A Microplastic Pollution Hotspot: Elevated Levels in Sediments from the San Francisco Bay Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of Microplastics and Sample Preparation
2.2. Collection of Surface Sediment Grab Samples for Evaluating Geographic Distribution of Microplastics in Bay Sediment
2.3. Collection of Sediment Core Samples for Evaluating Temporal Trends in Microplastics in Bay Sediment
2.4. Pretreatment Protocol
2.5. Quantitative and Qualitative Analysis of Microplastics
2.6. Quality Assurance and Quality Control (QA/QC)
3. Results
3.1. Occurrence of Microplastics in Surface Sediments of San Francisco Bay Area
3.2. Microplastics’ Occurrence in Sediment Cores
3.3. Polymer Composition of Microplastics Particles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rochman, C.M.; Brookson, C.; Bikker, J.; Djuric, N.; Earn, A.; Bucci, K.; Athey, S.; Huntington, A.; McIlwraith, H.; Munno, K.; et al. Rethinking microplastics as a diverse contaminant suite. Environ. Toxicol. Chem. 2019, 38, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Response to the Letter to the Editor Regarding Our Feature ‘are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris’. Environ. Sci. Technol. 2019, 53, 4678–4679. [Google Scholar] [CrossRef]
- Morgado, V.; Palma, C.; da Silva, R.J.B. Determination of microplastic contamination levels and trends in vast oceanic sediment areas with uncertainty. Sci. Total Environ. 2023, 884, 163612. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar. Pollut. Bull. 2016, 104, 290–293. [Google Scholar] [CrossRef]
- Ziajahromi, S.; Neale, P.A.; Rintoul, L.; Leusch, F.D.L. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Res. 2017, 112, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Munno, K.; Grbic, J.; Werbowski, L.M.; Bikker, J.; Ho, A.; Guo, E.; Sedlak, M.; Sutton, R.; Box, C.; et al. Holistic Assessment of Microplastics and Other Anthropogenic Microdebris in an Urban Bay Sheds Light on Their Sources and Fate. ACS EST Water 2021, 1, 1401–1410. [Google Scholar] [CrossRef]
- Werbowski, L.M.; Gilbreath, A.N.; Munno, K.; Zhu, X.; Grbic, J.; Wu, T.; Sutton, R.; Sedlak, M.D.; Deshpande, A.D.; Rochman, C.M. Urban Stormwater Runoff: A Major Pathway for Anthropogenic Particles, Black Rubbery Fragments, and Other Types of Microplastics to Urban Receiving Waters. ACS EST Water 2021, 1, 1420–1428. [Google Scholar] [CrossRef]
- Horton, A.A.; Dixon, S.J. Microplastics: An introduction to environmental transport processes. Wiley Interdiscip. Rev. Water 2018, 5, e1268. [Google Scholar] [CrossRef]
- Eo, S.; Hong, S.H.; Song, Y.K.; Han, G.M.; Seo, S.; Shim, W.J. Prevalence of small high-density microplastics in the continental shelf and deep sea waters of East Asia. Water Res. 2021, 200, 117238. [Google Scholar] [CrossRef]
- Exposito, N.; Rovira, J.; Sierra, J.; Folch, J.; Schuhmacher, M. Microplastics levels, size, morphology and composition in marine water, sediments and sand beaches. Case study of Tarragona coast (western Mediterranean). Sci. Total Environ. 2021, 786, 147453. [Google Scholar] [CrossRef]
- Goswami, P.; Vinithkumar, N.V.; Dharani, G. Microplastics particles in seafloor sediments along the Arabian Sea and the Andaman Sea continental shelves: First insight on the occurrence, identification, and characterization. Mar. Pollut. Bull. 2021, 167, 112311. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Li, Y.; Li, Y.; Hu, Q.; Wang, C.; Hu, J.; Zhang, W.; Wang, L.; Zhang, C.; Zhang, H. New insights into the vertical distribution and microbial degradation of microplastics in urban river sediments. Water Res. 2021, 188, 116449. [Google Scholar] [CrossRef] [PubMed]
