossRef]
  27. Sala, B.; Garcia-Garin, O.; Borrell, A.; Aguilar, A.; Víkingsson, G.A.; Eljarrat, E. Transplacental Transfer of Plasticizers and Flame Retardants in Fin Whales (Balaenoptera physalus) from the North Atlantic Ocean. Environ. Pollut. 2022, 313, 120168. [Google Scholar] [CrossRef] [PubMed]
  28. Panigada, S.; Zanardelli, M.; Canese, S.; Jahoda, M. How Deep Can Baleen Whales Dive? Mar. Ecol. Prog. Ser. 1999, 187, 309–311. [Google Scholar] [CrossRef]
  29. Fossi, M.C.; Marsili, L.; Baini, M.; Giannetti, M.; Coppola, D.; Guerranti, C.; Caliani, I.; Minutoli, R.; Lauriano, G.; Finoia, M.G.; et al. Fin Whales and Microplastics: The Mediterranean Sea and the Sea of Cortez Scenarios. Environ. Pollut. 2016, 209, 68–78. [Google Scholar] [CrossRef] [PubMed]
  30. Canese, S.; Cardinali, A.; Fortuna, C.M.; Giusti, M.; Lauriano, G.; Salvati, E.; Greco, S. The First Identified Winter-Feeding Ground of Fin Whales (Balaenoptera physalus) in the Mediterranean Sea. J. Mar. Biol. Assoc. 2006, 86, 903–907. [Google Scholar] [CrossRef]
  31. Cotté, C.; Guinet, C.; Taupier-Letage, I.; Mate, B.; Petiau, E. Scale-Dependent Habitat Use by a Large Free-Ranging Predator, the Mediterranean Fin Whale. Deep-Sea Res. I Oceanogr. Res. Pap. 2009, 56, 801–811. [Google Scholar] [CrossRef]
  32. Bentaleb, I.; Martin, C.; Vrac, M.; Mate, B.; Mayzaud, P.; Siret, D.; de Stephanis, R.; Guinet, C. Foraging Ecology of Mediterranean Fin Whales in a Changing Environment Elucidated by Satellite Tracking and Baleen Plate Stable Isotopes. Mar. Ecol. Prog. Ser. 2011, 438, 285–302. [Google Scholar] [CrossRef]
  33. Sardou, J.; Etienne, M.; Andersen, V. Seasonal Abundance and Vertical Distributions of Macroplankton and Micronekton in the Northwestern Mediterranean Sea. Oceanol. Acta 1996, 19, 645–656. [Google Scholar]
  34. Falk-Petersen, S.; Gatten, R.R.; Sargent, J.R.; Hopkins, C.C.E. Ecological Investigations on the Zooplankton Community in Balsfjorden, Northern Norway: Seasonal Changes in the Lipid Class Composition of Meganyctiphanes Norvegica (M. Sars), Thysanoessa Raschii (M. Sars), and T. Inermis (Krøyer). J. Exp. Mar. Biol. Ecol. 1981, 54, 209–224. [Google Scholar] [CrossRef]
  35. Kaartvedt, S.; Larsen, T.; Hjelmseth, K.; Onsrud, M.S.R. Is The Omnivorous Krill Meganyctiphanes Norvegica Primarily a Selectively Feeding Carnivore? Mar. Ecol. Prog. Ser. 2002, 228, 193–204. [Google Scholar] [CrossRef]
  36. Cleary, A. In-Situ Feeding in the Northern Krill, Meganyctiphanes norvegica: A DNA Analysis of Gut Contents. Master’s Thesis, University of Rhode Island, Kingston, RI, USA, 2010; p. 907. [Google Scholar]
  37. Schmidt, K. Food and Feeding in Northern Krill (Meganyctiphanes norvegica Sars). Adv. Mar. Biol. 2010, 57, 127–171. [Google Scholar] [PubMed]
  38. Panigada, V.; Bodey, T.W.; Friedlaender, A.; Druon, J.N.; Huckstädt, L.A.; Pierantonio, N.; Degollada, E.; Tort, B.; Panigada, S. Targeting Fin Whale Conservation in the North-Western Mediterranean Sea: Insights on Movements and Behaviour from Biologging and Habitat Modelling. R. Soc. Open Sci. 2024, 11, 231783. [Google Scholar] [CrossRef] [PubMed]
  39. Panigada, S.; Donovan, G.P.; Druon, J.-N.; Lauriano, G.; Pierantonio, N.; Pirotta, E.; Zanardelli, M.; Zerbini, A.N.; di Sciara, G.N. Satellite Tagging of Mediterranean Fin Whales: Working towards the Identification of Critical Habitats and the Focussing of Mitigation Measures. Sci. Rep. 2017, 7, 3365. [Google Scholar] [CrossRef] [PubMed]
  40. Panigada, S.; Pierantonio, N.; Araújo, H.; David, L.; Di-Méglio, N.; Dorémus, G.; Gonzalvo, J.; Holcer, D.; Laran, S.; Lauriano, G.; et al. The ACCOBAMS survey initiative: The first synoptic assessment of cetacean abundance in the Mediterranean Sea through aerial surveys. Front. Mar. Sci. 2024, 10, 1270513. [Google Scholar] [CrossRef]
  41. Zanardelli, M.; Airoldi, S.; Bérubé, M.; Borsani, J.F.; Di-Meglio, N.; Gannier, A.; Hammond, P.S.; Jahoda, M.; Lauriano, G.; Notarbartolo di Sciara, G.; et al. Long-term photo-identification study of fin whales in the Pelagos Sanctuary (NW Mediterranean) as a baseline for targeted conservation and mitigation measures. Aquat. Conserv. Mar. Freshw. Ecosyst. 2022, 32, 1457–1470. [Google Scholar] [CrossRef]
  42. Castellote, M. Patrón Migratorio, Identidad Poblacional E Impacto Del Ruido En La Comunicación Del Rorcual Común (“Balaenoptera physalus” L. 1758) En El Mar Mediterráneo Occidental. Doctoral Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2009. [Google Scholar]
  43. Marini, L. Some Notes on the Fin Whale (Balaenoptera physalus) in the Western Mediterranean Sea. In Proceedings of the Whales: Biology–Threats–Conservation, Brussels, Belgium, 5–7 June 1991; pp. 63–71. [Google Scholar]
  44. Marini, L.; Villetti, G.; Consiglio, C.; Evans, P.G.H.; Nice, H. Wintering Areas of Fin Whales (Balaenoptera physalus) in the Mediterranean Sea: A Preliminary Survey. Eur. Res. Cetaceans 1996, 9, 126–128. [Google Scholar]
  45. Cotte, C.; d’Ovidio, F.; Chaigneau, A.; Lèvy, M.; Taupier-Letage, I.; Mate, B.; Guinet, C. Scale-Dependent Interactions of Mediterranean Whales with Marine Dynamics. Limnol. Oceanogr. 2011, 56, 219–232. [Google Scholar] [CrossRef]
  46. Orsi Relini, L. The Cetacean Sanctuary in the Ligurian Sea: A Further Reason. Biol. Mar. Medit 2000, 7, 117–127. [Google Scholar]
  47. Viale, D. Big Whale Populations on the Atlantic Coasts of Spain and the Western Mediterranean. Rep. Int. Whal. Comm. 1977, 27, 235. [Google Scholar]
  48. Viale, D. Cetaceans in the Northwestern Mediterranean: Their Place in the Ecosystem. Oceanogr. Mar. Biol. 1985, 23, 491–571. [Google Scholar]
  49. Van Bressem, M.-F.; Duignan, P.; Banyard, A.; Barbieri, M.; Colegrove, K.; De Guise, S.; Di Guardo, G.; Dobson, A.; Domingo, M.; Fauquier, D.; et al. Cetacean Morbillivirus: Current Knowledge and Future Directions. Viruses 2014, 6, 5145–5181. [Google Scholar] [CrossRef] [PubMed]
  50. Mazzariol, S.; Marcer, F.; Mignone, W.; Serracca, L.; Goria, M.; Marsili, L.; Di Guardo, G.; Casalone, C. Dolphin Morbillivirus and Toxoplasma Gondii Coinfection in a Mediterranean Fin Whale (Balaenoptera physalus). BMC Vet. Res. 2012, 8, 20. [Google Scholar] [CrossRef] [PubMed]
  51. Mazzariol, S.; Centelleghe, C.; Beffagna, G.; Povinelli, M.; Terracciano, G.; Cocumelli, C.; Pintore, A.; Denurra, D.; Casalone, C.; Pautasso, A.; et al. Mediterranean Fin Whales (Balaenoptera physalus) Threatened by Dolphin MorbilliVirus. Emerg. Infect. Dis. 2016, 22, 302–305. [Google Scholar] [CrossRef]
  52. Beffagna, G.; Centelleghe, C.; Franzo, G.; Di Guardo, G.; Mazzariol, S. Genomic and Structural Investigation on Dolphin Morbillivirus (DMV) in Mediterranean Fin Whales (Balaenoptera physalus). Sci. Rep. 2017, 7, srep41554. [Google Scholar] [CrossRef] [PubMed]
  53. Di Guardo, D.; Mazzariol, G. Cetacean Morbillivirus in Northern and Southern Hemispheres. Front. Microbiol. 2014, 5, 211. [Google Scholar] [CrossRef]
  54. Agardy, T.; Aguilar, N.; Cañadas, A.; Engel, M.; Frantzis, A.; Hatch, L.; Hoyt, E.; Kaschner, K.; Labrecque, E.; Martin, V.; et al. A Global Scientific Workshop on Spatio-Temporal Management of Noise. 2007. Available online: http://www.pelagosinstitute.gr/en/pelagos/pdfs/Spatio-temporal%20management%20of%20noise.pdf (accessed on 12 April 2021).
  55. Billé, D.; Lowezanin, C. Yachting Centres in the Mediterranean Study N·26; Chamber of Commerce and Industry: Marseille, France, 2010. [Google Scholar]
  56. Cappato, A. Cruises and Recreational Boating in the Mediterranean; Secretary General of the IIC (Istituto Internazionale delle Comunicazioni): Nice, France, 2011. [Google Scholar]
  57. Erbe, C.; Marley, S.A.; Schoeman, R.P.; Smith, J.N.; Trigg, L.E.; Embling, C.B. The Effects of Ship Noise on Marine Mammals—A Review. Front. Mar. Sci. 2019, 6, 476898. [Google Scholar] [CrossRef]
  58. Stone, G.S.; Katona, S.K.; Mainwaring, M.; Allen, J.M.; Corbett, J.M. Respiration and Surfacing Rates of Fin Whales (Balaenoptera physalus) Observed from a Lighthouse Tower. Rep. Int. Whal. Comm. 1992, 42, 739–745. [Google Scholar]
  59. Santos-Carvallo, M.; Barilari, F.; Pérez-Alvarez, M.J.; Gutiérrez, L.; Pavez, G.; Araya, H.; Anguita, C.; Cerda, C.; Sepúlveda, M. Impacts of Whale-Watching on the Short-Term Behavior of Fin Whales (Balaenoptera physalus) in a Marine Protected Area in the Southeastern Pacific. Front. Mar. Sci. 2021, 8, 623954. [Google Scholar] [CrossRef]
  60. Díaz Lopez, D.; Mussi, B.; Miragliuolo, B.; Chiota, A.; Valerio, D. Respiration Patterns of Fin Whales (Balaenoptera physalus) off Ischia Island (Southern Tyrrhenian Sea, Italy). In Proceedings of the 14th Annual Conference of the European Cetacean Society, Cork, Ireland, 2–5 April 2000; pp. 125–129. [Google Scholar]
  61. Laist, D.W.; Knowlton, A.R.; Mead, J.G.; Collet, A.S.; Podesta, M. Collisions between Ships and Whales. Mar. Mamm. Sci. 2001, 17, 35–75. [Google Scholar] [CrossRef]
  62. Williams, R.; O’Hara, P. Modelling Ship Strike Risk to Fin, Humpback and Killer Whales in British Columbia, Canada. J. Cetacean Res. Manage. 2023, 11, 1–8. [Google Scholar] [CrossRef]
  63. Thomas, P.O.; Reeves, R.R.; Brownell, R.L., Jr. Status of the World’s Baleen Whales. Mar. Mamm. Sci. 2016, 32, 682–734. [Google Scholar]
  64. Spitz, J.; Peltier, H.; Authier, M. Evaluationde l’état Écologique Desmammifères Marins En France Métropolitaine. Rapport Scientifique Pourl’évaluation 2018 Au Titre de La DCSMM. Obs. PELAGIS-UMS 2018, 3462, 173–358. [Google Scholar]
  65. Emergency Task Force: For a Coordinated Cetacean Stranding Response during Mortality Events Caused by Infectious Agents and Harmful Alga Blooms (Document Prepared by Dr. Marie-Francoise Van Bressem); CMED/CEPEC: Bogotá, Colombia, 2018.
  66. Tournadre, J. Anthropogenic Pressure on the Open Ocean: The Growth of Ship Traffic Revealed by Altimeter Data Analysis. Geophys. Res. Lett. 2014, 41, 7924–7932. [Google Scholar] [CrossRef]
  67. Sardain, A.; Sardain, E.; Leung, B. Global Forecasts of Shipping Traffic and Biological Invasions to 2050. Nat. Sustain. 2019, 2, 274–282. [Google Scholar] [CrossRef]
  68. Robbins, J.R.; Bouchet, P.J.; Miller, D.L.; Evans, P.G.H.; Waggitt, J.; Ford, A.T.; Marley, S.A. Shipping in the North-East Atlantic: Identifying Spatial and Temporal Patterns of Change. Mar. Pollut. Bull. 2022, 179, 113681. [Google Scholar] [CrossRef] [PubMed]
  69. Pirotta, E.; Booth, C.G.; Costa, D.P.; Fleishman, E.; Kraus, S.D.; Lusseau, D.; Moretti, D.; New, L.F.; Schick, R.S.; Schwarz, L.K.; et al. Understanding the Population Consequences of Disturbance. Ecol. Evol. 2018, 8, 9934–9946. [Google Scholar] [CrossRef] [PubMed]
  70. Rae, F.; Nicol, C.; Simmonds, M.P. Expert Assessment of the Impact of Ship-Strikesnon Cetacean Welfare Using the Welfare Assessment Tool for Wild Cetaceans. Anim. Welf 2023, 32, e18. [Google Scholar] [CrossRef] [PubMed]
  71. Richardson, W.J.; Greene, C.R.; Malme, C.I.; Thomson, D.H. Marine Mammals and Noise; Academic Press: New York, NY, USA, 1995. [Google Scholar]
  72. Wyatt, R. Joint Industry Programme on Sound and Marine Life/Review of Existing Data on Underwater Sounds Produced by the Oil and Gas Industry; Seiche Measurements Ltd.: Holsworthy, UK, 2008. [Google Scholar]
  73. Mechanics of Underwater Noise; Ross, D. (Ed.) Pergamon Press: New York, NY, USA, 1976. [Google Scholar]
  74. Andrew, R.K.; Howe, B.M.; Mercer, J.A.; Dzieciuch, M.A. Ocean Ambient Sound: Comparing the 1960s with the 1990s for a Receiver off the California Coast. Acoust. Res. Lett. Online 2002, 3, 65–70. [Google Scholar] [CrossRef]
  75. Andrew, R.K.; Howe, B.M.; Mercer, J.A. Long-Time Trends in Ship Traffic Noise for Four Sites off the North American West Coast. J. Acoust. Soc. Am. 2011, 129, 642–651. [Google Scholar] [CrossRef] [PubMed]
  76. Chapman, N.R.; Price, A. Low Frequency Deep Ocean Ambient Noise Trend in the Northeast Pacific Ocean. J. Acoust. Soc. Am. 2011, 129, EL161–EL165. [Google Scholar] [CrossRef] [PubMed]
  77. Miksis-Olds, J.L.; Bradley, D.L.; Niu, X.M. Decadal Trends in Indian Ocean Ambient Sound. J. Acoust. Soc. Am. 2013, 134, 3464–3475. [Google Scholar] [CrossRef]
  78. Miksis-Olds, J.L.; Nichols, S.M. Is Low Frequency Ocean Sound Increasing Globally? J. Acoust. Soc. Am. 2016, 139, 501–511. [Google Scholar] [CrossRef]
  79. Eberhardt, R.L.; Evans, W.E. Sound Activity of the California Gray Whale (Eschrichtius glaucus). J. Audio Eng. Soc. 1962, 10, 324–328. [Google Scholar]
  80. Cummings, W.C.; Thompson, P.O. Underwater Sounds from the Blue Whale, Balaenoptera Musculus. J. Acoust. Soc. Am. 1971, 50, 1193–1198. [Google Scholar] [CrossRef]
  81. Tyack, P.L. Implications for Marine Mammals of Large-Scale Changes in the Marine Acoustic Environ-Ment. J. Mammal. 2008, 89, 549–558. [Google Scholar] [CrossRef]
  82. Clark, C.W.; Ellison, W.T.; Southall, B.L.; Hatch, L.; Van Parijs, S.M.; Frankel, A.; Ponirakis, D. Acoustic Masking in Marine Ecosystems: Intuitions, Analysis, and Implication. Mar. Ecol. Prog. Ser. 2009, 395, 201–222. [Google Scholar] [CrossRef]
  83. Tyack, P.L.; Clark, C.W. Communicati4n and Acoustic Behavior of Dolphins and Whales. In Hearing by Whales and Dolphins; Au, W.W.L., Popper, A.N., Fay, R., Eds.; Springer: New York, NY, USA, 2000; pp. 156–224. [Google Scholar]
  84. Harley, C.D.G.; Randall Hughes, A.; Hultgren, K.M.; Miner, B.G.; Sorte, C.J.B.; Thornber, C.S.; Rodriguez, L.F.; Tomanek, L.; Williams, S.L. The Impacts of Climate Change in Coastal Marine Systems. Ecol. Lett. 2006, 9, 228–241. [Google Scholar] [CrossRef] [PubMed]
  85. Molinero, J.C.; Ibanez, F.; Souissi, S.; Licandro, P.; Buecher, E.; Dallot, S.; Nival, P. Northern Hemisphere Climate Impact on Mediterranean Zooplankton. In Proceedings of the 4th International Zooplankton Symposium: Human and Climate Forcing of Zooplankton Population, Temporal and Regional Responses of Zooplankton to Global Warming: Phenology and Poleward Displacement, Hiroshima, Japan, 28 May–1 June 2007; pp. 207–212. [Google Scholar]
  86. Gambaiani, D.D.; Mayol, P.; Isaac, S.J.; Simmonds, M.P. Potential Impacts of Climate Change and Greenhouse Gas Emissions on Mediterranean Marine Ecosystems and Cetaceans. J. Mar. Biol. Assoc. 2009, 89, 179–201. [Google Scholar] [CrossRef]
  87. Degollada, E.; Tort, B.; Amigó, N.; Martín, C.; Patón, D. A GIS Variability Model of Distribution of Fin Whales (Balaenoptera physalus L.) Catalonian Coasts. In Cetaceans: Evolution, Behavior and Conservation; Patón, D., Ed.; Nova Science Publishing Inc.: Hauppauge, NY, USA, 2019. [Google Scholar]
  88. Watanabe, S.; Shimada, T.; Nakamura, S.; Nishiyama, N.; Yamashita, N.; Tanabe, S.; Tatsukawa, R. Specific Profile of Liver Microsomal Cytochrome P-450 in Dolphin and Whales. Mar. Environ. Res. 1989, 27, 51–65. [Google Scholar] [CrossRef]
  89. Aguilar, A.; Borrell, A.; Reijnders, P.J.H. Geographical and Temporal Variation in Levels of Organochlorine Contaminants in Marine Mammals. Mar. Environ. Res. 2002, 53, 425–452. [Google Scholar] [CrossRef] [PubMed]
  90. Aguilar, A.; Borrell, A. DDT and PCB Reduction in the Western Mediterranean from 1987 to 2002, as Shown by Levels in Striped Dolphins (Stenella coeruleoalba). Mar. Environ. Res. 2005, 59, 391–404. [Google Scholar] [CrossRef]
  91. Marsili, L.; Jiménez, B.; Borrell, A. Persistent Organic Pollutants in Cetaceans Living in a Hotspot Area: The Mediterranean. In Marine Mammal Ecotoxicology; Fossi, C.M., Manti, C., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 185–212. [Google Scholar]
  92. Marsili, L.; Focardi, S. Organochlorine Levels in Subcutaneous Blubber Biopsies of Fin Whales (Balaenoptera physalus) and Striped Dolphins (Stenella coeruleoalba) from the Mediterranean Sea. Environ. Pollut. 1996, 91, 1–9. [Google Scholar] [CrossRef] [PubMed]
  93. Legler, J.; Brower, A. Are Brominated Flame Retardants Endocrine Disruptors? Environ. Int. 2003, 29, 879–885. [Google Scholar] [CrossRef] [PubMed]
  94. Darnerud, P.O. Brominated Flame Retardants as Possible Endocrine Disrupters. Int. J. Androl. 2008, 31, 152–160. [Google Scholar] [CrossRef]
  95. Legler, J. New Insights into the Endocrine Disrupting Effects of Bromina-Ted Flame Retardants. Chemosphere 2008, 73, 216–222. [Google Scholar] [CrossRef] [PubMed]
  96. Villanger, G.D.; Lydersen, C.; Kovacs, K.M.; Lie, E.; Skaare, J.U.; Jenssen, B.M. Disruptive Effects of Persistent Organohalogen Contaminants on Thyroid Function in White Whales (Delphinapterus leucas) from Svalbard. Sci. Total Environ. 2011, 409, 2511–2524. [Google Scholar] [CrossRef] [PubMed]
  97. Simond, A.E.; Houde, M.; Lesage, V.; Michaud, R.; Zbinden, D.; Verreault, J. Associations between Organohalogen Exposure and Thyroid- and Steroid-Related Gene Responses in St. Lawrence Estuary Belugas and Minke Whales. Mar. Pollut. Bull. 2019, 145, 174–184. [Google Scholar] [CrossRef] [PubMed]
  98. Darnerud, P. Toxic Effects of Brominated Flame Retardants in Man and in Wildlife. Environ. Int. 2003, 29, 841–853. [Google Scholar] [CrossRef] [PubMed]
  99. Viberg, H. Neonatal Exposure to Polybrominated Diphenyl Ether (PBDE 153) Disrupts Spontaneous Behaviour, Impairs Learning and Memory, and Decreases Hippocampal Cholinergic Receptors in Adult Mice. Toxicol. Appl. Pharmacol. 2003, 192, 95–106. [Google Scholar] [CrossRef] [PubMed]
  100. Viberg, H.; Johansson, N.; Fredriksson, A.; Eriksson, J.; Marsh, G.; Eriksson, P. Neonatal Exposure to Higher Brominated Diphenyl Ethers, Hepta-, Octa-, or Nonabromodiphenyl Ether, Impairs Spontaneous Behavior and Learning and Memory Functions of Adult Mice. Toxicol. Sci. 2006, 92, 211–218. [Google Scholar] [CrossRef] [PubMed]
  101. Costa, L.; Giordano, G. Developmental Neurotoxicity of Polybrominated Diphenyl Ether (PBDE) Flame Retardants. Neurotoxicology 2007, 28, 1047–1067. [Google Scholar] [CrossRef] [PubMed]
  102. Costa, L.G.; de Laat, R.; Tagliaferri, S.; Pellacani, C. A Mechanistic View of Polybrominated Diphenyl Ether (PBDE) Developmental Neurotoxicity. Toxicol. Lett. 2014, 230, 282–294. [Google Scholar] [CrossRef] [PubMed]
  103. Wirth, J.R.; Peden-Adams, M.M.; White, N.D.; Bossart, G.D.; Fair, P.A. In Vitro Exposure of DE-71, a penta-PBDE Mixture, on Immune Endpoints in Bottlenose Dolphins (Tursiops truncatus) and B6C3F1 Mice. J. Appl. Toxicol. 2015, 35, 191–198. [Google Scholar] [CrossRef] [PubMed]
  104. Marsili, L.; Di Guardo, G.; Mazzariol, S.; Casini, S. Insights into Cetacean Immunology: Do Ecological and Biological Factors Make the Difference? Front. Immunol. 2019, 10, 1219. [Google Scholar] [CrossRef] [PubMed]
  105. Reddy, M.L.; Reif, J.S.; Bachand, A.; Ridgway, S.H. Opportunities for Using Navy Marine Mammals to Explore Associations between Organochlorine Contaminants and Unfavorable Effects on Reproduction. Sci. Total Environ. 2001, 274, 171–182. [Google Scholar] [CrossRef] [PubMed]
  106. Schwacke, L.H.; Voit, E.O.; Hansen, L.J.; Wells, R.S.; Mitchum, G.B.; Hohn, A.A.; Fair, P.A. Probabilistic Risk Assessment of Reproductive Effects of Polychlorinated Biphenyls on Bottlenose Dolphins (Tursiops truncatus) from the Southeast United States Coast. Environ. Toxicol. Chem. 2002, 21, 2752–2764. [Google Scholar] [CrossRef] [PubMed]
  107. Khezri, A.; Lindeman, B.; Krogenæs, A.K.; Berntsen, H.F.; Zimmer, K.E.; Ropstad, E. Maternal Exposure to a Mixture of Persistent Organic Pollutants (POPs) Affects Testis Histology, Epididymal Sperm Count and Induces Sperm DNA Fragmentation in Mice. Toxicol. Appl. Pharmacol. 2017, 329, 301–308. [Google Scholar] [CrossRef] [PubMed]
  108. Ylitalo, G.M.; Stein, J.E.; Hom, T.; Johnson, L.L.; Tilbury, K.L.; Hall, A.J.; Rowles, T.; Greig, D.; Lowenstine, L.J.; Gulland, F.M.D. The Role of Organochlorines in Cancer-Associated Mortality in California Sea Lions (Zalophus californianus). Mar. Pollut. Bull. 2005, 50, 30–39. [Google Scholar] [CrossRef] [PubMed]
  109. He, W.; He, P.; Wang, A.; Xia, T.; Xu, B.; Chen, X. Effects of PBDE-47 on Cytotoxicity and Genotoxicity in Human Neuroblastoma Cells in Vitro. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2008, 649, 62–70. [Google Scholar] [CrossRef]
  110. Bonefeld-Jorgensen, E.C.; Long, M.; Bossi, R.; Ayotte, P.; Asmund, G.; Krüger, T.; Ghisari, M.; Mulvad, G.; Kern, P.; Nzulumiki, P.; et al. Perfluorinated Compounds Are Related to Breast Cancer Risk in Greenlandic Inuit: A Case Control Study. Environ. Health 2011, 10, 88. [Google Scholar] [CrossRef] [PubMed]
  111. Mancia, A.; Abelli, L.; Fossi, M.C.; Panti, C. Skin Distress Associated with Xenobiotics Exposure: An Epigenetic Study in the Mediterranean Fin Whale (Balaenoptera physalus). Mar. Genom. 2021, 57, 100822. [Google Scholar] [CrossRef] [PubMed]
  112. Piotrowski, J.K.; Colemam, D.O. Environmental Hazards of Heavy Metals: Summary Evaluation of Lead, Cadmium and Mercury; MARC: London, UK, 1980. [Google Scholar]
  113. Bowles, D. An Overview of the Concentrations and Effects of Metals in Cetacean Species. J. Cetacean Res. Manag. 1999, 1, 125–148. [Google Scholar] [CrossRef]
  114. Al Naggar, Y.; Khalil, M.S.; Ghorab, M.A. Environmental Pollution by Heavy Metals in the Aquatic Ecosystems of Egypt. Open Access J. Toxicol. 2018, 3, 555603. [Google Scholar]
  115. EEA—European Environment Agency. Contaminants in Europe’s Seas: Moving towards a Clean, Non-Toxic Marine Environment; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
  116. Hernández, F.; Serrano, R.; Roig-Navarro, A.F.; Martínez-Bravo, Y.; López, F.J. Persistent Organochlorines and Organophosphorus Compounds and Heavy Elements in Common Whale (Balaenoptera physalus) from the Western Mediterranean Sea. Mar. Pollut. Bull. 2000, 40, 426–433. [Google Scholar] [CrossRef]
  117. Hansen, A.M.K.; Bryan, C.E.; West, K.; Jensen, B.A. Trace Element Concentrations in Liver of 16 Species of Cetaceans Stranded on Pacific Islands from 1997 through 2013. Arch. Environ. Contam. Toxicol. 2016, 70, 75–95. [Google Scholar] [CrossRef] [PubMed]
  118. Garcia-Cegarra, A.M.; Jung, J.-L.; Orrego, R.; Padilha, J.d.A.; Malm, O.; Ferreira-Braz, B.; Santelli, R.E.; Pozo, K.; Pribylova, P.; Alvarado-Rybak, M.; et al. Persistence, Bioaccumulation and Vertical Transfer of Pollutants in Long-Finned Pilot Whales Stranded in Chilean Patagonia. Sci. Total Environ. 2021, 770, 145259. [Google Scholar] [CrossRef]
  119. Bryan, G.W. Pollution Due to Heavy Metals and Their Compounds. Mar. Ecol. 1984, 5, 1289–1431. [Google Scholar]
  120. Krone, C.; Robisch, P.; Tilbury, K.; Stein, J.; Mackey, E.; Becker, P.; Ohara, T.; Philo, L. Elements in Liver Tissues of Bowhead Whales (Balaena mysticetus). Mar. Mamm. Sci. 1999, 15, 122–142. [Google Scholar] [CrossRef]
  121. Das, K.; Debacker, V.; Pillet, S.; Bouquegneau, J.-M. Heavy Metals in Marine Mammals. In Toxicology of Marine Mammals; Vos, J.G., Bossart, G.D., Eds.; Routledge: Abingdon, UK, 2002; pp. 147–179. [Google Scholar]
  122. Kahle, J.; Zauke, G.P. Trace Metals in Antarctic Copepods from the Weddell Sea (Antarctica). Chemosphere 2003, 51, 409–417. [Google Scholar] [CrossRef]
  123. Arai, T.; Ikemoto, T.; Hokura, A.; Terada, Y.; Kunito, T.; Tanabe, S.; Nakai, I. Chemical Forms of Mercury and Cadmium Accumulated in Marine Mammals and Seabirds as Determined by XAFS Analysis. Environ. Sci. Technol. 2004, 38, 6468–6474. [Google Scholar] [CrossRef] [PubMed]
  124. Prowe, F.; Kirf, M.; Zauke, G.P. Heavy Metals in Crustaceans from the Iberian Deep-Sea Plain. Sci. Mar. 2006, 70, 271–279. [Google Scholar]
  125. Coelho, J.P.; Santos, H.; Reis, A.T.; Falcao, J.; Rodrigues, E.T.; Pereira, M.E.; Duarte, A.C.; Pardal, M.A. Mercury Bioaccumulation in the Spotted Dogfish (Scyliorhinus canicula) from the Atlantic Ocean. Mar. Pollut. Bull. 2010, 60, 1372–1375. [Google Scholar] [CrossRef]
  126. Jakimska, A.; Konieczka, P.; Skóra, K.; Namiésnik, J. Bioaccumulation of metals in tissues of marine animals, part I: The role and impact of heavy metals on organisms. Pol. J. Environ. Stud. 2011, 20, 1117–1125. [Google Scholar]
  127. Jakimska, A.; Konieczka, P.; Skóra, K.; Namiésnik, J. Introduction bioaccumulation of metals in tissues of marine animals, part II: Metal concentrations in animal tissues. Pol. J. Environ. Stud. 2011, 20, 1126–1127. [Google Scholar]
  128. Dehn, L.A.; Follmann, E.H.; Rosa, C.; Duffy, L.K.; Thomas, D.L.; Bratton, G.R.; Taylor, R.J.; Ohara, T.M. Stable Isotope and Trace Element Status of Subsistence-Hunted Bowhead and Beluga Whales in Alaska and Gray Whales in Chukotka. Mar. Pollut. Bull. 2006, 52, 301–319. [Google Scholar] [CrossRef]
  129. Fossi, M.C.; Coppola, D.; Baini, M.; Giannetti, M.; Guerranti, C.; Marsili, L.; Panti, C.; De Sabata, E.; Cló, S. Large Filter Feeding Marine Organisms as Indicators of Microplastic in the Pelagic Environment: The Case Studies of the Mediterranean Basking Shark (Cetorhinus maximus) and Fin Whale (Balaenoptera physalus). Mar. Environ. Res 2014, 100, 17–24. [Google Scholar] [CrossRef]
  130. Desforges, J.-P.W.; Galbraith, M.; Ross, P.S. Ingestion of Microplastics by Zooplankton in the Northeast Pacific Ocean. Arch. Environ. Contam. Toxicol. 2015, 69, 320–330. [Google Scholar] [CrossRef]
  131. Burkhardt-Holm, P.; N’Guyen, A. Ingestion of Microplastics by Fish and Other Prey Organisms of Cetaceans, Exemplified for Two Large Baleen Whale Species. Mar. Pollut. Bull. 2019, 144, 224–234. [Google Scholar] [CrossRef] [PubMed]
  132. Germanov, E.S.; Marshall, A.D.; Bejder, L.; Fossi, M.C.; Loneragan, N.R. Microplastics: No Small Problem for Filter-Feeding Megafauna. Trends Ecol. Evol. 2018, 33, 227–232. [Google Scholar] [CrossRef]
  133. Guerrini, F.; Mari, L.; Casagrandi, R. Modelling Plastics Exposure for the Marine Biota: Risk Maps for Fin Whales in the Pelagos Sanctuary (North-Western Mediterranean). Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef]
  134. Fossi, M.C.; Panti, C.; Guerranti, C.; Coppola, D.; Giannetti, M.; Marsili, L.; Minutoli, R. Are Baleen Whales Exposed to the Threat of Microplastics? A Case Study of the Mediterranean Fin Whale (Balaenoptera physalus). Mar. Pollut. Bull. 2012, 64, 2374–2379. [Google Scholar] [CrossRef] [PubMed]
  135. García-Gómez, J.C.; Garrigós, M.; Garrigós, J. Plastic as a Vector of Dispersion for Marine Species with Invasive Potential. A Review. Front. Ecol. Evol. 2021, 9, 629756. [Google Scholar] [CrossRef]
  136. Campana, I.; Angeletti, D.; Giovani, G.; Paraboschi, M.; Arcangeli, A. Cetacean Sensitivity and Threats Analysis to Assess Effectiveness of Protection Measures: An Example of Integrated Approach for Cetacean Conservation in the Bonifacio Bouches. Biodivers. Conserv. 2022, 31, 517–541. [Google Scholar] [CrossRef]
  137. Cazau, D.; Nguyen Hong Duc, P.; Druon, J.-N.; Matwins, S.; Fablet, R. Multimodal Deep Learning for Cetacean Distribution Modeling of Fin Whales (Balaenoptera physalus) in the Western Mediterranean Sea. Mach. Learn. 2023, 112, 2003–2024. [Google Scholar] [CrossRef]
  138. Pereira, A.; Harris, D.; Tyack, P.; Matias, L. Fin Whale Acoustic Presence and Song Characteristics in Seas to the Southwest of Portugal. J. Acoust. Soc. Am. 2020, 147, 2235–2249. [Google Scholar] [CrossRef] [PubMed]
  139. de Stephanis, R.; Cornulier, T.; Verborgh, P.; Salazar Sierra, J.; Gimeno, N.P.; Guinet, C. Summer Spatial Distribution of Cetaceans in the Strait of Gibraltar in Relation to the Oceanographic Context. Mar. Ecol. Prog. Ser. 2008, 353, 275–288. [Google Scholar] [CrossRef]
  140. Oliveros, J.C. Venny 2.1.0. Available online: https://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 26 October 2020).
  141. Academo Venn Diagram Generator|Academo.org—Free, Interactive, Education. Available online: https://academo.org/demos/venn-diagram-generator/ (accessed on 13 December 2023).
  142. EMSA EU Vessel Density Map. EMOD Net-Human Activities. Es Detailed Method 2019. Available online: https://www.emodnethumanactivities.eu/documents/Vessel%20density%20maps_method_v1.5.pdf (accessed on 1 December 2023).