- Al Nahian, S.; Rakib, R.J.; Haider, S.M.B.; Kumar, R.; Mohsen, M.; Sharma, P.; Khandaker, M.U. Occurrence, spatial distribution, and risk assessment of microplastics in surface water and sediments of Saint Martin Island in the Bay of Bengal. Mar. Pollut. Bull. 2022, 179, 113720. [Google Scholar] [CrossRef] [PubMed]
- Deme, G.G.; Ewusi-Mensah, D.; Olagbaju, O.A.; Okeke, E.S.; Okoye, C.O.; Odii, E.C.; Ejeromedoghene, O.; Igun, E.; Onyekwere, J.O.; Oderinde, O.K.; et al. Macro problems from microplastics: Toward a sustainable policy framework for managing microplastic waste in Africa. Sci. Total Environ. 2022, 804, 150170. [Google Scholar] [CrossRef] [PubMed]
- Capillo, G.; Savoca, S.; Panarello, G.; Mancuso, M.; Branca, C.; Romano, V.; D’Angelo, G.; Bottari, T.; Spano, N. Quali-quantitative analysis of plastics and synthetic microfibers found in demersal species from Southern Tyrrhenian Sea (Central Mediterranean). Mar. Pollut. Bull. 2020, 150, 110596. [Google Scholar] [CrossRef]
- Prokic, M.D.; Radovanovic, T.B.; Gavric, J.P.; Faggio, C. Ecotoxicological effects of microplastics: Examination of biomarkers, current state and future perspectives. TrAC—Trends Anal. Chem. 2019, 111, 37–46. [Google Scholar] [CrossRef]
- Hampton, L.M.T.; Brander, S.M.; Coffin, S.; Cole, M.; Hermabessiere, L.; Koelmans, A.A.; Rochman, C.M. Characterizing microplastic hazards: Which concentration metrics and particle characteristics are most informative for understanding toxicity in aquatic organisms? Microplast. Nanoplast. 2022, 2, 20. [Google Scholar] [CrossRef]
- Exposito, N.; Rovira, J.; Sierra, J.; Gimenez, G.; Dominga, J.L.; Schuhmacher, M. Levels of microplastics and their characteristics in molluscs from North-West Mediterranean Sea: Human intake. Mar. Pollut. Bull. 2022, 181, 113843. [Google Scholar] [CrossRef] [PubMed]
- Ellen MacArthur Foundation. The New Plastics Economy: Rethinking the future of plastics. Ellen MacArthur Found. 2016, 36, 1–120. [Google Scholar]
- Klasios, N.; De Frond, H.; Miller, E.; Sedlak, M.; Rochman, C.M. Microplastics and other anthropogenic particles are prevalent in mussels from San Francisco Bay, and show no correlation with PAHs. Environ. Pollut. 2021, 271, 116260. [Google Scholar] [CrossRef]
- Sutton, R.; Mason, S.A.; Stanek, S.K.; Willis-Norton, E.; Wren, I.F.; Box, C. Microplastic contamination in the San Francisco Bay, California, USA. Mar. Pollut. Bull. 2016, 109, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Sedlak, M.; Sutton, R.; Box, C.; Sun, J.; Lin, D. Sampling and Analysis Plan for Microplastic Monitoring in San Francisco Bay and Adjacent National Marine Sanctuaries FINAL. Mar. Pollut. Bull. 2017, 109, 230–235. [Google Scholar]
- Klöckner, P.; Reemtsma, T.; Eisentraut, P.; Braun, U.; Ruhl, A.S.; Wagner, S. Tire and road wear particles in road environment—Quantification and assessment of particle dynamics by Zn determination after density separation. Chemosphere 2019, 222, 714–721. [Google Scholar] [CrossRef]
- Kühn, S.; van Werven, B.; van Oyen, A.; Meijboom, A.; Rebolledo, E.L.B.; van Franeker, J.A. The use of potassium hydroxide (KOH) solution as a suitable approach to isolate plastics ingested by marine organisms. Mar. Pollut. Bull. 2017, 115, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Löder, M.G.J.; Imhof, H.K.; Ladehoff, M.; Löschel, L.A.; Lorenz, C.; Mintenig, S.; Piehl, S.; Primpke, S.; Schrank, I.; Laforsch, C.; et al. Enzymatic Purification of Microplastics in Environmental Samples. Environ. Sci. Technol. 2017, 51, 14283–14292. [Google Scholar] [CrossRef] [PubMed]
- Masura, J.; Baker, J.; Foster, G.; Arthur, C. Laboratory methods for the analysis of microplastics in themarine environment: Recommendations for quantifying synthetic particles in waters and sediments. NOAA Technical Memorandum NOS-OR&R-48. NOAA Tech. Memo. 2015, 1–33. Available online: https://repository.library.noaa.gov/view/noaa/10296 (accessed on 8 May 2024).
- Bayo, J.; Olmos, S.; López-Castellanos, J. Microplastics in an urban wastewater treatment plant: The influence of physicochemical parameters and environmental factors. Chemosphere 2020, 238, 124593. [Google Scholar] [CrossRef] [PubMed]
- Hidayaturrahman, H.; Lee, T.-G. A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Mar. Pollut. Bull. 2019, 146, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Lares, M.; Ncibi, M.C.; Sillanpää, M.; Sillanpää, M. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res. 2018, 133, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Dronjak, L.; Exposito, N.; Sierra, J.; Schuhmacher, M.; Florencio, K.; Corzo, B.; Rovira, J. Tracing the fate of microplastic in wastewater treatment plant: A multi-stage analysis of treatment units and sludge. Environ. Pollut. 2023, 333, 122072. [Google Scholar] [CrossRef]
- Smith, S.V.; Hollibaugh, J.T. Water, salt, and nutrient exchanges in San Francisco Bay. Limnol. Oceanogr. 2006, 51, 504–517. [Google Scholar] [CrossRef]
- Klosterhaus, S.L.; Grace, R.; Hamilton, M.C.; Yee, D. Method validation and reconnaissance of pharmaceuticals, personal care products, and alkylphenols in surface waters, sediments, and mussels in an urban estuary. Environ. Int. 2013, 54, 92–99. [Google Scholar] [CrossRef]
- Kerrigan, J.F.; Engstrom, D.R.; Yee, D.; Sueper, C.; Erickson, P.R.; Grandbois, M.; McNeill, K.; Arnold, W.A. Quantification of hydroxylated polybrominated diphenyl ethers (OH-BDEs), triclosan, and related compounds in freshwater and coastal systems. PLoS ONE 2015, 10, e0138805. [Google Scholar] [CrossRef]
- Sedlak, M.D.; Benskin, J.P.; Wong, A.; Grace, R.; Greig, D.J. Per- and polyfluoroalkyl substances (PFASs) in San Francisco Bay wildlife: Temporal trends, exposure pathways, and notable presence of precursor compounds. Chemosphere 2017, 185, 1217–1226. [Google Scholar] [CrossRef]
- Sutton, R.; Chen, D.; Sun, J.; Greig, D.J.; Wu, Y. Characterization of brominated, chlorinated, and phosphate flame retardants in San Francisco Bay, an urban estuary. Sci. Total Environ. 2019, 652, 212–223. [Google Scholar] [CrossRef]
- Bayo, J.; Rojo, D.; Olmos, S. Weathering indices of microplastics along marine and coastal sediments from the harbor of Cartagena (Spain) and its adjoining urban beach. Mar. Pollut. Bull. 2022, 178, 113647. [Google Scholar] [CrossRef]
- Bronzo, L.; Lusher, A.L.; Schøyen, M.; Morigi, C. Accumulation and distribution of microplastics in coastal sediments from the inner Oslofjord, Norway. Mar. Pollut. Bull. 2021, 173, 113076. [Google Scholar] [CrossRef]
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef]
- Almroth, B.M.C.; Åström, L.; Roslund, S.; Petersson, H.; Johansson, M.; Persson, N.K. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. Environ. Sci. Pollut. Res. 2018, 25, 1191–1199. [Google Scholar] [CrossRef]
- Henry, B.; Laitala, K.; Klepp, I.G. Microfibres from apparel and home textiles: Prospects for including microplastics in environmental sustainability assessment. Sci. Total Environ. 2019, 652, 483–494. [Google Scholar] [CrossRef]
- Hernandez, E.; Nowack, B.; Mitrano, D.M. Polyester Textiles as a Source of Microplastics from Households: A Mechanistic Study to Understand Microfiber Release during Washing. Environ. Sci. Technol. 2017, 51, 7036–7046. [Google Scholar] [CrossRef]
- McIlwraith, H.K.; Lin, J.; Erdle, L.M.; Mallos, N.; Diamond, M.L.; Rochman, C.M. Capturing microfibers—marketed technologies reduce microfiber emissions from washing machines. Mar. Pollut. Bull. 2019, 139, 40–45. [Google Scholar] [CrossRef]
- Bomgardner, M.M. The great lint migration. CEN Glob. Enterp. 2017, 95, 16–17. [Google Scholar] [CrossRef]