  143. Lockyer, C. Body Weights of Some Species of Large Whales. ICES J. Mar. Sci. 1976, 36, 259–273. [Google Scholar] [CrossRef]
  144. Arrigoni, M.; Manfredi, P.; Panigada, S.; Bramanti, L.; Santangelo, G. Life-history Tables of the Mediterranean Fin Whale from Stranding Data. Mar. Ecol. 2011, 32, 1–9. [Google Scholar] [CrossRef]
  145. Geraci, J.R.; Lounsbury, V.J. Marine Mammals Ashore: A Field Guide for Strandings; National Aquarium: Baltimore, MD, USA, 2005. [Google Scholar]
  146. García-Barón, I.; Authier, M.; Caballero, A.; Vázquez, J.A.; Santos, M.B.; Murcia, J.L.; Louzao, M. Modelling the Spatial Abundance of a Migratory Predator: A Call for Transboundary Marine Protected Areas. Divers. Distrib. 2019, 25, 346–360. [Google Scholar] [CrossRef]
  147. Walker, D. Using Oceanographic Features to Predict Areas of High Cetacean Diversity. Doctoral Dissertation, University of Wales, Bangor, UK, 2005. [Google Scholar]
  148. Geijer, C.K.A.; Notarbartolo di Sciara, G.; Panigada, S. Mysticete Migration Revisited: Are Mediterranean Fin Whales an Anomaly? Mamm. Rev. 2016, 46, 284–296. [Google Scholar] [CrossRef]
  149. Gauffier, P.; Borrell, A.; Silva, M.A.; Víkingsson, G.A.; López, A.; Giménez, J.; Colaço, A.; Halldórsson, S.D.; Vighi, M.; Prieto, R.; et al. Wait Your Turn, North Atlantic Fin Whales Share a Common Feeding Ground Sequentially. Mar. Environ. Res. 2020, 155, 104884. [Google Scholar] [CrossRef] [PubMed]
  150. Giménez, J.; Gómez-Campos, E.; Borrell, A.; Cardona, L.; Aguilar, A. Isotopic Evidence of Limited Exchange between Mediterranean and Eastern North Atlantic Fin Whales. Rapid Commun. Mass Spectrom. 2013, 27, 1801–1806. [Google Scholar] [CrossRef] [PubMed]
  151. Parona, C. Catture Recenti Di Grandi Cetacei Nei Mari Italiani. Atti Soc. Lingustica Sci. Nat. Geogr. 1908, 19, 173–205. [Google Scholar]
  152. Borri, C. Una Notabile Comparsa Di Grandi Cetacei Nell’Arcipelago Toscano. Monit. Zool. Ital. 1927, 38, 18–23. [Google Scholar]
  153. Richard, J. Documents Sur Les Cétacés et Les Pinnipèdes Provenant Des Campagnes de Prince Albert 1ére de Monaco. Résult. Camp. Scien. Albert 1ére 1936, 94, 1–71. [Google Scholar]
  154. Paulus, M. Les baleinoptères de la Méditerranée. Bull. Mus. Hist. Nat. Marseille 1966, 26, 117–139. [Google Scholar]
  155. Duguy, R. Rapport annuel sur les cétacés et pinnipèdes trouvés sur les côtes de France. V—Année 1975. Mammalia 1976, 40, 671–681. [Google Scholar] [CrossRef]
  156. Grau, E.; Aguilar, A.; Filella, S. Cetaceans Stranded, Captured or Sighted in the Spanish Coasts during 1976–1979. Butl. Inst. Catalana Hist. Nat 1980, 45, 167–179. [Google Scholar]
  157. Marchessaux, D. A Review of the Current Knowledge of the Cetaceans in the Eastern Mediterranean Sea. Vie Mar. 1980, 2, 59–66. [Google Scholar]
  158. Palazzoli, I. Note Préliminaire: Étude Des Cétacés Dans Le Bassin Liguro-Provençal Par Observation Directe à La Mer. Rapport de La Commission Internationale Pour l’Exploration. Sci. De La Mer Méditerranée 1983, 28, 217–218. [Google Scholar]
  159. Raga, J.A.; Raduán, A.; Blanco, C. Contribución al estudio de la distribución de cetáceos en el Mediterráneo y Atlántico Ibérico. Misc. Zool. 1985, 9, 361–366. [Google Scholar]
  160. Viale, D. Une méthode synoptique de recherche des zones productives en mer: Détection simultanée des cétacés, des fronts thermiques et des biomasses sous-jacentes. Ann. Inst. Oceanogr. Monaco. 1991, 67, 49–62. [Google Scholar]
  161. Giordano, A. Nouvelles données sur Balaenoptera physalus en Méditerranée occidentale. A. Rapp. Comm. Int. Pour l’explor. Sci. Méditerranée 1986, 30, 244. [Google Scholar]
  162. Viale, D.; Moriaz, C.; Palazzoli, I.; Viale, A.; Viale, C. Repérage Aérien de Cétacés En Mer Ligure. Rapp. Comm. Int. Pour l’explor. Sci. Méditerranée 1986, 30, 245. [Google Scholar]
  163. Viale, D.; De Crescenzo, J.N.; Erlich, I.; Isetti, A.M. Cétacés En Méditerranée Orientale: Campagnes CETORIENT Sur N/O Le Surlot IFREMER. Rapp. Comm. Int. Pour l’explor. Sci. Méditerranée 1988, 31, 289. [Google Scholar]
  164. Gannier, A.; Gannier, O. Some Sightings of Cetaceans in the Western Mediterranean Sea. Eur. Res. Cetaceans 1989, 3, 62–64. [Google Scholar]
  165. Gannier, A.; Gannier, O. Northwestern Mediterranean Survey: 4th Annual Report. Eur. Res. Cetaceans 1992, 6, 56–60. [Google Scholar]
  166. Gannier, A.; Gannier, O. The Winter Presence of the Fin Whale in the Liguro-Provençal Basin: Preliminary Study. Eur. Res. Cetaceans 1993, 7, 131–134. [Google Scholar]
  167. Viale, D.; Terris, N. Indice d’abondance de La Megafaune En Méditerranée. Rapp. Comm. Int. Pour l’explor. Sci. Méditerranée 1990, 32, 76. [Google Scholar]
  168. Hashmi, D.D.K.; Adloff, B. Surface Frequency of Cetaceans in the Strait of Gibraltar. Eur. Res. Cetaceans 1991, 5, 16–17. [Google Scholar]
  169. Fabbri, F.; Lauriano, G. Greenpeace Report on Two-Year Research in the Ligurian Sea. Eur. Res. Cetaceans 1992, 6, 69–74. [Google Scholar]
  170. Politi, E.; Bearzi, M.; Notarbartolo-Di-Sciara, G.; Cussino, E.; Gnone, G. Distribution and Frequency of Cetaceans in the Waters Adjacent to the Greek Ionian Islands. Eur. Res. Cetaceans 1992, 6, 75–78. [Google Scholar]
  171. Relini, G.; Orsi Relini, L.; Cima, C.; Fasciana, C.; Fiorentino, F.; Palandri, G.; Relini, M.; Tartaglia, M.P.; Torchia, G.; Zamboni, A. Macroplancton, Meganyctiphanes Norvegica, and Fin Whales, Balaenoptera physalus, along Some Transects in the Ligurian Sea. Eur. Res. Cetaceans 1992, 6, 134–137. [Google Scholar]
  172. Zanardelli, M.; Notarbartolo-Di-Sciara, G.; Jahoda, M. Photo-Identification and Behavioural Observations of Fin Whales Summering in the Ligurian Sea. Eur. Res. Cetaceans 1992, 6, 86–89. [Google Scholar]
  173. Pulcini, M.; Angradi, A.M.; Sanna, A. Distribution and Frequency of Cetaceans in the Ligurian-Provençal Basin and in the North Tyrrhenian Sea (Mediterranean sea). Eur. Res. Cetaceans 1993, 7, 144–147. [Google Scholar]
  174. Boutiba, Z. Bilan de nos connaissances sur la présence des cétacés le long des côtes algériennes. Mammalia 1994, 58, 613–622. [Google Scholar] [CrossRef]
  175. Boutiba, Z. Cetaceans in Algerian coastal waters. Eur. Res. Cetaceans 1994, 8, 104–106. [Google Scholar]
  176. Politi, E.; Airoldi, S.; Notarbartolo-Di-Sciara, G. A Preliminary Study of the Ecology of Cetaceans in the Waters Adjacent to Greek Ionian Islands. Eur. Res. Cetaceans 1994, 8, 111–115. [Google Scholar]
  177. Relini, G.; Orsi Relini, L.; Siccardi, A.; Fiorentino, F.; Palandri, G.; Torchia, G.; Relini, M.; Cima, C.; Cappello, M. Distribuzione Di Meganyctiphanes Norvegica e Balaenoptera physalus in Mar Ligure All’inizio Della Primavera. Biol. Mar. Mediterr. 1994, 1, 89–94. [Google Scholar]
  178. Giordano, A.; Arena, R.; Cane, A.; Guerrieri, G.; Petralia, R.; Trincali, L.M.; Vazzana, L. Risultati Della Ricerca Cetofauna Siciliana. Museo Del Mare Di Cefalù. Grup. Ric. Cetacei 1995, 6, 12. [Google Scholar]
  179. Öztürk, B. Marine Mammals’ Inventory of Turkey. Eur. Res. Cetaceans 1995, 9, 96–98. [Google Scholar]
  180. Boutiba, Z.; Hamoutene, D.; Merzoug, D.; Bouderbala, M.; Taleb, M.Z.; Abdelghani, F. Le Rorqual Commun (Balaenoptera physalus) Dans Le Bassin Sud de La Méditerranée Occidentale: État Actuel Des Observations. In Proceedings of the 5th International Conference RIMMO, Antibes, France, 15–17 November 1996; pp. 30–32. [Google Scholar]
  181. Cerioni, S.; Forni, L.; Lo Tenero, A.; Nannarelli, S.; Pulcini, M. A Cetacean Survey in the Taranto Gulf: Work in Progress. Eur. Res. Cetaceans 1996, 9, 102–103. [Google Scholar]
  182. Guibourge, E.; Frodello, J.P.; Terris, N.; Viale, F. Les Baleines Ont-Elles La Rougeole? Unvirus Mortel s’attaque à l’unique Espèce de Baleine En Méditerranée. La Recherche 1996, 283, 34–35. [Google Scholar]
  183. Lauriano, G.; Notarbartolo-Di-Sciara, G. The Distribution of Cetaceans off North-Western Sardinia. Eur. Res. Cetaceans 1996, 9, 104–106. [Google Scholar]
  184. Marini, L.; Carpentieri, P.; Consiglio, C. Presence and Distribution of the Cetological Fauna of the Aegean Sea: Preliminary Results. Eur. Res. Cetaceans 1996, 9, 99–101. [Google Scholar]
  185. Barberis, S.; Davico, A.; Davico, L.; Massajoli, M.; Trucchi, R. The Third WWF Research Campaign in the Ligurian Sea. Eur. Res. Cetaceans 1997, 11, 99. [Google Scholar]
  186. Beaubrun, P.; David, L.; Di Meglio, N.; Gannier, A.; Gannier, O. First Aerial Survey in the North-West Mediterranean: Preliminary Results. Eur. Res. Cetaceans 1997, 11, 100–103. [Google Scholar]
  187. Gannier, A. Summer Abundance Estimates of Striped Dolphins and Fin Whales in the Area of the Future International Marine Sanctuary. Eur. Res. Cetaceans 1997, 11, 95–98. [Google Scholar]
  188. Lauriano, G. Preliminary Observations of Fin Whales (Balaenoptera physalus) off North-Western Sardinia. Eur. Res. Cetaceans 1997, 11, 122–124. [Google Scholar]
  189. Stanzani, L.A.; Bonomi, L.; Bortolotto, A. Onde Dal Mare’: An Update on the Italian Network for Cetacean and Turtle Sightings. Eur. Res. Cetaceans 1997, 11, 87–89. [Google Scholar]
  190. Mussi, B.; Gabriele, R.; Miragliuolo, A.; Battaglia, M. Cetacean Sightings and Interactions with Fisheries in the Archipelago Pontino Campano, Southern Tyrrhenian Sea, 1991. Eur. Res. Cetaceans 1998, 12, 63–65. [Google Scholar]
  191. Airoldi, S.; Azzellino, A.; Nani, B.; Ballardini, M.; Bastoni, C.; Notarbartolo-di-Sciara, G.; Sturlese, A. Whale-watching in Italy: Results of the first three years of activity. Eur. Res. Cetaceans 1999, 13, 153–156. [Google Scholar]
  192. Cañadas, A.; Sagarminaga, R.; Hernández-Falcón, L.; Fernández, E.; Fernández, M. Fin Whales (Balaenoptera physalus) in the Northern Part of the Alboran Sea and Strait of Gibraltar. Eur. Res. Cetaceans 1999, 13, 300–304. [Google Scholar]
  193. Carpentieri, P.; Corsini, M.; Marini, L. Contribute to the Knowledge of the Presence and Distribution of Cetaceans in the Aegean Sea. Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 1999, 140, 65–75. [Google Scholar]
  194. Lauriano, G.; Tunesi, L.; Notarbartolo-Di-Sciara, G.; Salvati, E.; Cardinali, A. The Role of Cetaceans in the Zoning Proposal of Marine Protected Areas: The Case of the Asinara Island MPA. Eur. Res. Cetaceans 1999, 13, 114–117. [Google Scholar]
  195. Mussi, B.; Miragliuolo, A.; Monzini, E.; Diaz Lopez, B.; Battaglia, M. Fin Whale (Balaenoptera physalus) Feeding Ground in the Coastal Waters of Ischia (Archipelago campano). Eur. Res. Cetaceans 1999, 13, 330–335. [Google Scholar]
  196. Sanna, A.; Blasi, B.; Corain, D.; Falasconi, R.; Castañeda-Moreno, J.A. Cetaceans Sighting in the North-Western Mediterranena Sea. Eur. Res. Cetaceans 1999, 13, 259. [Google Scholar]
  197. Trucchi, R.; Ottonello, C.; Tribocco, F. The First Experience of a Daily Whale Watching Activity to Collect Data and to Inform People about Cetacean Biology and Ecology Carried out by WWF—Liguria. Eur. Res. Cetaceans 1999, 13, 271–273. [Google Scholar]
  198. Zanardelli, M.; Panigada, S.; Airoldi, S.; Borsani, J.F.; Jahoda, M.; Notarbartolo-Di-Sciara, G. Site Fidelity, Seasonal Residence and Sex Ratio of Fin Whales (Balaenoptera physalus) in the Ligurian Sea Feeding Grounds. Eur. Res. Cetaceans 1999, 12, 124. [Google Scholar]
  199. Affronte, M. Balenottere a Frotte in Alto Adriatico. Cetacea Inf. 2000, 9, 9–12. [Google Scholar]
  200. Aïssi, M.; Celona, A.; Comparetto, G.; Mangano, R.; Würtz, M.; Moulins, A. Large-Scale Seasonal Distribution of Fin Whales (Balaenoptera physalus) in the Central Mediterranean Sea. J. Mar. Biol. Assoc. 2008, 88, 1253–1261. [Google Scholar] [CrossRef]
  201. Laran, S.; Gannier, A. Spatial and Temporal Prediction of Fin Whale Distribution in the Northwestern Mediterranean Sea. ICES J. Mar. Sci. 2008, 65, 1260–1269. [Google Scholar] [CrossRef]
  202. Kerem, D. Update on the Cetacean Fauna of the Mediterranean Levantine Basin. Open Mar. Biol. J. 2012, 6, 6–27. [Google Scholar] [CrossRef]
  203. Santoro, R.; Sperone, E.; Tringali, M.L.; Pellegrino, G.; Giglio, G.; Tripepi, S.; Arcangeli, A. Summer Distribution, Relative Abindance and Encounter Rates of Cetaceans in the Mediterranean Waters off Southern Italy (Western Ionian Sea and Southern Tyrrhenian Sea). Mediterr. Mar. Sci. 2015, 16, 613–620. [Google Scholar] [CrossRef]
  204. Gregorietti, M.; Atzori, F.; Carosso, L.; Frau, F.; Pellegrino, G.; Sarà, G.; Arcangeli, A. Cetacean Presence and Distribution in the Central Mediterranean Sea and Potential Risks Deriving from Plastic Pollution. Mar. Pollut. Bull. 2021, 173, 112943. [Google Scholar] [CrossRef] [PubMed]
  205. Grossi, F.; Lahaye, E.; Moulins, A.; Borroni, A.; Rosso, M.; Tepsich, P. Locating Ship Strike Risk Hotspots for Fin Whale (Balaenoptera physalus) and Sperm Whale (Physeter macrocephalus) along Main Shipping Lanes in the North-Western Mediterranean Sea. Ocean Coast. Manag. 2021, 212, 105820. [Google Scholar] [CrossRef]
  206. Ham, G.S.; Lahaye, E.; Rosso, M.; Moulins, A.; Hines, E.; Tepsich, P. Predicting Summer Fin Whale Distribution in the Pelagos Sanctuary (North-western Mediterranean Sea) to Identify Dynamic Whale–Vessel Collision Risk Areas. Aquat. Conserv. 2021, 31, 2257–2277. [Google Scholar] [CrossRef]
  207. David, L.; Arcangeli, A.; Tepsich, P.; Di-Meglio, N.; Roul, M.; Campana, I.; Gregorietti, M.; Moulins, A.; Rosso, M.; Crosti, R. Computing Ship Strikes and near Miss Events of Fin Whales along the Main Ferry Routes in the Pelagos Sanctuary and Adjacent West Area, in Summer. Aquat. Conserv. 2022, 32, 442–456. [Google Scholar] [CrossRef]
  208. Canales, R.M.; Méndez, A.; Giménez, F.; Mengual, R.M.; Férnandez, F. Avistamiento de Cetáceos En La Región de Murcia. In Proceedings of the Cuarto Congreso de la Naturaleza de la Región de Murcia y Primero del Sureste Ibérico, Murcia, Spain, 19–21 November 2008; pp. 83–90. [Google Scholar]
  209. FIRMM. Informe de Investigación Sobre Rorcuales Comunes en el Estrecho de Gibraltar. Available online: https://www.firmm.org/es/investigacion/rorcuales-comunes (accessed on 5 February 2023).
  210. Edmaktub. Resultados: Las Ballenas se Alimentan en la Costa del Garraf y en el Mar Balear. Available online: https://edmaktub.org/resultados/ (accessed on 8 March 2022).
  211. Degollada, E.; Amigó, N.; O’Callaghan, S.; Varola, M.; Ruggero, K.; Tort, B. A Novel Technique for Photo-Identification of the Fin Whale, Balaenoptera physalus, as Determined by Drone Aerial Images. Drones 2023, 7, 220. [Google Scholar] [CrossRef]
  212. Espada, R.; Feliu-Tena, B.; Tort-Castro, B.; Martin, E.; Olaya- Ponzone, L.; Patón, D.; Belda, E.; Anfruns, I.; Onrubia, A.; Degollada, E.; et al. Advances in the Knowledge of the Mediterranean- Atlantic Migration of the Fin Whale (Balaenoptera physalus) in the Iberian Mediterranean Corridor. Data Collection, Migration, Periods, and Swimming Speeds. Eur. Cetacean Soc. O’Grove 2023. [Google Scholar]
  213. Rallo, G. I cetacei dell’Adriatico. WWF Veneto 1979, 4, 3–4. [Google Scholar]
  214. Marini, L.; Consiglio, C.; Angradi, A.M.; Catalano, B.; Sanna, A.; Valentini, T.; Finoia, M.G.; Villetti, G. Distribution, Abundance and Seasonality of Cetaceans Sighted during Scheduled Ferry Crossings in the Central Tyrrhenian Sea: 1989–1992. Ital. J. Zool. 1996, 63, 381–388. [Google Scholar] [CrossRef]
  215. Littaye, A.; Gannier, A.; Laran, S.; Wilson, J.P.F. The Relationship between Summer Aggregation of Fin Whales and Satellite-Derived Environmental Conditions in the Northwestern Mediterranean Sea. Remote Sens. Environ. 2004, 90, 44–52. [Google Scholar] [CrossRef]
  216. Edmaktub Proyecto Rorcual y Biodiversidad En La Costa Catalana. Contribución a La Mejora Del Conocimiento Del Rorcual Común En Las Costas de Cataluña. Available online: https://edmaktub.org/wp-content/uploads/2023/06/Proyecto-Rorcual-y-Biodiversidad.pdf (accessed on 16 November 2023).