- Pirc, U.; Vidmar, M.; Mozer, A.; Kržan, A. Emissions of microplastic fibers from microfiber fleece during domestic washing. Environ. Sci. Pollut. Res. 2016, 23, 22206–22211. [Google Scholar] [CrossRef]
- Mintenig, S.; Int-Veen, I.; Löder, M.; Primpke, S.; Gerdts, G. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res. 2017, 108, 365–372. [Google Scholar] [CrossRef]
- Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B. Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environ. Sci. Technol. 2016, 50, 5800–5808. [Google Scholar] [CrossRef]
- Wolff, S.; Kerpen, J.; Prediger, J.; Barkmann, L.; Müller, L. Determination of the microplastics emission in the effluent of a municipal waste water treatment plant using Raman microspectroscopy. Water Res. X 2019, 2, 100014. [Google Scholar] [CrossRef]
- Nizzetto, L.; Bussi, G.; Futter, M.N.; Butterfield, D.; Whitehead, P.G. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Env. Sci. Process Impacts 2016, 18, 1050–1059. [Google Scholar] [CrossRef]
- Zubris, K.A.V.; Richards, B.K. Synthetic fibers as an indicator of land application of sludge. Environ. Pollut. 2005, 138, 201–211. [Google Scholar] [CrossRef]
- Ballent, A.; Corcoran, P.L.; Madden, O.; Helm, P.A.; Longstaffe, F.J. Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments. Mar. Pollut. Bull. 2016, 110, 383–395. [Google Scholar] [CrossRef]
- Mani, T.; Blarer, P.; Storck, F.R.; Pittroff, M.; Wernicke, T.; Burkhardt-Holm, P. Repeated detection of polystyrene microbeads in the lower Rhine River. Environ. Pollut. 2019, 245, 634–641. [Google Scholar] [CrossRef]
- FDA. The Microbead-Free Waters Act: FAQs|FDA; U.S Food and Drug Administration: Silver Spring, MD, USA, 2015. [Google Scholar]
- McDevitt, J.P.; Criddle, C.S.; Morse, M.; Hale, R.C.; Bott, C.B.; Rochman, C.M. Addressing the Issue of Microplastics in the Wake of the Microbead-Free Waters Act—A New Standard Can Facilitate Improved Policy. Environ. Sci. Technol. 2017, 51, 6611–6617. [Google Scholar] [CrossRef]
- Gray, A.D.; Wertz, H.; Leads, R.R.; Weinstein, J.E. Microplastic in two South Carolina Estuaries: Occurrence, distribution, and composition. Mar. Pollut. Bull. 2018, 128, 223–233. [Google Scholar] [CrossRef]
- Boucher, J.; Friot, D. Primary Microplastics in the Oceans: A Global Evaluation of Sources; IUCN: Gland, Switzerland, 2017. [Google Scholar] [CrossRef]
- Jan Kole, P.; Löhr, A.J.; Van Belleghem, F.G.A.J.; Ragas, A.M.J. Wear and tear of tyres: A stealthy source of microplastics in the environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef]
- Eisentraut, P.; Dümichen, E.; Ruhl, A.S.; Jekel, M.; Albrecht, M.; Gehde, M.; Braun, U. Two Birds with One Stone—Fast and Simultaneous Analysis of Microplastics: Microparticles Derived from Thermoplastics and Tire Wear. Environ. Sci. Technol. Lett. 2018, 5, 608–613. [Google Scholar] [CrossRef]
- Martin, J.; Lusher, A.L.; Nixon, F.C. A review of the use of microplastics in reconstructing dated sedimentary archives. Sci. Total Environ. 2022, 806, 150818. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, L.; Li, R.; Wang, Y.; Guo, J.; Yu, K.; Wang, S. Underestimated Microplastic Pollution Derived from Fishery Activities and ‘Hidden’ in Deep Sediment. Environ. Sci. Technol. 2020, 54, 2210–2217. [Google Scholar] [CrossRef]
- Turner, S.; Horton, A.A.; Rose, N.L.; Hall, C. A temporal sediment record of microplastics in an urban lake, London, UK. J. Paleolimnol. 2019, 61, 449–462. [Google Scholar] [CrossRef]
- Dong, M.; Luo, Z.; Jiang, Q.; Xing, X.; Zhang, Q.; Sun, Y. The rapid increases in microplastics in urban lake sediments. Sci. Rep. 2020, 10, 848. [Google Scholar] [CrossRef]
- Pervez, R.; Wang, Y.H. Microplastic distribution within core sediments of beach and its responses to anthropogenic activities. Mar. Pollut. Bull. 2022, 174, 113256. [Google Scholar] [CrossRef]
- Kukkola, A.; Senior, G.; Maes, T.; Silburn, B.; Bakir, A.; Kröger, S.; Mayes, A. A large-scale study of microplastic abundance in sediment cores from the UK continental shelf and slope. Mar. Pollut. Bull. 2022, 178, 113554. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.T. The fate of microplastic in marine sedimentary environments: A review and synthesis. Mar. Pollut. Bull. 2020, 158, 111398. [Google Scholar] [CrossRef]
- Baensch-Baltruschat, B.; Kocher, B.; Stock, F.; Reifferscheid, G. Tyre and road wear particles (TRWP)—A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci. Total Environ. 2020, 733. [Google Scholar] [CrossRef]
- Sarkar, B.; Dissanayake, P.D.; Bolan, N.S.; Dar, J.Y.; Kumar, M.; Haque, N.; Mukhopadhyay, R.; Ramanayaka, S.; Biswas, J.K.; Tsang, D.C.; et al. Challenges and opportunities in sustainable management of microplastics and nanoplastics in the environment. Environ. Res. 2022, 207, 112179. [Google Scholar] [CrossRef]
- Yu, J.; Ma, X. Exploring the management policy of marine microplastic litter in China: Overview, challenges and prospects. Sustain. Prod Consum. 2022, 32, 607–618. [Google Scholar] [CrossRef]
- Tampang, A.M.A.A.; Viswanathan, P.M. Occurrence, distribution and sources of microplastics in beach sediments of Miri coast, NW Borneo. Chemosphere 2022, 305, 135368. [Google Scholar] [CrossRef]
- Sambandam, M.; Dhineka, K.; Sivadas, S.K.; Kaviarasan, T.; Begum, M.; Hoehn, D.; Sivyer, D.; Mishra, P.; Murthy, M.R. Occurrence, characterization, and source delineation of microplastics in the coastal waters and shelf sediments of the central east coast of India, Bay of Bengal. Chemosphere 2022, 303, 135135. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, J.; Xing, B. Environmental source, fate, and toxicity of microplastics. J. Hazard. Mater. 2021, 407, 124357. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Li, Y.; Powell, T.; Wang, X.; Wang, G.; Zhang, P. Microplastics as contaminants in the soil environment: A mini-review. Sci. Total Environ. 2019, 691, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Gasperi, J.; Mirande, C.; Mandin, C.; Guerrouache, M.; Langlois, V.; Tassin, B. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ. Pollut. 2017, 221, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Hartline, N.L.; Bruce, N.J.; Karba, S.N.; Ruff, E.O.; Sonar, S.U.; Holden, P.A. Microfiber Masses Recovered from Conventional Machine Washing of New or Aged Garments. Environ. Sci. Technol. 2016, 50, 11532–11538. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, E.; Gersberg, R.M.; Watanabe, K.; Rudolph, J.; Stransky, C.; Novotny, T.E. Toxicity of cigarette butts, and their chemical components, to marine and freshwater fish. Tob. Control 2011, 20, i25–i29. [Google Scholar] [CrossRef] [PubMed]
- McKeen, L.W. Introduction to Use of Plastics in Food Packaging. In Plastic Films in Food Packaging: Materials, Technology and Applications; William Andrew Publishing: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Sommer, F.; Dietze, V.; Baum, A.; Sauer, J.; Gilge, S.; Maschowski, C.; Gieré, R. Tire abrasion as a major source of microplastics in the environment. Aerosol. Air Qual. Res. 2018, 18, 2014–2028. [Google Scholar] [CrossRef]