  217. Medio Ambiente. Las Ballenas Más Grandes Del Mediterráneo Pasan Por Torrevieja. Available online: https://cadenaser.com/emisora/2017/05/18/radio_alicante/1495111725_859581.html (accessed on 3 November 2022).
  218. Bézie, G. Observation d’un Rorqual Commun Devant Bastia. Available online: https://france3-regions.francetvinfo.fr/corse/haute-corse/video-observation-rorqual-commun-devant-bastia-1462167.html (accessed on 30 July 2021).
  219. Animaux. Méditerranée—Narbonne-Plage: Deux Baleines de 20 Mètres Filmées au Large du Littoral Audois. Available online: https://www.lindependant.fr/2020/08/18/mediterranee-narbonne-plage-deux-baleines-de-20-metres-filmees-au-large-du-littoral-audois-9024335.php (accessed on 3 June 2021).
  220. Frayssinet, C. A Marseille, Deux Rorquals Ont été Observés au Large des Calanques. Available online: https://www.geo.fr/environnement/a-marseille-deux-rorquals-ont-ete-observes-au-large-des-calanques-200427 (accessed on 3 June 2022).
  221. Insolite, P.-O. Un Rorqual Commun à L’entrée du Port de Sainte-Marie-la-Mer. Available online: https://www.lindependant.fr/2020/09/17/un-rorqual-commun-a-lentree-du-port-9078617.php (accessed on 3 June 2022).
  222. Agustí, C. Una Ballena Visita la Playa de Barcelona. La Vanguardia. Available online: https://www.lavanguardia.com/participacion/las-fotos-de-loslectores/20210421/6987169/ballena-visita-playa-barcelona.html (accessed on 3 June 2022).
  223. Romero, S. La Segunda Ballena Más Grande Del Mundo, Avistada En España. Available online: https://www.muyinteresante.es/naturaleza/articulo/la-segunda-ballena-mas-grande-del-mundo-avistada-en-espana-631625128089 (accessed on 3 June 2022).
  224. Sociedad. Avistadas las Primeras Ballenas del Año en la Costa de Barcelona. Available online: https://www.elperiodico.com/es/sociedad/20210215/video-avistadas-ballenas-barcelona-11522168 (accessed on 3 June 2022).
  225. Vivir en Barcelona. VÍDEO: Dos Ballenas se Pasean Por la Costa de Barcelona. Available online: https://www.metropoliabierta.com/vivir-en-barcelona/ballenas-costa-barcelona_37580_102.html (accessed on 3 June 2022).
  226. Elcacho, J. El Impresionante Salto de La Segunda Ballena Más Grande Del Mundo Frente a Barcelona. Available online: https://www.lavanguardia.com/natural/20220531/8305291/impresionante-salto-segunda-ballena-mas-grande-mundo-frente-barcelona.html (accessed on 21 September 2022).
  227. Viale, D.; Frontier, S. Surface megafauna related to western Mediterranean circulation. Aquat. Living Resour. 1994, 7, 105–126. [Google Scholar] [CrossRef]
  228. Belenguer, R.; Kersting, D.K. Cetáceos En La Reserva Marina de Las Islas Columbretes (Mediterráneo noroccidental): 20 Años de Avistamientos Oportunistas. Mediterr. Ser. Estud. Biol. 2011, 22, 100–124. [Google Scholar] [CrossRef]
  229. Farrag, M.M.S. Marine Mammals on the Egyptian Mediterranean Coast “Records and Vulnerability. Int. J. Ecotoxicol. Ecobiol. 2019, 4, 8–16. [Google Scholar]
  230. Banco de Datos de Biodiversidad—Banco de Datos de Biodiversidad—Generalitat Valenciana. Available online: https://bdb.gva.es/es/ (accessed on 21 January 2024).
  231. Halpin, P.; Read, A.; Fujioka, E.; Best, B.; Donnelly, B.; Hazen, L.; Kot, C.; Urian, K.; LaBrecque, E.; Dimatteo, A.; et al. OBIS-SEAMAP: The World Data Center for Marine Mammal, Sea Bird, and Sea Turtle Distributions. Oceanography 2009, 22, 104–115. [Google Scholar] [CrossRef]
  232. Gonzalbes, P. OBIS-SEAMAP. Available online: http://seamap.env.duke.edu/dataset/876 (accessed on 17 November 2023).
  233. Cañadas, A. Alnitak-Alnilam Cetaceans and Sea Turtles Surveys Off Southern Spain. OBIS-SEAMAP. Available online: http://seamap.env.duke.edu/dataset/429 (accessed on 16 November 2023).
  234. Kerem, D. OBIS-SEAMAP. Available online: http://seamap.env.duke.edu/dataset/819 (accessed on 16 January 2022).
  235. Happywhale. Fin Whale in North Atlantic Ocean. OBIS-SEAMAP. Available online: http://seamap.env.duke.edu/dataset/1750 (accessed on 4 September 2022).
  236. Maughan, B.K.; Arnold. OBIS-SEAMAP. Available online: http://seamap.env.duke.edu/dataset/64 (accessed on 23 May 2023).
  237. Bedocchi, D.; Nuti, S. CE.TU.S. Research Cetacean Sightings in the North Tuscany and Tuscan Archipelago Waters, 1997–2011. OBIS-SEAMAP. Available online: http://seamap.env.duke.edu/dataset/732 (accessed on 11 November 2023).
  238. Bellingeri, M. Acquario Di Genova, Delfini Metropolitani Project, Cetacean Sightings 2001–2009. OBIS-SEAMAP. Available online: http://seamap.env.duke.edu/dataset/761 (accessed on 17 November 2023).
  239. Diaz Lopez, B.; Bottlenose Dolphin Research Institute (BDRI). Cetacean Sightings 2011. OBIS-SEAMAP. Available online: http://seamap.env.duke.edu/dataset/83 (accessed on 16 November 2023).
  240. Fanizza, C. Jonian Dolphin Conservation Di Taranto Marine Mammal Sightings 2009–2012. Available online: http://seamap.env.duke.edu/dataset/812 (accessed on 17 November 2023).
  241. Boisseau, O. Visual Sightings from Song of the Whale 1993–2013. OBIS-SEAMAP. Available online: http://seamap.env.duke.edu/dataset/1158 (accessed on 16 November 2023).
  242. Fossati, C.; Romè, G. Visual Contacts from Research Cruises in the Med Sea, 1994–2001. OBIS-SEAMAP. 2014. Available online: http://seamap.env.duke.edu/dataset/1078 (accessed on 16 November 2023).
  243. Lanfredi, C.; di Sciara, N. Tethys Research Institute Aerial Survey Cetacean Sightings 2009–2011. OBIS-SEAMAP. 2011. Available online: http://seamap.env.duke.edu/dataset/776 (accessed on 16 November 2023).
  244. Lanfredi, C.; di Sciara, N. Tethys Research Institute Shipboard Survey Cetacean Sightings 1986-OBIS-SEAMAP. 2014. Available online: http://seamap.env.duke.edu/dataset/774 (accessed on 16 November 2023).
  245. Aissi, M.; Wdcs, A.A. Cetacean Coordinated Transborder Monitoring Using Ferries as Platforms of Observation off Tunisia 2013–2014 OBIS-SEAMAP. 2015. Available online: http://seamap.env.duke.edu/dataset/1263 (accessed on 16 November 2023).
  246. Tingali, M.L.; Wdcs, A.A. Cetacean Coordinated Transborder Monitoring Using Ferries as Platforms of Observation off Tunisia 2013–2014. OBIS-SEAMAP. 2015. Available online: http://seamap.env.duke.edu/dataset/1264-Ketos (accessed on 16 November 2023).
  247. Arcangeli, A.; Campana, I.; Paraboschi, M.; ISPRA. Presence of Cetacean Species Collected through Fixed-Line-Transect Monitoring across the Western Mediterranean Sea (Civitavecchia-Barcelona Route) between 2014 and 2018; ISPRA: Rome, Italy, 2018. [Google Scholar] [CrossRef]
  248. Frey, S. OceanCare Cetacean Sightings 2001-OBIS-SEAMAP. 2015. Available online: http://seamap.env.duke.edu/dataset/66 (accessed on 17 May 2023).
  249. Frey, S. Ocean Care Cetacean Sightings in Sicily, Italy 2016–2019. OBIS-SEAMAP. 2019. Available online: http://seamap.env.duke.edu/dataset/2038 (accessed on 17 November 2023).
  250. Azzolin, M. Adriatic and Ionian Sea Mega-Fauna Monitoring Employing Ferry as Platform of Observation along the Ancona-Igoumenitsa-Patras Lane from December 2014 to December 2018; Gaia Research Institute: Onlus, Italy, 2020; Available online: https://marineinfo.org/id/dataset/6546 (accessed on 25 April 2023).
  251. Azzolin, M.; Giacoma, C. Dolphins and Sea Turtle Monitoring in the Pelagie Archipelago (Italy) from 2004 to 2006; Life and System Biology Department, University of Turin: Turin, Italy, 2020; Available online: https://marineinfo.org/id/dataset/ (accessed on 25 April 2023).
  252. Monaco, C.; Garofalo, D.; Raffa, A.; Mare Camp Association. Presence of Cetaceans and Sea Turtles in the Gulf of Catania, Eastern Sicily, Ionian Sea (Surveys 2015–2019). 2020. Available online: https://marineinfo.org/id/dataset/6529 (accessed on 10 May 2023).
  253. Scuderi, A.; Martín, E. Cetacean Monitoring Programme along Fixed Transect Using Ferries as Platforms in the Strait of Gibraltar, 2018, FLT Med Network. 2020. Available online: https://marineinfo.org/id/dataset/6443 (accessed on 23 May 2023).
  254. Doremus, G. Observatoire Pelagis Boat Surveys 2003–2021. OBIS-SEAMAP. 2022. Available online: http://seamap.env.duke.edu/dataset/1403 (accessed on 23 May 2023).
  255. Van Canneyt, O. Observatoire Pelagis Aerial Surveys 2002–2021. OBIS-SEAMAP. 2022. Available online: http://seamap.env.duke.edu/dataset/1404 (accessed on 16 January 2022).
  256. Torreblanca, E.; Camiñas, J.A.; Macías, D.; García-Barcelona, S.; Real, R.; Báez, J.C. Using Opportunistic Sightings to Infer Differential Spatio-Temporal Use of Western Mediterranean Waters by the Fin Whale. PeerJ 2019, 7, e6673. [Google Scholar] [CrossRef] [PubMed]
  257. Marangi, M.; Airoldi, S.; Beneduce, L.; Zaccone, C. Wild Whale Faecal Samples as a Proxy of Anthropogenic Impact. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef]
  258. Aguilar Vila, A.; Forcada i Nogués, J.; Arderiu i Bofill, A.; Borrell i Thió, A.; Monnà Cano, A.; Aramburu Galeano, M.J.; PastorRamos, T.; Cantos i Font, G. Inventario de Los Cetáceos de Las Aguas Atlánticas Peninsulares: Aplicación de laDirectiva 92/43/CEE. 1997. Available online: https://www.miteco.gob.es/content/dam/miteco/es/biodiversidad/publicaciones/bm_bbdd_inventario_atlanticas_tcm30-522305.pdf (accessed on 12 August 2021).
  259. Stockin, K.A.; Burgess, E.A. Opportunistic Feeding of an Adult Humpback Whale (Megaptera novaeangliae) Migrating along the Coast of Southeastern Queensland, Australia. Aquat. Mamm. 2005, 31, 120–123. [Google Scholar] [CrossRef]
  260. Reinke, J.; Lemckert, C.; Meynecke, J.-O. Coastal Fronts Utilized by Migrating Humpback Whales, Megaptera Novaeangliae, on the Gold Coast, Australia. J. Coast. Res. 2016, 75, 552–556. [Google Scholar] [CrossRef]
  261. Espada Ruíz, R.; Olaya-Ponzone, L.; García-Gómez, J.C. Humpback Whale in the Bay of Algeciras and a Mini-Review of This Species in the Mediterranean. Reg. Stud. Mar. Sci. 2018, 24, 156–164. [Google Scholar] [CrossRef]
  262. Molinero, J.C.; Ibanez, F.; Souissi, S.; Bosc, E.; Nival, P. Surface Patterns of Zooplankton Spatial Variability Detected by High Frequency Sampling in the NW Mediterranean. Role of Density Fronts. J. Mar. Syst. 2008, 69, 271–282. [Google Scholar] [CrossRef]
  263. Camacho, D. Influence of Ocean Fronts on Cetacean Habitat Selection and Diversity within the CalCOFI Study Area; Center for Marine Biodiversity and Conservation: San Diego, CA, USA, 2010. [Google Scholar]
  264. NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. MODIS-Aqua Level 3 Mapped Chlorophyll Data Version R2018. 2018. Available online: https://oceancolor.gsfc.nasa.gov/data/10.5067/AQUA/MODIS/L3M/CHL/2018/ (accessed on 20 June 2022).
  265. Biswas, A.K.; Tortajada, C. Impacts of the High Aswan Dam. In Water Resources Development and Management; Springer: Berlin/Heidelberg, Germany, 2012; pp. 379–395. [Google Scholar]
  266. Ritter, F.; Panigada, S. World Seas-An Evironmental Evaluation-Volume III: Ecological Issues and Environmental Impacts; Shepperd, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
  267. Anthony, R.; Calvet, J. Recherches Faites Sur Le Cétacé Capturé a Cètte, Le 6 Octobre 1904—Balaenoptera physalus (Linné). Bull. De La Soc. Phil. 1905, 7, 72–85. [Google Scholar]
  268. Ficalbi, E. Una balenottera arenata sul litorale toscano. Monit. Zool. Ital. 1907, 18, 192. [Google Scholar]
  269. Lepri, G. Su di una balenottera arenatasi presso Ostia. Boll. Soc. Zool. Ital. 1914, 3, 32–38. [Google Scholar]
  270. Ficalbi, E. Tre grandi cetacei dati in secco sul litorale toscano. Monit. Zool. Ital. 1919, 30, 199–200. [Google Scholar]
  271. Pierantoni, N. La Balaenoptera physalus (L.) arenatasi sulla spiaggia di S. Giovanni a Teduccio. Boll. Soc. Nat. Napoli. 1930, 41, 152–155. [Google Scholar]
  272. Flower, S.S. Notes on recent mammals of Egypt, with a list of the species recorded from that kingdom. Proc. Zool. Soc. Lond. 1932, 102, 369–450. [Google Scholar] [CrossRef]
  273. Tamino, G. Note Sui Cetacei. VIII. Rinvenimento Di Una Giovane Balenottera Arenata Sulla Spiaggia Dei Maronti (Isola d’Ischia), Il 16 Novembre 1953. Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 1953, 92, 123–126. [Google Scholar]
  274. Tamino, G. Ricupero Di Una Balenottera Arenata Sul Lido Di Salerno Il 10 Febbraio 1953. Boll. Zool. 1953, 20, 51–54. [Google Scholar] [CrossRef]
  275. Tamino, G. Note Sui Cetacei Italiani: Rinvenimento Di Una Balenottera Nel Golfo Di La Spezia (9 Giugno 1955). Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 1956, 95, 45–51. [Google Scholar]
  276. Postel, E. Echouage d’une baleinoptère aux Iles Kerkennah. Bull. SOS 1956, 53, 75–76. [Google Scholar]
  277. Parenzan, P. A proposito di una balenottera arenata nel gennaio 1957 nell’isola di Ponza. Thalass. Jonica. 1958, 1, 127–134. [Google Scholar]
  278. Pavletič, J.; Canadjija, S.; Magerle, A. Skelet Kita Perajara—Balaenoptera physalus (L.). Biolo Ki Glasnik. 1962, 15, 115–126. [Google Scholar]
  279. Chakroun, F. Captures d’animaux rares en Tunisie. Bull. Inst. Natn. Scient. Tech. Océanogr. Pêche Salammbô. 1966, 1, 75–79. [Google Scholar]
  280. Duguy, R.; Budker, P. Rapport Annuel Sur Les Cétacés Et Pinnnipèdes Trouvés Sur Les Côtes De Fance. Mammalia 1972, 36, 517–520. [Google Scholar]
  281. Duguy, R. Rapport annuel sur les cétacés et pinnipèdes trouvés sur les côtes de France. II—Année 1972. Mammalia 1973, 37, 669–677. [Google Scholar] [CrossRef]
  282. Duguy, R. Rapport annuel sur les cétacés et pinnipèdes trouvés sur les côtes de France. III—Année 1973. Mammalia 1974, 38, 545–555. [Google Scholar] [CrossRef]
  283. Duguy, R. Rapport annuel sur les cétacés et pinnipèdes trouvés sur les côtes de France. IV—Année 1974. Mammalia 1975, 39, 689–701. [Google Scholar] [CrossRef] [PubMed]
  284. Duguy, R. Rapport annuel sur les cétacés et pinnipèdes trouvés sur les côtes de France. VI—Année 1976. Ann. Soc. Sci. Nat. Charente-Marit 1977, 6, 308–317. [Google Scholar]
  285. Duguy, R. Rapport annuel sur les cétacés et pinnipèdes trouvés sur les côtes de France. VII—Année 1977. Ann. Soc. Sci. Nat. Charente-Marit. 1978, 6, 333–344. [Google Scholar]
  286. Duguy, R. Rapport annuel sur les cétacés et pinnipèdes trouvés sur les côtes de France. VIII—Année 1978. Ann. Soc. Sci. Nat. Charente-Marit. 1979, 6, 463–474. [Google Scholar]
  287. Duguy, R. Rapport annuel sur les cétacés et les pinnipèdes trouvés sur les côtes de France, IX Année 1979. Ann. Soc. Sci. Nat. Charente-Marit. 1980, 6, 615–632. [Google Scholar]
  288. Duguy, R. Rapport annuel sur les cétacés et pinnipèdes trouvés sur les côtes de France. X—Année 1980. Ann. Soc. Sci. Nat. Charente-Marit. 1981, 6, 803–818. [Google Scholar]
  289. Duguy, R. Rapport annuel sur les cétacés et pinnipèdes trouvés sur les côtes de France. XI—Année 1981. Ann. Soc. Sci. Nat. Charente-Marit. 1982, 6, 969–984. [Google Scholar]
  290. Duguy, R. Rapport annuel sur les cétacés et pinnipèdes trouvés sur les côtes de France. XII—Année (1982). Ann. Soc. Sci. Nat. Charente-Marit. 1983, 7, 121–135. [Google Scholar]
  291. Duguy, R. Rapport annuel sur les cétacés et pinnipèdes trouvés sur les côtes de France. XIV—Année 1984. Ann. Soc. Sci. Nat. Charente-Marit. 1985, 7, 349–364. [Google Scholar]
  292. Duguy, R. Rapport annuel sur les cétacés et pinnipèdes trouvés sur les côtes de France. XV—Année 1985. Ann. Soc. Sci. Nat. Charente-Marit. 1986, 7, 507–522. [Google Scholar]
  293. Duguy, R. Rapport annuel sur les cétacés et pinnipèdes trouvés sur les côtes de France. XVI—Année 1986. Ann. Soc. Sci. Nat. Charente-Marit. 1987, 7, 617–639. [Google Scholar]
  294. Duguy, R. Rapport annuel sur les cétacés et pinnipèdes trouvés sur les côtes de France. XVII—Année 1987. Ann. Soc. Sci. Nat. Charente-Marit. 1988, 7, 753–769. [Google Scholar]
  295. Duguy, R. Rapport annuel sur les cétacés et pinnipèdes trouvés sur les côtes de France. XVIII—Année 1988. Ann. Soc. Sci. Nat. Charente-Marit. 1989, 7, 781–808. [Google Scholar]
  296. Duguy, R. Rapport annuel sur le cétacés et pinnipèdes trouvés sur le côtes de France. XX—Année 1990. Ann. Soc. Sci. Nat. Charente-Marit. 1990, 7, 1017–1048. [Google Scholar]
  297. Duguy, R. Rapport annuel sur le cétacés et pinnipèdes trouvés sur le côtes de France. XXI—Année 1991. Ann. Soc. Sci. Nat. Charente-Marit. 1992, 8, 9–34. [Google Scholar]
  298. Casinos, A.; Filella, S. Primer Recull Anual (1973) de La Comissió de Cetologia de La Institució Catalana d’Història Natural. Butl. Inst. Catalana Hist Nat. 1975, 39, 5–26. [Google Scholar]
  299. Casinos, A.; Vericad, J.S. The Cetaceans of the Spanish Coasts: A Survey. Mammalia 1976, 40, 267–289. [Google Scholar] [CrossRef]
  300. Natale, D.; Giuffré, A. Su Di Un Esemplare Di Balaenoptera physalus L. (Cetacea, Misticeti) Arenato Lungo Il Litorale Tirrenico Della Sicilia. Mem. Biol. Mar. Ocean. 1976, 6, 37–43. [Google Scholar]
  301. Princi, M.; Bussani, M. Determinazione Di Hg in Un Esemplare Di Balaenoptera physalus L. Catturato Nel Porto Di Trieste. Boll. Pesca Piscic. Idrobiol. 1976, 31, 93–95. [Google Scholar]
  302. Pilleri, G.; Gihr, M. Some Records of Cetaceans in the Northern Adriatic Sea. N. Adriat. Sea. Investig. Cetacea 1977, 8, 85–88. [Google Scholar]
  303. Pelegrí, J. Recull de La Comisió de Cetologia de La Institució Catalana d’història Natural. II: Anys 1974 i 1975. Butl. Inst. Catalana Hist. Nat 1980, 45, 155–165. [Google Scholar]
  304. Ktari-Chakroun, F. Nouvelles mentions de cétacés en Tunisie. Bull. Inst. Oceanogr. Pêche Salammbô. 1981, 8, 119–121. [Google Scholar]
  305. Spanier, E. Whales on Israel’s Coasts? Isr. Land Nat. 1981, 71, 32–33. [Google Scholar]
  306. Poggi, R. Recenti incrementi alla collezione cetologica del Museo Civico di Storia Naturale di Genova (Mammalia, Cetacea). Ann. Mus. Civ. Stor. Nat. Genova. 1982, 84, 1–8. [Google Scholar]
  307. Ben Mustapha, K. Echouage d’un rorqual commun Balaenoptera physalus (Linné 1758) à Carthage Dermech dans le Golfe de Tunis. Bull. Inst. Natn. Scient. Tech. Océanogr. Pêche Salammbô. 1986, 13, 19–24. [Google Scholar]
  308. Cagnolaro, L.; Cozzi, B.; Magnaghi, L.; Podestà, M.; Poggi, R.; Tangerini, P. Su 18 cetacei spiaggiati sulle coste italiane dal 1981 al 1985: Rilevamento biometrico ed osservazioni necroscopiche (Mammalia: Cetacea). Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano. 1986, 127, 79–106. [Google Scholar]
  309. Grau, E.; Filella, S.; Raga, J.A.; Raduán, A. Cetáceos varados en las costas del Mediterráneo ibérico, durante los años 1980–1981. Misc. Zool. 1986, 10, 353–358. [Google Scholar]
  310. El Bouali, M. Les cétacés du littoral ouest algérien. Ph.D. Thesis, Département de Biologie Animale, Option Biologie Marine, Université d’Óran, Oran, Algeria, 1987. [Google Scholar]
  311. Mendelssohn, H.; Yom-Tov, Y. Plants and Animals of the Land of Israel. Mammals. Ministry of Defense; The Publishing House: Tel Aviv, Israel, 1987; Volume 7, pp. 1–295. [Google Scholar]
  312. Raga, J.A.; Raduán, A.; Balbuena, J.A.; Aguilar, A.; Grau, E.; Borrell, A. Varamientos de cetáceos en las costas españolas del Mediterráneo durante el período 1982–1988. Misc. Zool. 1991, 15, 215–226. [Google Scholar]
  313. Bradai, M.N. Nouvelles mentions de Delphinidae. Rev. Inst. Nat. Agronom. Tunis. 1991, 6, 169–172. [Google Scholar]
  314. Pezzo, F.; Cancelli, F.; Baccetti, N. Catalogo Della Collezione Teriologica (Museo zoologico, Accademia dei fisiocritici). Atti Accad. Fisiocrit. Siena 1995, 15, 1–73. [Google Scholar]
  315. Öztürk, B. Yunuslar ve Balinalar (Dolphins and Whales); Anahtar Yayınları: Istanbul, Turkey, 1996. [Google Scholar]
  316. Nicolosi, P.; Roselli, A.; Cagnolaro, L. Studio Dello Scheletro Di Balaenoptera physalus (L) Del Museo Di Storia Naturale Di Livorno. Museol. Sci. XIII 1997, 3, 245–266. [Google Scholar]
  317. Gruppo Ricerca Cetacei; Gomerčić, H.; Huber, D.; Gomerčić, A.; Gomerčić, T. Geographical and Historical Distribution of Cetaceans in Croatian Part of the Adriatic Sea. Rapp. Comm. Int. Mer Méed. Ée 1998, 35, 440–441. [Google Scholar]
  318. Bradai, N.M.; Ghorbel, M. Les Cétacés Dans Les Eaux Tunisiennes: Nouvelles Mentions D’éspèces Rares En Méditerranée. In Proceedings of the Actes de la 8ème Conference Intérnationale RIMMO, Sophia Antipolis, France, 19–21 November 1999; pp. 51–53. [Google Scholar]
  319. Alís, S.; Rivilla, J.C.; Ruiz, G.; Sancho, J.R. Varamiento de Un Rorcual Común (Balaenoptera physalus) Vivo En La Playa de Matalascañas, Huelva. Galemys Boletín Inf. Soc. Española Conserv. Estud. Mamíferos 2000, 12, 54–56. [Google Scholar]
  320. Borrell, A.; Aguilar, A.; Forcada, J.; Fernández, M.; Aznar, F.J.; Raga, J.A. Varamiento de cetáceos en las costas españolas del Mediterráneo durante el período 1989–2000. Misc. Zool. 2000, 23, 1–17. [Google Scholar]
  321. Capoulade, F. Whales and Ferries in the Ligurian Sanctuary: Captain’s Experience and Owner’s Actions. Eur. Cetacean Soc. Newsl. 2002, 40, 18–25. [Google Scholar]
  322. Frantzis, A.; Alexiadou, P.; Politi, E.; Gannier, A.; Corsini-Foka, M. Cetacean Fauna of the Greek Seas: Unexpectedly High Species Diversity. Eur. Res. Cetaceans 2004, 15, 421–425. [Google Scholar]
  323. Lipej, L.; Dulčić, J.; Kryštufek, B. On the Occurrence of the Fin Whale (Balaenoptera physalus) in the Northern Adriatic. J. Mar. Biol. Assoc. UK 2004, 84, 861–862. [Google Scholar] [CrossRef]
  324. Braschi, S.; Cagnolaro, L.; Nicolosi, P. Catalogo Dei Cetacei Attuali Del Museo Di Storia Naturale e Del Territorio Dell’Università Di Pisa, Alla Certosa Di Calci. Mem. Ser. B 2007, 114, 1–22. [Google Scholar]
  325. Ciçek, E.; Oktener, A.; Capar, O.B. First Report of Pennella Balaenopterae Koren and Danielssen, 1877 (Copepoda: Pennelidae) from Turkey. Turk. Parazitol. Derg. 2007, 31, 239–241. [Google Scholar]
  326. Caputo, V.; Giovannotti, M. Haplotype Characterization of a Stranded Balaenoptera physalus (Linnaeus, 1758) from Ancona (Adriatic Sea, Central Italy). Hystrix It. J. Mamm. 2009, 20, 83–85. [Google Scholar]
  327. De Los Ríos, A.; Rodero, B.; Carretero, S. Estudios Veterinarios, in: Boletín de Estudios Sobre Tetrápodos Marinos Del Norte de África (Memoria de Varamientos de Cetáceos y Tortugas Marinas Ceuta, Septiembre 2006–Septiembre 2008). In Septem Nostra-Ecologistas en Acción; del Mar, M., Ed.; Alidrisia Marina, Fundación Museo del Mar de Ceuta: Ceuta, Spain, 2009; pp. 49–55. [Google Scholar]
  328. De la Fuente, J. Estudio de Las Patologías Y Causas de Muerte de Cetáceos Varados En El Litoral de La Provincia de Cádiz (2001–2004). Doctoral Thesis, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain, 2011. [Google Scholar]
  329. Gorelli, G.; Bedocchi, D.; Cancelli, F.; Mancusi, C.; Marsili, L.; Nuti, S.; Mazzariol, S.; Renieri, T.; Ventrella, S. Resoconto degli spiaggiamenti di cetacei in toscana: L’attività dell’osservatorio toscano dei cetacei e del progetto gionha dal 2008 al 2010/report of cetacean strandings events in tuscany: The activity of the tuscan observatory for cetacean and gionha project in the last years. Biol. Mar. Mediter. 2011, 18, 166. [Google Scholar]
  330. Karaa, S.; Bradai, M.N.; Jribi, I.; Hili, H.A.E.; Bouain, A. Status of Cetaceans in Tunisia through Analysis of Stranding Data from 1937 to 2009. Mammalia 2012, 76, 21–29. [Google Scholar] [CrossRef]
  331. Ocaña, O.; Rosa, J.A.; Pérez-Rivera, J.M. Seguimiento de Los Varamientos de Cetáceos y Tortugas Marinas de La Región de Ceuta (2013–2014). Alidrisia 2015, 4, 6–20. [Google Scholar]
  332. Carrillo, M.; Alcántara, E.; Taverna, A.; Paredes, R.; Garcia-Franquesa, E. Descripción osteológica del rorcual común (Balaenoptera physalus, Linnaeus, 1758) del Museo de Ciencias Naturales de Barcelona. Arx. Misc. Zool. 2014, 12, 93–123. [Google Scholar] [CrossRef]
  333. Maio, N.; Petraccioli, A.; De Stasio, R.; Federico, A.; Pollaro, F. I reperti cetologici conservati presso enti scientifici e religiosi della Campania. Museol. Sci. Mem. 2014, 12, 346–354. [Google Scholar]
  334. Masski, H.; De Stéphanis, R. Cetaceans of the Moroccan Coast: Information from a Reconstructed Strandings Database. J. Mar. Biol. Assoc. UK 2018, 98, 1029–1037. [Google Scholar] [CrossRef]
  335. Melero, M.; Crespo-Picazo, J.L.; Rubio-Guerri, C.; García-Párraga, D.; Sánchez-Vizcaíno, J.M. First Molecular Determination of Herpesvirus from Two Mysticete Species Stranded in the Mediterranean Sea. BMC Vet. Res. 2015, 11, 283. [Google Scholar] [CrossRef] [PubMed]
  336. Milani, C.B.; Vella, A.; Vidoris, P.; Christidis, A.; Koutrakis, E.; Frantzis, A.; Miliou, A.; Kallianiotis, A. Cetacean Stranding and Diet Analyses in the North Aegean Sea (Greece). J. Mar. Biol. Assoc. UK 2018, 98, 1011–1028. [Google Scholar] [CrossRef]
  337. Ahmim, M. Les Mammifères Sauvages d’Algérie. Répartition et Biologie de La Conservation; Les Éditions Du Net: Saint-Ouen, France, 2019; ISBN 978-2312068961. [Google Scholar]
  338. Marcer, F.; Marchiori, E.; Centelleghe, C.; Ajzenberg, D.; Gustinelli, A.; Meroni, V.; Mazzariol, S. Parasitological and Pathological Findings in Fin Whales Balaenoptera physalus Stranded along Italian Coastlines. Dis. Aquat. Organ. 2019, 133, 25–37. [Google Scholar] [CrossRef]
  339. Peltier, H.; Beaufils, A.; Cesarini, C.; Dabin, W.; Dars, C.; Demaret, F.; Dhermain, F.; Doremus, G.; Labach, L.; Van Canneyt, O.; et al. Monitoring of Marine Mammal Strandings along French Coasts Reveals the Importance of Ship Strikes on Large Cetaceans: A Challenge for the European Marine Strategy Framework Directive. Front. Mar. Sci. 2019, 6, 486. [Google Scholar] [CrossRef]
  340. Cuvertoret-Sanz, M.; López-Figueroa, C.; O’Byrne, A.; Canturri, A.; Martí-Garcia, B.; Pintado, E.; Pérez, L.; Ganges, L.; Cobos, A.; Abarca, M.L.; et al. Causes of Cetacean Stranding and Death on the Catalonian Coast (Western Mediterranean Sea), 2012–2019. Dis. Aquat. Organ. 2020, 142, 239–253. [Google Scholar] [CrossRef] [PubMed]
  341. Rizgalla, J. Live Stranded Fin Whale Balaenoptera physalus in Libyan Waters Reported via Social Media Platform. J. Black Sea/Mediterr. Environ. 2020, 26, 329–335. [Google Scholar]
  342. Tonay, A.M.; Dede, A.; Gül, B.; Öztürk, A.A. First record of a fin whale (Balaenoptera physalus) stranding on the northern Aegean Sea coast of Turkey. J. Black Sea/Medit. Environ. 2020, 26, 223–230. [Google Scholar]
  343. Farrag, M.; Ahmed, H.O.; Tamsouri, N.; TouTou, M.M. Re-Identification of the Bryde’s Whale (Balaenoptera Edeni) and the Gervais’ Beaked Whale (Mesoplodon Europaeus) on the Mediterranean Coast of Egypt “Updating, Strandings in Opposite to Climatic and Anthropogenic Impacts. Egypt. J. Aquatic Biol. Fish 2022, 26, 125–153. [Google Scholar] [CrossRef]
  344. Fioravanti, T.; Maio, N.; Latini, L.; Splendiani, A.; Guarino, F.M.; Mezzasalma, M.; Petraccioli, A.; Cozzi, B.; Mazzariol, S.; Centelleghe, C.; et al. Nothing Is as It Seems: Genetic Analyses on Stranded Fin Whales Unveil the Presence of a Fin-Blue Whale Hybrid in the Mediterranean Sea (Balaenopteridae). Eur. Zool. J. 2022, 89, 590–600. [Google Scholar] [CrossRef]
  345. Manfrini, V.; Pierantonio, N.; Giuliani, A.; De Pascalis, F.; Maio, N.A. Fin Whale (Balaenoptera physalus) Mortality along the Italian Coast between 1624 and 2021. Animals 2022, 12, 3111. [Google Scholar] [CrossRef] [PubMed]
  346. Fernández, C.; Arbelo, M.; Fernández, A.; Díaz, J.; Bernaldo, Y.; De la Fuente, J.; Arregui, M.; Sierra, E. Ship strikes: Two cases of fin whales stranded on the South Atlantic Spanish coast. In Proceedings of the 34th Annual Conference of the European Cetacean Society, O´Grove, Spain, 18–20 April 2023. [Google Scholar]
  347. Oren, S.; Edery, N.; Yasur-Landau, D.; King, R.; Leszkowicz Mazuz, M. First Report of Pennella Balaenopterae Infestation in a Fin Whale (Balaenoptera physalus) Carcass Washed Ashore on the Israeli Coastline. Isr. J. Vet. Med. 2023, 78, 4–8. [Google Scholar]
  348. Abd Rabou, A.F.N.; Elkahlout, K.E.; Elnabris, K.J.; Attallah, A.J.; Salah, J.Y.; Aboutair, M.A.; Thabit, W.M.; Serri, S.K.; Abu Hatab, H.G.; Awadalah, S.M.; et al. An Inventory of Some Relatively Large Marine Mammals, Reptiles, and Fishes Sighted, Caught, by-Caught, or Stranded in the Mediterranean Coast of the Gaza Strip-Palestine. Open J. Ecol. 2023, 13, 119–153. [Google Scholar] [CrossRef]
  349. Diorio, V. Il cetaceo de S. Marinella. Atti Accad. Pontif. Nuovi Lincei 1866, 19, 189–199. [Google Scholar]
  350. Heldt, H. Incursions de baleinoptères sur les côtes tunisiennes. Ann. Biol. Cph. 1949, 6, 80. [Google Scholar]
  351. Parona, C. Notizie Storiche Sopra i Grandi Cetacei Nei Mari Italiani Ed in Particolare Sulle Quattro Balenottere Catturate in Liguria Nell’autunno. Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 1896, 36, 297. [Google Scholar]
  352. Kryštufek, B.; Lipej, L. Kiti (Cetacea) v severnem Jadranu. Ann. Ser. Hist. Nat. 1993, 3, 9–20. [Google Scholar]
  353. CRAM. Varamiento de Rorcual Común (Balaenoptera physalus). Available online: https://cram.org/clinica-y-rescate/medicina-y-cirugia/varamiento-de-rorcual-comun-balaenoptera-physalus/ (accessed on 11 November 2023).