- Edil, T.B. A Review of Environmental Impacts and Environmental Applications of Shredded Scrap Tires. In Proceedings of the International Workshop on Scrap Tire Derived Geomaterials—Opportunities and Challenges, IW-TDGM 2007, 2008, Yokosuka, Japan, 23–24 March 2007. [Google Scholar]
- Eunomia. Investigating Options for Reducing Releases in the Aquatic Environment of Microplastics Emitted by (But Not Intentionally Added in) Products; Eunomia: Bristol, UK, 2018. [Google Scholar]
- Lassen, C.; Hansen, S.F.; Magnusson, K.; Hartmann, N.B.; Jensen, P.R.; Nielsen, T.G.; Brinch, A. Microplastics: Occurrence, Effects and Sources of Releases to the Environment in Denmark—Welcome to DTU Research Database; Danish Environmental Protection Agency: Copenhagen, Denmark, 2015. [Google Scholar]
- Vogelsang, C.; Lusher, A.; Dadkhah, M.E.; Sundvor, I.; Umar, M.; Ranneklev, S.B.; David, E.; Sondre, M. Microplastics in Road Dust—Characteristics, Pathways and Measures; REPORT SNO. 7526-2020; Norsk Institutt for Vannforskning: Oslo, Norway, 2020. [Google Scholar]
Sample ID | Location | MPs Concentration (MPs/g dw) | MPs Morphology (%) | ||
---|---|---|---|---|---|
Fibers | Films | Fragments | |||
LSB01 | Lower South Bay | 11.9 | 65.4 | 9.2 | 25.4 |
LSB02 | Lower South Bay | 9.7 | 65.3 | 14.2 | 20.5 |
SB01 | South Bay | 6.7 | 62.8 | 12.3 | 24.9 |
SB02 | South Bay | 9.2 | 68.7 | 7.7 | 23.6 |
CB01 | Central Bay | 4.3 | 67.7 | 8.1 | 24.2 |
CB02 | Central Bay | 3.7 | 70.2 | 8.5 | 21.3 |
NB01 | North Bay (River site) | 2.3 | 81.6 | 10.8 | 7.6 |
NB02 | North Bay (River site) | 2.1 | 84.7 | 13.5 | 1.8 |
Source | Common Polymers | Particle Characteristics | References |
---|---|---|---|
Textile-Related Sources | Acrylic; nylon; polyester | fiber; fiber ball | [38,39,40,41,44,72,73] |
Fishing Area Ropes/Lines/Net | Polypropylene; Polyacrylonitrile; Polyvinylchloride; Polyamide | fiber | [71] |
Cigarette Filters | Cellulose acetate | fiber; fiber ball | [74] |
Single-Use Bags and Wraps | Polyethylene; Polypropylene | film | [75] |
Microbeads Used in Water Softening and Purification as well as Other Medical and Industrial Processes | Polystyrene | pellet | [50,51] |
Personal Care Products | Polyethylene; Polypropylene; Polyethylene terephthalate; polystyrene | pellet | [71] |
Tire Particles and Other Recycled Tire Material | Synthetic (styrene-butadiene) rubber; natural (isoprene) rubber; Polyurethane | fragment | [56,76,77,78,79] |
Road Markings (Thermoplastic) | Styrene copolymer; Ethylene/vinyl acetate Copolymer (EVA); nylon | fragment | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dronjak, L.; Rovira, J.; Lin, D.; Park, J.-S.; Ghosal, S.; Expósito, N.; Schuhmacher, M.; Sierra, J. A Microplastic Pollution Hotspot: Elevated Levels in Sediments from the San Francisco Bay Area. Environments 2024, 11, 103. https://doi.org/10.3390/environments11050103
Dronjak L, Rovira J, Lin D, Park J-S, Ghosal S, Expósito N, Schuhmacher M, Sierra J. A Microplastic Pollution Hotspot: Elevated Levels in Sediments from the San Francisco Bay Area. Environments. 2024; 11(5):103. https://doi.org/10.3390/environments11050103
Chicago/Turabian StyleDronjak, Lara, Joaquim Rovira, Diana Lin, June-Soo Park, Sutapa Ghosal, Nora Expósito, Marta Schuhmacher, and Jordi Sierra. 2024. "A Microplastic Pollution Hotspot: Elevated Levels in Sediments from the San Francisco Bay Area" Environments 11, no. 5: 103. https://doi.org/10.3390/environments11050103
APA StyleDronjak, L., Rovira, J., Lin, D., Park, J. -S., Ghosal, S., Expósito, N., Schuhmacher, M., & Sierra, J. (2024). A Microplastic Pollution Hotspot: Elevated Levels in Sediments from the San Francisco Bay Area. Environments, 11(5), 103. https://doi.org/10.3390/environments11050103