  354. Minutos, 20 Localizan una Ballena en Ceuta que Murió Asfixiada al Quedar Atrapada en Una Red. Available online: https://www.20minutos.es/noticia/360925/0/ballena/muerta/ceuta/ (accessed on 16 November 2023).
  355. ACN. Consiguen Ballena de 20 Metros Atropellada por un Barco en España. Available online: https://es.comunicas.org/2009/06/03/consiguen-ballena-de-20-metros-atropellada-por-un-barco-en-espana (accessed on 13 November 2023).
  356. Diariodemallorca. Es/efe. Mahón Harán Explotar Una Ballena Muerta Hallada En Menorca. Available online: https://www.diariodemallorca.es/part-forana/2012/03/23/haran-explotar-ballena-muerta-hallada-3989655.html (accessed on 16 November 2023).
  357. Association Delfine-Dellys, Facebook. Baleine Balaenoptera physalus Échouée Sur La Côte de Dellys. Available online: https://www.facebook.com/media/set/?set=a.512967802075265&type=3&paipv=0&eav=AfYwWHZEhGRdwTuzPzlNe1cDoEUEagC4I4z9duEu0Mz-YvQq8y-MCzqaHzO4ZNSAN1g&_rdr (accessed on 21 March 2024).
  358. Archipielagos Εκβρασμός Πτεροφάλαινας Στις Aκτές Της Κυπαρισσίας—Archipelagos. Available online: https://archipelago.gr/ekvrasmos-pterofalenas-stis-aktes-tis-kiparissias (accessed on 16 November 2023).
  359. Genside Une Baleine de 10m Piégée Par Des Filets En Tunisie. Available online: https://www.maxisciences.com/sciences/geologie/une-baleine-de-10m-piegee-par-des-filets-en-tunisie_art32142.html (accessed on 16 November 2023).
  360. Directinfo Tunisie-Régions: Une Baleine de 11 Mètres et 5 Tonnes Échoue à Mahdia; Directinfo. 2013. Available online: https://directinfo.webmanagercenter.com/2013/06/14/tunisie-regions-une-baleine-de-11-metres-et-5-tonnes-echoue-a-mahdia/ (accessed on 16 November 2023).
  361. Tapia, M. ¿Os Acordáis de La Ballena Que Varó En La Costa de Taxdir Allá Por El 2.003? Un Rorcual Común (Balaenoptera physalus) Adulto; Aún Conservamos Una de Sus Enormes Mandíbulas. Available online: https://www.facebook.com/groups/faunayflorademelillaysuentorno/posts/1763920997208738/ (accessed on 13 November 2023).
  362. Europa Press. Catalunya La Ballena Hallada Muerta en Lloret de Mar (Girona) se Trasladará al Cram para su Necropsia. Available online: https://www.europapress.es/catalunya/noticia-ballena-hallada-muerta-lloret-mar-girona-trasladara-cram-necropsia-20170507190932.html (accessed on 16 November 2023).
  363. Réalités Sfax: Une Baleine de 13 m Échoue Au Port de Pêche (Photos). Available online: https://realites.com.tn/fr/sfax-baleine-de-13-m-echoue-port-de-peche-photos (accessed on 16 November 2023).
  364. Axarquia Plus Encuentran sin vida una Ballena en las Costas de Puerto Banús. Available online: https://www.axarquiaplus.es/encuentran-sin-vida-una-ballena-en-las-costas-de-puerto-banus/ (accessed on 16 November 2023).
  365. Echarri Salvamento Marítimo Traslada a Ceuta el Cuerpo de una Ballena Muerta en el Estrecho. Available online: https://elfarodeceuta.es/salvamento-maritimo-traslada-ceuta-cuerpo-ballena-muerta-estrecho/ (accessed on 16 November 2023).
  366. García, R. La Ballena Sin Vida Que Apareció En La Playa de Getares Pudo Llegar Desde El Puerto de Marbella. Available online: https://cadenaser.com/emisora/2019/07/30/radio_algeciras/1564490961_320763.html (accessed on 16 November 2023).
  367. Requena, C. Hoy se Practicará la Necropsia a la Ballena de 15 Metros Varada en Cala Millor. Available online: https://www.cope.es/emisoras/illes-balears/baleares/mallorca/noticias/hoy-practicara-necropsia-ballena-metros-varada-cala-millor-20190128_340603 (accessed on 6 January 2021).
  368. CNN Greece. Newsroom. Aπίστευτες εικόνες: Ξεβράστηκε φάλαινα περίπου οκτώ μέτρων στη Φρεαττύδα (Pics&Vids). Available online: https://www.cnn.gr/ellada/story/247982/peiraias-xevrastike-falaina-peripoy-okto-metron-sti-freattyda (accessed on 22 March 2024).
  369. Ballesta, M. Seguimiento DE Los Varamientos DE Cetáceos y Quelonios Desde La Playa DE Mazagón a La Desembocadura Del Guadalquivir. Available online: https://issuu.com/editorialmic/docs/mazagon_rev2021/s/13381851 (accessed on 21 November 2023).
  370. As. Encuentran Muerto al Segundo Animal Más Grande del Mundo: Mide Más de 18 Metros. Available online: https://as.com/diarioas/2021/10/19/actualidad/1634661017_777314.html (accessed on 16 November 2023).
  371. Échouages des Animaux Marins en Algérie, É. Facebook. Available online: https://www.facebook.com/p/%C3%89chouages-des-Animaux-Marins-en-Alg%C3%A9rie100064450999618/?locale=fr_FR&paipv=0&eav=Afa6chssGmpr82RKpnPLSHlxnftGQPq6ydfNiUyY8dwnbWDcBKAshNhLku0LuWBGzc&_rdr (accessed on 16 November 2023).
  372. EcoAvant. Una Ballena Atrapada en el Puerto de Valencia Consigue Volver a Mar Abierto. Available online: https://www.ecoavant.com/naturaleza/una-ballena-atrapada-en-el-puerto-de-valencia-vuelve-a-mar-abierto_6722_102.html (accessed on 16 November 2023).
  373. Guelaya—Ecologistas en Acción Melilla. Facebook. Available online: https://www.facebook.com/172275929458533/posts/4037883386231082/?paipv=0&eav=AfaihQCAW2LCO0korMHFM0dQGCb4OLk9sbOUqCx74u76yYDj3OeGAB96xMxCiWHa2wg&_rdr (accessed on 22 March 2024).
  374. Diario de Cádiz. Aparece Muerta Una Ballena de Grandes Dimensiones En El Puerto de Cádiz. Available online: https://www.diariodecadiz.es/cadiz/Aparece-muerta-ballena-puerto-Cadiz_3_1726957298.html#slide-1 (accessed on 16 November 2023).
  375. González, N.; Sánchez, R. Aparece Un Rorcual Común Muerto, de Unos 15 Metros, En La Orilla de Una Playa de Estepona. Available online: https://andaluciainformacion.es/estepona/1023189/aparece-un-rorcual-comun-muerto-de-unos-15-metros-en-la-orilla-de-una-playa-de-estepona (accessed on 22 November 2023).
  376. Lillo, I. Aparece Una Ballena Muerta En La Bocana Del Puerto de Málaga. Sur. Available online: https://www.diariosur.es/malaga-capital/ballena-muerta-puerto-malaga-20220216192336-nt.htm (accessed on 17 October 2022).
  377. INRH. Un Baleineau Retrouvé Échoué Sur La Plage de Oued Lmarssa á Tanger. Available online: https://observatoire-halieutique.ma/alerte-environnementale/apQkd7rr9bxK (accessed on 16 November 2023).
  378. Sons de Mar. Cetáceos Destacados. Rorcual Común (Balaenoptera physalus). Available online: http://www.sonsdemar.eu/index2.php@web=featured&lang=es (accessed on 22 March 2024).
  379. University of Valencia. MEDACES (Mediterranean Database of Cetacean Strandings). Available online: http://medacesdb.uv.es/home_eng.htm (accessed on 16 January 2022).
  380. REDIAM. WMS Varamientos de Fauna Marina En La Costa de Andalucía. Available online: http://www.juntadeandalucia.es/medioambiente/mapwms/REDIAM_varamientos_fauna_marina (accessed on 30 November 2023).
  381. UNISI. Monitoraggio Degli Spiaggiamenti Di Cetacei Sulle Coste Italiane. Available online: http://mammiferimarini.unipv.it/spiaggiamenti_pub.php?resultID=98&OPFind=1 (accessed on 21 November 2023).
  382. Dacosta, J.M.; Pagès, P. Balenes i Dofins a la Costa Brava; Brau Edicions SL: Figueres, Spain, 1993. [Google Scholar]
  383. Van Canneyt, O.; Collet, A.; Le Coq, K.; Dabin, W. Les Échouages de Mammifères Marins Sur Le Littoral Français En 1997. Rapport CRMM Pour Le Ministère de l’Aménagement Du Territoire et de l’Environnement, Direction de La Nature et Des Paysages. Programme Obs. Du Patrim. Nat. 1998, 38. Available online: https://www.observatoire-pelagis.cnrs.fr/wp-content/uploads/2020/12/RapportEchouages1997.pdf (accessed on 13 May 2022).
  384. Van Canneyt, O.; Leniere, A.; Collet, A. Les Échouages de Mammifères Marins Sur Le Littoral Français En 1998. Rapport CRMM Pour Le Ministère de l’Aménagement Du Territoire et de l’Environnement, Direction de La Nature et Des Paysages. Programme Obs. Du Patrim. Nat. 1999, 25. Available online: https://www.observatoire-pelagis.cnrs.fr/wp-content/uploads/2020/12/RapportEchouages1998.pdf (accessed on 25 May 2022).
  385. Van Canneyt, O. Les Échouages de Mammifères Marins Sur Le Littoral Français En 2000. Rapport CRMM Pour le Ministère de l’Aménagement du Territoire et de l’Environnement, Direction de la Nature et des Paysages. Programme Obs. Du Patrim. Nat. 2001, 26. Available online: https://www.observatoire-pelagis.cnrs.fr/wp-content/uploads/2020/12/RapportEchouages2000.pdf (accessed on 25 May 2022).
  386. Dhermain, F.; Soulier, L.; Bompar, J.M. Natural Mortality Factors Affecting Cetaceans in the Mediterranean Sea. Cetaceans of the Mediterranean and Black Seas: State of Knowledge and Conservation Strategies. ACCOBAMS Secr. 2002, 15, 14. [Google Scholar]
  387. Van Canneyt, O. Les Échouages de Mammifères Marins Sur Le Littoral Français En 2001. Rapport CRMM pour le Ministère de l’Ecologie et du Développement Durable, Direction de la Nature et des Paysages. Programme Obs. Du Patrim. Nat. 2002. Available online: https://www.observatoire-pelagis.cnrs.fr/wp-content/uploads/2020/12/RapportEchouages2001.pdf (accessed on 22 March 2024).
  388. Van Canneyt, O.; Doremus, G. Les Échouages de Mammifères Marins Sur Le Littoral Français En 2002. Rapport CRMM Pour Le Ministère de l’Ecologie et du Développement Durable, Direction de la Nature et des Paysages. Programme Obs. Du Patrim. Nat. 2003, 28. Available online: https://www.observatoire-pelagis.cnrs.fr/wp-content/uploads/2020/12/RapportEchouages2002.pdf (accessed on 22 March 2024).
  389. Van Canneyt, O.; Kostecki, C.; Septembre, G.D. Les Echouages De Mammiferes Marins Sur Le Littoral Français En 2003. Réseau National Echouages (RNE). 2004. Available online: https://www.observatoire-pelagis.cnrs.fr/wp-content/uploads/2020/12/RapportEchouages2003.pdf (accessed on 17 July 2022).
  390. Van Canneyt, O.; Peltier, H. Les Échouages de Mammifères Marins Sur Le Littoral Français En 2005; Réseau National Echouages (RNE). 2006. Available online: https://www.observatoire-pelagis.cnrs.fr/wp-content/uploads/2020/12/RapportEchouages2005.pdf (accessed on 17 July 2022).
  391. Promar. Varamientos Programa de Recuperación de Fauna Marina de Almeria. 2007. Available online: www.almediam.es/PDF/Datos_varamientos_07.pdf (accessed on 18 July 2022).
  392. Van Canneyt, O.; Chauvel, C. Les Échouages de Mammifères Marins Sur Le Littoral Français En 2006. Réseau National Echouages (RNE). 2007. Available online: https://www.observatoire-pelagis.cnrs.fr/wp-content/uploads/2020/12/RapportEchouages2006.pdf (accessed on 20 July 2022).
  393. Van Canneyt, O.; Montus, M.; Dorémus, G. Les Échouages de Mammifères Marins Sur Le Littoral Français En 2007. Réseau National Echouages (RNE). 2008. Available online: https://www.observatoire-pelagis.cnrs.fr/wp-content/uploads/2020/12/RapportEchouages2007.pdf (accessed on 22 July 2022).
  394. Dhermain, F.; Méditerranéen, R.E. Suivi des Échouages Sur Les Côtes Méditerranéennes Françaises. Années 2005–2009; Parc National de Port-Cros: Hyères, France, 2009; p. 131. [Google Scholar]
  395. Van Canneyt, O.; Boudault, P.; Dabin, W.; Dorémus, G.; González, L. Les Échouages de Mammifères Marins Sur Le Littoral Français En 2009. Réseau National Echouages (RNE). 2010. Available online: https://www.observatoire-pelagis.cnrs.fr/wp-content/uploads/2020/12/RapportEchouages2009.pdf (accessed on 26 July 2022).
  396. Van Canneyt, O.; Dabin, W.; Demaret, F.; Doremus, G.; Dussud, C. González Les Échouages de Mammifères Marins Sur Le Littoral Français En 2010. Rapport ULR/PELAGIS pour le Ministêre del’Ecologie de l’Energie, du Développement Durable et del’Aménagement du Territoire, Direction del’Eau et de la Biodiversité, Programme Observatoire du Patrimoine Naturel, La Rochelle. 2011. Available online: https://www.observatoire-pelagis.cnrs.fr/wp-content/uploads/2020/12/RapportEchouages2010.pdf (accessed on 17 August 2022).
  397. Dhermain, F. Réseau Echouage Méditerranéen. Suivi des Échouages sur les Côtes Méditerranéennes Françaises. Années 2009–2012; National de Port-Cros: Hyères, France, 2012; 140p. [Google Scholar]
  398. Van Canneyt, O.; Dabin, W.; Demaret, F.; Dorémus, G.; Dussud, C.; González, L. Les Échouages de Mammifères Marins Sur Le Littoral Français En 2011. Réseau National Echouages (RNE). 2012. Available online: https://www.observatoire-pelagis.cnrs.fr/wp-content/uploads/2020/12/RapportEchouages2011.pdf (accessed on 12 September 2022).
  399. Van Canneyt, O.; Kerric, A.; Authier, M.; Dabin, W.; Demaret, F.; Dorémus, G.; Spitz, J. Les Échouages de Mammifères Marins Sur Le Littoral Français En 2013: Métropole et collectivités d’outre-mer. Réseau National Echouages (RNE). 2014. Available online: https://www.observatoire-pelagis.cnrs.fr/wp-content/uploads/2020/12/RapportEchouages2013.pdf (accessed on 30 September 2022).
  400. Van Canneyt, O.; Authier, M.; Dabin, W.; Dars, C.; Demaret, F.; Doremus, G.; Prellwitz, F.; Spitz, J. Les Échouages de Mammifères Marins Sur Le Littoral Français En 2014. Rapport Scientifique de l’Observatoire. PELAGIS. 2015. Available online: https://www.observatoire-pelagis.cnrs.fr/wp-content/uploads/2020/12/RapportEchouages2014.pdf (accessed on 1 October 2022).
  401. Van Canneyt, O.; Dars, C.; Authier, M.; Dabin, W.; Demaret, F.; Dorémus, G.; Peltier, H.; Spitz, J. Les Échouages de Mammifères Marins Sur Le Littoral Français En 2015: Métropole et Outre-mer. Rapport Annuel. Réseau National Echouages (RNE). 2016. Available online: https://www.observatoire-pelagis.cnrs.fr/wp-content/uploads/2020/12/RapportEchouages2015.pdf (accessed on 12 October 2022).
  402. Dars, C.; Peltier, H.; Dabin, W.; Demaret, F.; Dorémus, G.; Spitz, J.; Van Canneyt, O. Les Échouages de Mammifères Marins Sur Le Littoral Français En 2016: Métropole et Outre-mer. Rapport Annuel. Réseau National Echouages (RNE). 2017. Available online: https://www.observatoire-pelagis.cnrs.fr/wp-content/uploads/2020/12/rapportechouages2016.pdf (accessed on 12 October 2022).
  403. Dars, C.; Dabin, W.; Demaret, F.; Dorémus, G.; Meheust, E.; Mendez-Fernandez, P.; Peltier, H.; Spitz, J.; Van Canneyt, O. Les Échouages de Mammifères Marins Sur Le Littoral Français En 2017: Métropole et Outre-mer. Rapport Annuel. Réseau National Echouages (RNE). 2018. Available online: https://www.observatoire-pelagis.cnrs.fr/wp-content/uploads/2021/08/RapportEchouages2017.pdf (accessed on 14 October 2022).
  404. Dars, C.; Dabin, W.; Demaret, F.; Dorémus, G.; Meheust, E.; Mendez-Fernandez, P.; Peltier, H.; Spitz, J.; Van Canneyt, O. Les Échouages de Mammifères Marins Sur Le Littoral Français En 2018: Métropole et Outre-mer. Rapport Annuel. Réseau National Echouages (RNE). 2019. Available online: https://www.observatoire-pelagis.cnrs.fr/wp-content/uploads/2020/12/rapport-echouages-2018.pdf (accessed on 16 October 2022).
  405. Dars, C.; Dabin, W.; Demaret, F.; Meheust, E.; Méndez-Fernandez, P.; Peltier, H.; Spitz, J.; Caurant, F.; Van Canneyt, O. Les Échouages de Mammifères Marins Sur Le Littoral Français En 2019: Métropole et Outre-mer. Rapport Annuel. Réseau National Echouages (RNE). 2020. Available online: https://www.observatoire-pelagis.cnrs.fr/wp-content/uploads/2021/03/Rapport2019.pdf (accessed on 18 October 2022).
  406. Centro Studi Cetacei. Cetacei Spiaggiati Lungo de Coste Italiane, I. Rendiconto 1986. Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 1987, 128, 305–313. [Google Scholar]
  407. Centro Studi Cetacei. Cetacei Spiaggiati Lungo de Coste Italiane, I.I. Rendiconto 1987. Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 1988, 129, 411–432. [Google Scholar]
  408. Centro Studi Cetacei. Cetacei Spiaggiati Lungo de Coste Italiane, I.V. Rendiconto 1989. Atti Soc. Ital. Sci. nat. Museo civ. Stor. Nat. Milano 1991, 131, 413–432. [Google Scholar]
  409. Centro Studi Cetacei. Cetacei Spiaggiati Lungo de Coste Italiane, V. Rendiconto 1990. Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 1992, 132, 337–355. [Google Scholar]
  410. Centro Studi Cetacei. Cetacei Spiaggiati Lungo de Coste Italiane, V.I. Rendiconto 1991. Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 1994, 132, 261–291. [Google Scholar]
  411. Centro Studi Cetacei. Cetacei Spiaggiati Lungo de Coste Italiane, V.I.I. Rendiconto 1992. Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 1995, 134, 285–298. [Google Scholar]
  412. Centro Studi Cetacei. Cetacei Spiaggiati Lungo de Coste Italiane, V.I.I.I. Rendiconto 1993. Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 1996, 135, 443–456. [Google Scholar]
  413. Centro Studi Cetacei. Cetacei Spiaggiati Lungo de Coste Italiane. IX. Rendiconto 1994. Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 1996, 135, 451–462. [Google Scholar]
  414. Centro Studi Cetacei. Cetacei Spiaggiati Lungo de Coste Italiane, X. Rendiconto 1995. Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 1997, 136, 205–216. [Google Scholar]
  415. Centro Studi Cetacei. Cetacei Spiaggiati Lungo de Coste Italiane, X.I. Rendiconto 1996. Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 1997, 137, 135–147. [Google Scholar]
  416. Centro Studi Cetacei. Cetacei Spiaggiati Lungo de Coste Italiane, X.I.I. Rendiconto 1997. Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 1998, 139, 213–216. [Google Scholar]
  417. Centro Studi Cetacei. Cetacei Spiaggiati Lungo de Coste Italiane, X.I.I.I. Rendiconto 1998. Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 2000, 141, 129–143. [Google Scholar]
  418. Centro Studi Cetacei. Cetacei Spiaggiati Lungo de Coste Italiane, X.I.V. Rendiconto 1999. Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 2001, 141, 353–365. [Google Scholar]
  419. Centro Studi Cetacei. Cetacei Spiaggiati Lungo de Coste Italiane, X.V. Rendiconto 2000. Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 2002, 142, 251–264. [Google Scholar]
  420. Centro Studi Cetacei. Cetacei Spiaggiati Lungo de Coste Italiane, X.V.I. Rendiconto 2001. Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 2003, 144, 151–166. [Google Scholar]
  421. Centro Studi Cetacei. Cetacei Spiaggiati Lungo de Coste Italiane, X.V.I.I.I. Rendiconto. 2003 (Mammalia). Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 2004, 145, 425–437. [Google Scholar]
  422. Centro Studi Cetacei. Cetacei Spiaggiati Lungo de Coste Italiane, X.X. Rendiconto. 2005 (Mammalia). Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 2006, 147, 325–335. [Google Scholar]
  423. Centro Studi Cetacei. Cetacei Spiaggiati Lungo de Coste Italiane, X.X.I. Rendiconto 2006–2010. CSC Online Publ. 2012, 29, 1–23. [Google Scholar]
  424. Gozalbes, P.; Jiménez, J.; Raga, J.A.; Esteban, J.A.; Tomás, J.; Gómez, J.A.; Eymar, J. Cetáceos y Tortugas Marinas En La Comunitat Valenciana. 20 Años de Seguimiento. Colecció Treballs Tècnics de Biodiversitat, Consellería de Medio Ambiente, Agua, Urbanismo y Vivienda. Generalitat Valenciana. 2012. Available online: https://mediambient.gva.es/documents/91061501/162998915/40661-52472-Cet%C3%A1ceos+y+tortugas+marinas+de+la+CV+20+a%C3%B1os+de+seguimiento/dac65e7a-3d40-4003-8e44-473de111e871 (accessed on 4 November 2022).
  425. Turan, C.; Salihoğlu, B.; Özgür Özbek, E. The Turkish Part of the Mediterranean Sea; Marine Biodiversity, Fisheries, Conservation and Governance; Öztürk, B., Ed.; Turkish Marine Research Foundation (TUDAV): Istanbul, Turkey, 2016. [Google Scholar]
  426. TUDAV. Fifth Stranding Record of the Fin Whale in Turkey. 2017. Available online: http://tudav.org/en/our-fields/marine-biodiversity/marine-mammals-studies/fifth (accessed on 1 March 2022).
  427. Fortuna, C.; Sánchez-Espinosa, A.; Rodríguez-Rodríguez, D.; Malak, A.; Podestà, D.; Panigada, M. Pathways to Coexistence between Large Cetaceans and Maritime Transport in the North-Western Mediterranean Region: Collision Risk between Ships and Whales within the Proposed North-Western Mediterranean Particularly Sensitive Sea Area (PSSA), Including the Pelagos Sanctuary. 2022. Available online: https://planbleu.org/wp-content/uploads/2023/01/Pathways-to-coexistence-between-large-cetaceans-and-maritime-transport-in-the-north-western-Mediterranean-region.pdf (accessed on 17 November 2022).
  428. Mayol, P. Détectabilité des Grands Cétacés à Bord des Navires à Grande Vitesse pour Limiter les Risques de Collision. École Pratique des Hautes Études (School of Advanced Studies), Montpellier, 2007. Available online: http://www.souffleursdecume.com/docs/Mayol2007.zip (accessed on 8 January 2023).
  429. Panigada, S.; Leaper, R.; Tejedor Arceredillo, A. Ship Strikes in the Mediterranean Sea: Assessment and Identification of Conservation and Mitigation Measures. J. Cetacean Res. Manag. 2010, 61, 1–5. [Google Scholar]
  430. Druon, J.N.; Panigada, S.; David, L.; Gannier, A.; Mayol, P.; Arcangeli, A.; Cañadas, A.; Laran, S.; Di Méglio, N.; Gauffier, P. Potential Feeding Habitat of Fin Whales in the Western Mediterranean Sea: An Environmental Niche Model. Mar. Ecol. Prog. Ser. 2012, 464, 289–306. [Google Scholar] [CrossRef]
  431. Vanderlaan, A.S.M.; Taggart, C.T. Vessel Collisions with Whales: The Probability of Lethal Injury Based on Vessel Speed. Mar. Mamm. Sci. 2007, 23, 144–156. [Google Scholar] [CrossRef]
  432. Conn, P.B.; Silber, G.K. Vessel speed restrictions reduce risk of collision-related mortality for North Atlantic right whales. Ecosphere 2013, 4, 1–15. [Google Scholar] [CrossRef]
  433. Scuderi, A.; Campana, I.; Gregorietti, M.; Martín Moreno, E.; García–Sanabria, J.; Arcangeli, A. Tying up Loose Ends Together: Cetaceans, Maritime Traffic and Spatial Management Tools in the Strait of Gibraltar. Aquat. Conserv. Mar. Freshw. Ecosyst. 2024, 34, 1–20. [Google Scholar] [CrossRef]
  434. Tenan, S.; Hernández, N.; Fearnbach, H.; De Stephanis, R.; Verborgh, P.; Oro, D. Impact of Maritime Traffic and Whale-Watching on Apparent Survival of Bottlenose Dolphins in the Strait of Gibraltar. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020, 30, 949–958. [Google Scholar] [CrossRef]
  435. Fernández-Maldonado, C. Patología Y Causas de Muerte de Cetáceos Varados En Andalucía (2011–2014). Ph.D. Thesis, Universidad de Las Palmas de Gran Canarias, Las Palmas de Gran Canaria, Spain, 2016. [Google Scholar]
  436. De Stephanis, R.; Urquiola, E. Collisions between Ships and Cetaceans in Spain. Int. Whal. Commn. Scientific Committee SC/58/BC5. Gobierno de Canarias. 2009. Available online: https://docplayer.net/25356858-Collisions-between-ships-and-cetaceans-in-spain.html (accessed on 30 May 2023).
  437. Sciacca, V.; Caruso, F.; Beranzoli, L.; Chierici, F.; De Domenico, E.; Embriaco, D.; Favali, P.; Giovanetti, G.; Larosa, G.; Marinaro, G.; et al. Annual Acoustic Presence of Fin Whale (Balaenoptera physalus) Offshore Eastern Sicily, Central Mediterranean Sea. PLoS ONE 2015, 10, e0141838. [Google Scholar] [CrossRef] [PubMed]
  438. Panigada, S.; Notarbartolo Di Sciara, G.; Panigada, M.Z.; Airoldi, S.; Borsani, J.F.; Jahoda, M. Fin Whales (Balaenoptera physalus) Summering in the Ligurian Sea: Distribution, Encounter Rate, Mean Group Size and Relation to Physiographic Variables. J. Cetacean Res. Manag. 2023, 7, 137–145. [Google Scholar] [CrossRef]
  439. Alzieu, C.; Duguy, R. Organochlorine compounds levels in cetaceans and Pinnipedia living along the French coasts. Oceanol. Acta. 1979, 2, 107–120. [Google Scholar]
  440. Viale, D. Lung Pathology in Stranded Cetaceans on the Mediterranean Coasts. Aquat. Mamm. 1981, 8, 96–100. [Google Scholar]
  441. Fossi, M.C.; Urban, J.; Casini, S.; Maltese, S.; Spinsanti, G.; Panti, C.; Porcelloni, S.; Panigada, S.; Lauriano, G.; Niño-Torres, C.; et al. A Multi-Trial Diagnostic Tool in Fin Whale (Balaenoptera physalus) Skin Biopsies of the Pelagos Sanctuary (Mediterranean sea) and the Gulf of California (Mexico). Mar. Environ. Res. 2010, 69, S17–S20. [Google Scholar] [CrossRef] [PubMed]
  442. Pinzone, M.; Budzinski, H.; Tasciotti, A.; Ody, D.; Lepoint, G.; Schnitzler, J.; Scholl, G.; Thomé, J.-P.; Tapie, N.; Eppe, G.; et al. POPs in Free-Ranging Pilot Whales, Sperm Whales and Fin Whales from the Mediterranean Sea: Influence of Biological and Ecological Factors. Environ. Res. 2015, 142, 185–196. [Google Scholar] [CrossRef] [PubMed]
  443. Fossi, C.; Marsili, L.; Neri, G.; Natoli, A.; Politi, E.; Panigada, S. The Use of a Non-Lethal Tool for Evaluating Toxicological Hazard of Organochlorine Contaminants in Mediterranean Cetaceans: New Data 10 Years after the First Paper Published in MPB. Mar. Pollut. Bull. 2003, 46, 972–982. [Google Scholar] [CrossRef]
  444. Pettersson, A.; Bavel, B.V.; Engwall, M.; Jimenez, B. Polybrominated Diphenylethers and Methoxylated Tetrabromodiphenylethers in Cetaceans from the Mediterranean Sea. Arch. Environ. Contam. Toxicol. 2004, 47, 542–550. [Google Scholar] [CrossRef]
  445. Capelli, R.; Das, K.; Pellegrini, R.D.; Drava, G.; Lepoint, G.; Miglio, C.; Minganti, V.; Poggi, R. Distribution of Trace Elements in Organs of Six Species of Cetaceans from the Ligurian Sea (Mediterranean), and the Relationship with Stable Carbon and Nitrogen Ratios. Sci. Total Environ. 2008, 390, 569–578. [Google Scholar] [CrossRef]
  446. Bilandžić, N.; Sedak, M.; Ðokić, M.; Ðuras Gomerčić, M.; Gomerčić, T.; Zadravec, M.; Benić, M.; Prevendar Crnić, A. Toxic Element Concentrations in the Bottlenose (Tursiops truncatus), Striped (Stenella coeruleoalba) and Risso’s (Grampus griseus) Dolphins Stranded in Eastern Adriatic Sea. Bull. Environ. Contam. Toxicol. 2012, 89, 467–473. [Google Scholar] [CrossRef] [PubMed]
  447. Shoham-Frider, E.; Kerem, D.; Roditi-Elasar, M.; Goffman, O.; Morick, D.; Yoffe, O.; Kress, N. Trace Elements in Tissues of Cetacean Species Rarely Stranded along the Israeli Mediterranean Coast. Mar. Pollut. Bull. 2014, 83, 376–382. [Google Scholar] [CrossRef] [PubMed]
  448. Arbelo, M.; Sierra, E.; Esperón, F.; Watanabe, T.T.N.; Bellière, E.N.; Espinosa de los Monteros, A.; Fernández, A. Herpesvirus infection with severe lymphoid necrosis affecting a beaked whale stranded in the Canary Islands. Dis. Aquat. Organ. 2010, 89, 261–264. [Google Scholar] [CrossRef] [PubMed]
  449. Benvenuti, A.; Bortolotto, A.; Gonnella, S.; Odierna, A.; Stanzani, A.L. Report on Rescue Treatment of Two Whales in the Mediterranean. Eur. Res. Cetaceans 1991, 5, 118–123. [Google Scholar]
  450. Giorda, F.; Ballardini, M.; Di Guardo, G.; Pintore, M.D.; Grattarola, C.; Iulini, B.; Mignone, W.; Goria, M.; Serracca, L.; Varello, K.; et al. Postmortem Findings in Cetaceans Found Stranded in the Pelagos Sanctuary, Italy, 2007–2014. J. Wildl. Dis. 2017, 53, 795–803. [Google Scholar] [CrossRef]
  451. Joint Workshop to Evaluate How the Data and Process Used to Identify Important Marine Mammal Areas (IMMAs) Can Assist the IWC to Identify Areas of High Risk for Ship Strike; Him, C.-I.-A. (Ed.) Document SC/68a/HIM07; International Whaling Commission Scientific Committee: Cambridge, UK, 2019. [Google Scholar]
  452. Silber, G.K.; Slutsky, J.; Bettridge, S. Hydrodynamics of a Ship/Whale Collision. J. Exp. Mar. Bio. Ecol. 2010, 391, 10–19. [Google Scholar] [CrossRef]
  453. Laist, D.W.; Knowlton, A.R.; Pendleton, D. Effectiveness of Mandatory Vessel Speed Limits for Protecting North Atlantic Right Whales. Endanger. Species Res. 2014, 23, 133–147. [Google Scholar] [CrossRef]
  454. Constantine, R.; Johnson, M.; Riekkola, L.; Jervis, S.; Kozmian-Ledward, L.; Dennis, T.; Torres, L.G.; Aguilar de Soto, N. Mitigation of Vessel-Strike Mortality of Endangered Bryde’s Whales in the Hauraki Gulf, New Zealand. Biol. Conserv. 2015, 186, 149–157. [Google Scholar] [CrossRef]
  455. Van der Hoop, J.M.; Vanderlaan, A.S.M.; Cole, T.V.N.; Henry, A.G.; Hall, L.; Mase-Guthrie, B.; Wimmer, T.; Moore, M.J. Vessel Strikes to Large Whales before and after the 2008 Ship Strike Rule: Ship Strike Rule Effectiveness. Conserv. Lett. 2015, 8, 24–32. [Google Scholar] [CrossRef]
  456. Real Decreto 699/2018, de 29 de Junio, por el que se Declara Área Marina Protegida el Corredor de Migración de Cetáceos del Mediterráneo, Se Aprueba un Régimen de Protección Preventiva y se Propone su Inclusión en la Lista de Zonas Especialmente Protegidas de Importancia Para el Mediterráneo (Lista ZEPIM) en el Marco del Convenio de Barcelona. Available online: https://www.boe.es/buscar/pdf/2018/BOE-A-2018-9034-consolidado.pdf (accessed on 21 December 2023).
  457. Paoletti, S.; Rumes, B.; Pierantonio, N.; Panigada, S.; Jan, R.; Folegot, T.; Schilling, A.; Riviere, N.; Carrier, V.; Dumoulin, A.; et al. SEADETECT: Developing an Automated Detection System to Reduce Whale-Vessel Collision Risk. Res. Ideas Outcomes 2023, 9, e113968. [Google Scholar] [CrossRef]
  458. Gende, S.M.; Vose, L.; Baken, J.; Gabriele, C.M.; Preston, R.; Hendrix, A.N. Active Whale Avoidance by Large Ships: Components and Constraints of a Complementary Approach to Reducing Ship Strike Risk. Front. Mar. Sci. 2019, 6, 592. [Google Scholar] [CrossRef]
  459. Arcangeli, A.; Bonaventura, S.; Calicchia, S. Sulla Scia Dei Traghetti. In Risultati Dell’Indagine su Conoscenza e Consapevolezza nei Riguardi Dell’Ambiente Mare e dei Cetacei; ISPRA, Quaderni—Ambiente e Società: Rome, Italy, 2012; pp. 6–42. [Google Scholar]
  460. Fossi, M.C.; Vlachogianni, T.; Galgani, F.; Innocenti, F.D.; Zampetti, G.; Leone, G. Assessing and Mitigating the Harmful Effects of Plastic Pollution: The Collective Multi-Stakeholder Driven Euro-Mediterranean Response. Ocean Coast. Manag. 2020, 184, 105005. [Google Scholar] [CrossRef]
  461. Di Natale, D. Impact of Large Pelagic Fishery on Cetaceans in the Italian Seas. Bull. Mus. Ist Biol. Univ. Genova 1992, 56, 87–112. [Google Scholar]
  462. IWC. Report of the Workshop on Mortality of Cetaceans in Passive Fishing Nets and Traps. In Gillnets and Cetaceans; Perrin, W.F., Donovan, G.P., Barlow, J., Eds.; IWC: Cambridge, UK, 1994; Volume 15, pp. 6–57. [Google Scholar]
  463. Moore, M.J. How we can all stop killing whales: A proposal to avoid whale entanglement in fishing gear. ICES J. Mar. Sci. 2019, 76, 781–786. [Google Scholar] [CrossRef]
  464. Mansui, J.; Darmon, G.; Ballerini, T.; Van Canneyt, O.; Ourmieres, Y.; Miaud, C. Predicting marine litter accumulation patterns in the Mediterranean basin: Spatio-temporal variability and comparison with empirical data. Prog. Oceanogr. 2020, 182, 102268. [Google Scholar] [CrossRef]
  465. Soto-Navarro, J.; Jordá, G.; Deudero, S.; Alomar, C.; Amores, Á.; Compa, M. 3D hotspots of marine litter in the Mediterranean: A modeling study. Mar. Pollut. Bull. 2020, 155, 111159. [Google Scholar] [CrossRef] [PubMed]
  466. Cózar, A.; Sanz-Martín, M.; Martí, E.; González-Gordillo, J.I.; Ubeda, B.; Gálvez, J.Á.; Irigoien, X.; Duarte, C.M. Plastic Accumulation in the Mediterranean Sea. PLoS ONE 2015, 10, e0121762. [Google Scholar] [CrossRef]
  467. Suaria, G.; Avio, C.G.; Mineo, A.; Lattin, G.L.; Magaldi, M.G.; Belmonte, G.; Moore, C.J.; Regoli, F.; Aliani, S. The Mediterranean Plastic Soup: Synthetic Polymers in Mediterranean Surface Waters. Sci. Rep. 2016, 6, 37551. [Google Scholar] [CrossRef] [PubMed]
  468. Fossi, M.C.; Romeo, T.; Baini, M.; Panti, C.; Marsili, L.; Campani, T.; Canese, S.; Galgani, F.; Druon, J.-N.; Airoldi, S.; et al. Plastic Debris Occurrence, Convergence Areas and Fin Whales Feeding Ground in the Mediterranean Marine Protected Area Pelagos Sanctuary: A Modeling Approach. Front. Mar. Sci. 2017, 4, 167. [Google Scholar] [CrossRef]
  469. van Sebille, E.; Wilcox, C.; Lebreton, L.; Maximenko, N.; Hardesty, B.D.; van Franeker, J.A.; Eriksen, M.; Siegel, D.; Galgani, F.; Law, K.L. A Global Inventory of Small Floating Plastic Debris. Environ. Res. Lett. 2015, 10, 124006. [Google Scholar] [CrossRef]
  470. Arcangeli, A.; Campana, I.; Angeletti, D.; Atzori, F.; Azzolin, M.; Carosso, L.; Di Miccoli, V.; Giacoletti, A.; Gregorietti, M.; Luperini, C.; et al. Amount, Composition, and Spatial Distribution of Floating Macro Litter along Fixed Trans-Border Transects in the Mediterranean Basin. Mar. Pollut. Bull. 2018, 129, 545–554. [Google Scholar] [CrossRef] [PubMed]
  471. Campana, I.; Angeletti, D.; Crosti, R.; Di Miccoli, V.; Arcangeli, A. Seasonal Patterns of Floating Macro-Litter across the Western Mediterranean Sea: A Potential Threat for Cetacean Species. Rend. Lincei-Sci. Fis. 2018, 29, 453–467. [Google Scholar] [CrossRef]
  472. Bottari, T.; Mghili, B.; Gunasekaran, K.; Mancuso, M. Impact of Plastic Pollution on Marine Biodiversity in Italy. Water 2024, 16, 519. [Google Scholar] [CrossRef]
Figure 1. Photographs taken in the Strait of Gibraltar. (a) Collision course with ferry (Africa–Algeciras route). (b) Propeller-cut scar on fin whale (30 May 2019) (@Iris Anfruns/Turmares). (c) Fin whale harassed by recreational boaters. (d) Propeller-cut scar on fin whale (27 June 2023). (e) Fin whale near a ferry (Africa–Algeciras route).
Figure 1. Photographs taken in the Strait of Gibraltar. (a) Collision course with ferry (Africa–Algeciras route). (b) Propeller-cut scar on fin whale (30 May 2019) (@Iris Anfruns/Turmares). (c) Fin whale harassed by recreational boaters. (d) Propeller-cut scar on fin whale (27 June 2023). (e) Fin whale near a ferry (Africa–Algeciras route).
Environments 11 00104 g001
Figure 2. Diagrams representing the process of selection of information about sightings and strandings of fin whales in the Mediterranean Sea.
Figure 2. Diagrams representing the process of selection of information about sightings and strandings of fin whales in the Mediterranean Sea.
Environments 11 00104 g002
Figure 3. Map of the Mediterranean with the distribution areas of the NENA population and the resident population. Source: adapted from [148].
Figure 3. Map of the Mediterranean with the distribution areas of the NENA population and the resident population. Source: adapted from [148].
Environments 11 00104 g003
Figure 4. (a) Sightings of B. physalus in different sectors of the Mediterranean during the period 1904–2022, from west to east. The “Western Basin” sector (western half of the Mediterranean) excludes the other sectors included in the figure. A distinction is made between strictly scientific sources, from cetacean sighting surveys, and other sources, also providing the combination of all of them (Total), for which the corresponding percentage of each sector with respect to the total number of sightings in the Mediterranean is included. (b) Venn diagram of B. physalus sightings in the Mediterranean during the period 1904–2022. Those in the Ligurian Sea (2861) (brown + orange) and those in the whole Mediterranean between May and October (5401) (blue) are shown. The intersection (brown) between the two circles indicates sightings in the Ligurian Sea between May and October (2820). Only data with seasonality and location information are included. Thus, the fraction of Ligurian Sea data outside the intersection with the May–October area (small orange wedge, of 41 sightings) reports data from the period November to April.
Figure 4. (a) Sightings of B. physalus in different sectors of the Mediterranean during the period 1904–2022, from west to east. The “Western Basin” sector (western half of the Mediterranean) excludes the other sectors included in the figure. A distinction is made between strictly scientific sources, from cetacean sighting surveys, and other sources, also providing the combination of all of them (Total), for which the corresponding percentage of each sector with respect to the total number of sightings in the Mediterranean is included. (b) Venn diagram of B. physalus sightings in the Mediterranean during the period 1904–2022. Those in the Ligurian Sea (2861) (brown + orange) and those in the whole Mediterranean between May and October (5401) (blue) are shown. The intersection (brown) between the two circles indicates sightings in the Ligurian Sea between May and October (2820). Only data with seasonality and location information are included. Thus, the fraction of Ligurian Sea data outside the intersection with the May–October area (small orange wedge, of 41 sightings) reports data from the period November to April.
Environments 11 00104 g004
Figure 5. Sightings of B. physalus in different sectors of the Mediterranean between (a) May and October and (b) November and April for the period 1904–2022. The sectors are arranged from west to east. The “western basin” sector refers to the western half of the Mediterranean, excluding the other sectors mentioned in the figure. A distinction is made between strictly scientific sources, whale -watching and other sources, providing also the combination of all of them (Total), for which the corresponding percentage of each sector with respect to the total number of sightings in the Mediterranean at that time is included. Only sightings between May and October and November and April are included.
Figure 5. Sightings of B. physalus in different sectors of the Mediterranean between (a) May and October and (b) November and April for the period 1904–2022. The sectors are arranged from west to east. The “western basin” sector refers to the western half of the Mediterranean, excluding the other sectors mentioned in the figure. A distinction is made between strictly scientific sources, whale -watching and other sources, providing also the combination of all of them (Total), for which the corresponding percentage of each sector with respect to the total number of sightings in the Mediterranean at that time is included. Only sightings between May and October and November and April are included.
Environments 11 00104 g005
Figure 6. Vessel density for all vessels in 2019 as represented by the standard deviation-based colour ramp of the stretch based on the standard deviation overlaid with the density of B. physalus sightings (period 1904–2022) within the Mediterranean Sea. The critical areas where high density of fin whale sightings and maritime traffic overlap are represented by the letters (a) Ligurian-Corsica Provençal basin, (b) Port of Barcelona and Valencia (Spain) and (c) Strait of Gibraltar.
Figure 6. Vessel density for all vessels in 2019 as represented by the standard deviation-based colour ramp of the stretch based on the standard deviation overlaid with the density of B. physalus sightings (period 1904–2022) within the Mediterranean Sea. The critical areas where high density of fin whale sightings and maritime traffic overlap are represented by the letters (a) Ligurian-Corsica Provençal basin, (b) Port of Barcelona and Valencia (Spain) and (c) Strait of Gibraltar.
Environments 11 00104 g006
Figure 7. Models of chlorophyll-a levels in the Mediterranean (2019) in the winter (top) and summer (bottom) produced using the Giovanni tool and obtained from the MODIS-aqua sensor at a 4 km resolution (MODIS-Aqua MODISA L3_8d_4km_v2018).
Figure 7. Models of chlorophyll-a levels in the Mediterranean (2019) in the winter (top) and summer (bottom) produced using the Giovanni tool and obtained from the MODIS-aqua sensor at a 4 km resolution (MODIS-Aqua MODISA L3_8d_4km_v2018).
Environments 11 00104 g007
Figure 8. (a) Mortality events and descriptors of B. physalus in the Mediterranean during the period 1624–2023. A distinction is made between strictly scientific sources and other sources, also providing the combination of both (Total), as well as the percentage that the latter represent with respect to the total number of events. (b) Venn diagram of mortality events, especially collisions, of B. physalus in the Mediterranean during the period 1624–2023. It shows the number of mortality events in the Mediterranean between May and October (244), the number of events in the Ligurian Sea (94) and the number of collisions in the Mediterranean (68). The intersection between the blue and green circles shows the number of incidents in the Ligurian Sea between May and October (58). The intersection between the orange and blue areas represents the number of collisions between May and October (41). The confluence between the orange and green circles symbolises the number of collisions in the Ligurian Sea (25). The intersection between the three circles indicates the collisions in the Ligurian Sea between May and October (17). Only data with information on the seasonality, location and type of event are included. Thus, the areas outside the intersections with the May–October circle represent the November–April data. The areas outside the intersections with the Ligurian Sea circle reflect the data for the rest of the Mediterranean. The areas outside the interactions with the collision circle report the rest of the mortality event types.
Figure 8. (a) Mortality events and descriptors of B. physalus in the Mediterranean during the period 1624–2023. A distinction is made between strictly scientific sources and other sources, also providing the combination of both (Total), as well as the percentage that the latter represent with respect to the total number of events. (b) Venn diagram of mortality events, especially collisions, of B. physalus in the Mediterranean during the period 1624–2023. It shows the number of mortality events in the Mediterranean between May and October (244), the number of events in the Ligurian Sea (94) and the number of collisions in the Mediterranean (68). The intersection between the blue and green circles shows the number of incidents in the Ligurian Sea between May and October (58). The intersection between the orange and blue areas represents the number of collisions between May and October (41). The confluence between the orange and green circles symbolises the number of collisions in the Ligurian Sea (25). The intersection between the three circles indicates the collisions in the Ligurian Sea between May and October (17). Only data with information on the seasonality, location and type of event are included. Thus, the areas outside the intersections with the May–October circle represent the November–April data. The areas outside the intersections with the Ligurian Sea circle reflect the data for the rest of the Mediterranean. The areas outside the interactions with the collision circle report the rest of the mortality event types.
Environments 11 00104 g008aEnvironments 11 00104 g008b
Figure 9. B. physalus mortality events and descriptors in the Mediterranean between (a) May and October and (b) November and April during the period 1624–2023. A distinction is made between strictly scientific sources and other sources, also providing the combination of both (Total), as well as the percentage that the latter represent with respect to the total number of events during the mentioned period.
Figure 9. B. physalus mortality events and descriptors in the Mediterranean between (a) May and October and (b) November and April during the period 1624–2023. A distinction is made between strictly scientific sources and other sources, also providing the combination of both (Total), as well as the percentage that the latter represent with respect to the total number of events during the mentioned period.
Environments 11 00104 g009
Figure 10. (a) Representation of overlapping critical areas between the highest density of vessels in 2019 and B. physalus mortality events in the Mediterranean Sea (period 1624–2023). Two critical areas are shown: (i) the Ligurian-Corsica Provençal basin, Barcelona and Valencia (Spain) and (ii) the Strait of Gibraltar and its surroundings. (b) Density of mortality events and density of all vessels in 2019.
Figure 10. (a) Representation of overlapping critical areas between the highest density of vessels in 2019 and B. physalus mortality events in the Mediterranean Sea (period 1624–2023). Two critical areas are shown: (i) the Ligurian-Corsica Provençal basin, Barcelona and Valencia (Spain) and (ii) the Strait of Gibraltar and its surroundings. (b) Density of mortality events and density of all vessels in 2019.
Environments 11 00104 g010aEnvironments 11 00104 g010b
Figure 11. Graphical representation of maximum and minimum strandings per month of fin whales with a length of up to 7 metres. The vast majority of strandings occurred significantly between October and February (black columns), showing two peaks in November and January, with very few strandings recorded from March to September (white columns).
Figure 11. Graphical representation of maximum and minimum strandings per month of fin whales with a length of up to 7 metres. The vast majority of strandings occurred significantly between October and February (black columns), showing two peaks in November and January, with very few strandings recorded from March to September (white columns).
Environments 11 00104 g011
Figure 12. Density of live, fresh or slightly decomposed stranded fin whales up to 7 metres in length from October to February. Stranded animals in a decomposed state are represented by pink dots.
Figure 12. Density of live, fresh or slightly decomposed stranded fin whales up to 7 metres in length from October to February. Stranded animals in a decomposed state are represented by pink dots.
Environments 11 00104 g012
Figure 13. Sightings and strandings integration map of B. physalus (period 1624–2023) and proposed zoning (white triangle) of the area of maximum vulnerability for fin whales in the Mediterranean.
Figure 13. Sightings and strandings integration map of B. physalus (period 1624–2023) and proposed zoning (white triangle) of the area of maximum vulnerability for fin whales in the Mediterranean.
Environments 11 00104 g013
Table 1. Number of individuals, mean, maximum and minimum lengths of whales stranded in the Mediterranean, which were up to 7 metres in length, per month from 1624–2023.
Table 1. Number of individuals, mean, maximum and minimum lengths of whales stranded in the Mediterranean, which were up to 7 metres in length, per month from 1624–2023.
JanuaryFebruaryMarchAprilMayJuneJulyAugustSeptemberOctoberNovemberDecember
No.157313231581911
Mean6.0345.8852.755.334.505.23765.50255.7605.86
Min.4.805.0532.75442.7074.75445.20
Max.76.662.75757766.66.87
Table 2. Mini review of the concentrations of ∑PCB and ∑DDT (mg/kg b.w.), microplastic elements, MEHP and PBDE found in tissues of fin whales in the Mediterranean Sea.
Table 2. Mini review of the concentrations of ∑PCB and ∑DDT (mg/kg b.w.), microplastic elements, MEHP and PBDE found in tissues of fin whales in the Mediterranean Sea.
YearNo.LocationSex∑PCB∑DDTMicroplasticPBDE
(ng g−1)
Ref.
MinMean (±SD)MaxMinMean (±SD)MaxItems
/m3
MEHP
1976
1973
2French
coast
1 F
1 M
4.96 14.8 [439]
1 0.3 0.8 [440]
1990–199368Ligurian Sea 5.5 7.14.2 9.5 [92]
200812Pelagos Sanctuary6 F
6 M
210
15
[441]
2011–201330Ligurian and Sardinian Seas 13.327 ± 8.548 10.477 ± 7.477 0.16 ± 0.3155.14 ± 27.7 [29]
2006–200970North-western Mediterranean Basin35 F
35 M
1 3.776 ± 5.024
7.957 ± 4.613
3.239 ± 2.896
10.370 ± 6.246
119 ± 223
245 ± 179
[442]
1992–199963Between Corsica and the French–Italian coast and in the Ionian Sea 6.597 ± 3.270 5.168 ± 3.844 [443]
1990–19921Tyrrhenian Sea1 F 3 3625[444]
19981Valencia (Spain)1 F 2 20.8 2 9.8 [116]
1 Sum of NDL congeners no. 8, 18, 28, 52, 44, 66, 101, 87, 153, 138, 187, 128, 180, 170, 195, 206, 209 and DL congeners no. 118, 105, 77, 81, 126, 169, 144, 123, 156, 157, 167,189. 2 μg/g/g−1 wet weight. 3 μg/kg lw.
Table 3. Mini review of the concentrations of heavy metals found in fin whales in the Mediterranean.
Table 3. Mini review of the concentrations of heavy metals found in fin whales in the Mediterranean.
DateLocationNo.SourceCdHgCuPbSeeZnRef.
1991–2001Gulf of Genoa
(Italy)
2Muscle0.04 μg g−1 d.w.1.645 μg g−1 d.w.2.4 μg g−1 d.w.0.094 μg g−1 d.w.1.03 μg g−1 d.w.106.5 μg g−1 d.w.[445]
1991–2001Gulf of Genoa
(Italy)
1Kidney1.56 μg g−1 d.w.0.87 μg g−1 d.w.11.6 μg g−1 d.w.0.172 μg g−1 d.w.8.68 μg g−1 d.w.122 μg g−1 d.w.[445]
1991–2001Gulf of Genoa
(Italy)
1Liver0.04 μg g−1 d.w.0.11 μg g−1 d.w.4.7 μg g−1 d.w.0.041 μg g−1 d.w.3.20 μg g−1 d.w.29 μg g−1 d.w.[445]
1998Valencia (Spain)1 FLiver0.31 mg kg−1 w.w4.29 mg kg−1 w.w [116]
1998Valencia (Spain)1 FKidney0.97 mg kg−1 w.w3.16 mg kg−1 w.w [116]
2000–2002Croatia2 MMuscle 0.079 ± 0.111 mg kg−1 w.w 0.046 ± 0.063 mg kg−1 w.w [446]
2007–2008Haifa Port (Israel)2 MMuscle0.002 mg kg−1 w.w.0.09 mg kg−1 w.w0.77 mg kg−1 w.w0.05 mg kg−1 w.w0.315 mg kg−1 w.w18 mg kg−1 w.w[447]
2007–2008Haifa Port (Israel)2 MBlubber0.001 mg kg−1 w.w0.06 mg kg−1 w.w0.425 mg kg−1 w.w0.06 mg kg−1 w.w0.515 mg kg−1 w.w5.545 mg kg−1 w.w[447]
2007–2008Haifa Port (Israel)1 MKidney0.08 mg kg−1 w.w0.13 mg kg−1 w.w2.36 mg kg−1 w.w0.01 mg kg−1 w.w0.99 mg kg−1 w.w33.1 mg kg−1 w.w[447]
201815 miles south of San Remo (Italy)2Faecal0.037 mg kg−1 61.32 mg kg−10.0655 mg kg−11.06 mg kg−152.175 mg kg−1[257]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Espada, R.; Camacho-Sánchez, A.; Olaya-Ponzone, L.; Martín-Moreno, E.; Patón, D.; García-Gómez, J.C. Fin Whale Balaenoptera physalus Historical Sightings and Strandings, Ship Strikes, Breeding Areas and Other Threats in the Mediterranean Sea: A Review (1624–2023). Environments 2024, 11, 104. https://doi.org/10.3390/environments11060104

AMA Style

Espada R, Camacho-Sánchez A, Olaya-Ponzone L, Martín-Moreno E, Patón D, García-Gómez JC. Fin Whale Balaenoptera physalus Historical Sightings and Strandings, Ship Strikes, Breeding Areas and Other Threats in the Mediterranean Sea: A Review (1624–2023). Environments. 2024; 11(6):104. https://doi.org/10.3390/environments11060104

Chicago/Turabian Style

Espada, Rocío, Adrián Camacho-Sánchez, Liliana Olaya-Ponzone, Estefanía Martín-Moreno, Daniel Patón, and José Carlos García-Gómez. 2024. "Fin Whale Balaenoptera physalus Historical Sightings and Strandings, Ship Strikes, Breeding Areas and Other Threats in the Mediterranean Sea: A Review (1624–2023)" Environments 11, no. 6: 104. https://doi.org/10.3390/environments11060104

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop