Modelling of Glass Soiling Due to Air Pollution Exposure at Urban and National Scales: Coimbra (Portugal) Case Study
Abstract
:1. Introduction
2. Methodology
2.1. Atmospheric Soiling Quantification
2.2. National Scale Air Quality Modelling
2.3. Urban Scale Air Quality Modelling
- (i)
- Macroscopic transportation model
- (ii)
- Emission model
- (iii)
- Air quality model
3. Results and Discussions
3.1. Air Quality
3.2. Glass Soiling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Irwin, J.; Tidblad, J.; Kucera, V. Air Quality Policy. In the Effects of Air Pollution on Cultural Heritage; Watt, J., Hamilton, R., Kucera, V., Tidblad, J., Eds.; Springer: Boston, MA, USA, 2009; pp. 269–293. [Google Scholar] [CrossRef]
- Ivaskova, M.; Kotes, P.; Brodnan, M. Air pollution as an important factor in construction materials deterioration in Slovak Republic. Procedia Eng. 2015, 108, 131–138. [Google Scholar] [CrossRef]
- Ruffolo, S.A.; La Russa, M.F.; Rovella, N.; Ricca, M. The Impact of Air Pollution on Stone Materials. Environments 2023, 10, 119. [Google Scholar] [CrossRef]
- Tidblad, J.; Kreislová, K.; Faller, M.; De la Fuente, D.; Yates, T.; Verney-Carron, A.; Grøntoft, T.; Gordon, A.; Hans, U. ICP materials trends in corrosion, soiling and air pollution (1987–2014). Materials 2007, 10, 969. [Google Scholar] [CrossRef]
- Brimblecombe, P. Air Pollution Reviews—Vol. 2. In The Effects of Air Pollution on the Built Environment; Imperial College Press: London, UK, 2003; ISBN 978-1-84816-128-3. [Google Scholar]
- Spezzano, P. Estimates of the economic damage due to the soiling of residential buildings induced by air pollution in Italy. Environ. Sci. Pollut. Res. 2022, 29, 52336–52354. [Google Scholar] [CrossRef] [PubMed]
- Grøntoft, T.; Verney-Carron, A.; Tidblad, J. Cleaning costs for European sheltered white painted steel and modern glass surfaces due to air pollution since the year 2000. Atmosphere 2019, 10, 167. [Google Scholar] [CrossRef]
- Alves, C.; Sanjurjo-Sánchez, J. Geoscience of the built environment: Pollutants and Materials Surfaces. Geosciences 2011, 1, 26–43. [Google Scholar] [CrossRef]
- Chervenkov, H. Assessment of material deterioration in Bulgaria owing to air pollution. Int. J. Environ. Pollut. 2008, 31, 385–393. [Google Scholar] [CrossRef]
- Bogdan, A.; Chambre, D.; Copolovici, D.M.; Bungau, T.; Bungau, C.C.; Copolovici, L. Heritage Building Preservation in the Process of Sustainable Urban Development: The Case of Brasov Medieval City, Romania. Sustainability 2022, 14, 6959. [Google Scholar] [CrossRef]
- Hamilton, R.; Crabbe, H. Environment, Pollution and Effects. In The Effects of Air Pollution on Cultural Heritage; Watt, J., Hamilton, R., Kucera, V., Tidblad, J., Eds.; Springer: Boston, MA, USA, 2009; pp. 1–28. [Google Scholar] [CrossRef]
- Adekanbi, M.L.; Alaba, E.S.; John, T.J.; Tundealao, T.D.; Banji, T.I. Soiling loss in solar systems: A review of its effect on solar energy efficiency and mitigation techniques. Clean. Energy Syst. 2024, 7, 100094. [Google Scholar] [CrossRef]
- Al-Thani, H.; Koç, M.; Isaifan, R.J. A review on the direct effect of particulate atmospheric pollution on materials and its mitigation for sustainable cities and societies. Environ. Sci. Pollut. Res. 2018, 25, 27839–27857. [Google Scholar] [CrossRef]
- Dias, D.; Pina, N.; Tchepel, O. Characterization of traffic-related particulate matter at urban scale. Int. J. Transp. Dev. Integr. 2019, 3, 144–151. [Google Scholar] [CrossRef]
- Pio, C.; Rienda, I.C.; Nunes, T.; Gonçalves, C.; Tchepel, O.; Pina, K.N.; Rodrigues, J.; Lucarelli, F.; Alves, C.A. Impact of biomass burning and non-exhaust vehicle emissions on PM10 levels in a mid-size non-industrial western Iberian city. Atmos. Environ. 2022, 289, 119293. [Google Scholar] [CrossRef]
- Auras, M.; Bundschuh, P.; Eichhorn, J.; Kirchner, D.; Mach, M.; Seewald, B.; Scheuvens, D.; Snethlage, R. Salt deposition and soiling of stone facades by traffic-induced immissions. Environ. Earth Sci. 2018, 77, 323. [Google Scholar] [CrossRef]
- Lombardo, T.; Ionescu, A.; Chabas, A.; Lefèvre, R.A.; Ausset, P.; Candau, Y. Dose-response function for the soiling of silica-soda-lime glass due to dry deposition. Sci. Total Environ. 2010, 408, 976–984. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, S.C.; Chabas, A.; Lombardo, T.; Verney-Carron, A.; Ausset, P. Predicting the soiling of modern glass in urban environments: A new physically-based model. Atmos. Environ. 2021, 60, 348–357. [Google Scholar] [CrossRef]
- Lombardo, T.; Ionescu, A.; Lefèvre, R.A.; Chabas, A.; Ausset, P.; Cachier, H. Soiling of silica-soda-lime float glass in urban environment: Measurements and modelling. Atmos. Environ. 2005, 39, 989–997. [Google Scholar] [CrossRef]
- Chabas, A.; Lombardo, T.; Cachier, H.; Pertuisot, M.H.; Oikonomou, K.; Falcone, R.; Veritá, M.; Geotti-Bianchini, F. Behaviour of self-cleaning glass in urban atmosphere. Build. Environ. 2008, 43, 2124–2131. [Google Scholar] [CrossRef]
- Spezzano, P. Mapping the susceptibility of UNESCO World Cultural Heritage sites in Europe to ambient (outdoor) air pollution. Sci. Total Environ. 2021, 754, 142345. [Google Scholar] [CrossRef]
- Vidal, F.; Vicente, R.; Silva, J.M. Review of environmental and air pollution impacts on built heritage: 10 questions on corrosion and soiling effects for urban intervention. J. Cult. Herit. 2019, 37, 273–295. [Google Scholar] [CrossRef]
- De la Fuente, D.; Vega, J.M.; Viejo, F.; Díaz, I.; Morcillo, M. Mapping air pollution effects on atmospheric degradation of cultural heritage. J. Cult. Herit. 2013, 14, 138–145. [Google Scholar] [CrossRef]
- CLRTAP. Mapping of Effects on Materials. In Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends; UNECE Convention on Long-range Transboundary Air Pollution; German Environment Agency: Berlin, Germany, 2022; pp. 137–149. [Google Scholar]
- El-Harbawi, M. Air quality modelling, simulation, and computational methods: A review. Environ. Rev. 2013, 21, 149–179. [Google Scholar] [CrossRef]
- Instituto Português do Mar e da Atmosfera (IPMA). Clima de Portugal Continental. Available online: https://www.ipma.pt/pt/educativa/tempo.clima/ (accessed on 3 June 2024).
- PORDATA. Statistics about Portugal and Europa. Resident Population, According to Census. 2021. Available online: https://www.pordata.pt/en/municipalities/resident+population++according+to+census+total+and+by+major+age+groups-22 (accessed on 24 January 2024).
- Copernicus Atmosphere Monitoring Service (CAMS). European Air Quality. Available online: https://atmosphere.copernicus.eu/?category=data_access&subENSEMBLE=reanalysis_products (accessed on 22 March 2023).
- ECMWF. CAMS Regional: European Air Quality Reanalyses Data Documentation. Available online: https://confluence.ecmwf.int/display/CKB/CAMS+Regional%3A+European+air+quality+reanalyses+data+documentation (accessed on 13 February 2024).
- Copernicus Climate Data Store. Available online: https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-europe-air-quality-reanalyses?tab=overview (accessed on 7 February 2024).
- Tchepel, O.; Monteiro, A.; Dias, D.; Gama, C.; Pina, N.; Rodrigues, J.P.; Ferreira, M.; Miranda, A.I. Urban aerosol assessment and forecast: Coimbra case study. Atmos. Pollut. Res. 2020, 11, 1155–1164. [Google Scholar] [CrossRef]
- Dias, D.; Tchepel, O.; Antunes, A.P. Integrated modelling approach for the evaluation of low emission zones. J. Environ. Manag. 2016, 177, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Dias, D.; Antunes, A.P.; Tchepel, O. Modelling of emissions and energy use from biofuel fuelled vehicles at urban scale. Sustainability 2019, 11, 2902. [Google Scholar] [CrossRef]
- Pina, N.; Tchepel, O. A bottom-up modelling approach to quantify cold start emissions from urban road traffic. Int. J. Sustain. Transp. 2022, 17, 942–955. [Google Scholar] [CrossRef]
- Alves, C.; Rienda, I.C.; Vicente, A.; Vicente, E.; Gonçalves, C.; Candeias, C.; Rocha, F.; Lucarelli, F.; Pazzi, G.; Kováts, N.; et al. Morphological properties, chemical composition, cancer risks and toxicological potential of airborne particles from traffic and urban background sites. Atmos. Res. 2010, 264, 105837. [Google Scholar] [CrossRef]
- Pina, N.; Almeida, S.M.; Alves, C.; Tchepel, O. Local contribution of road traffic and residential biomass burning to black carbon aerosols–modelling and validation. Atmos. Environ. 2024, 337, 120764. [Google Scholar] [CrossRef]
- PTV. VISUM 13 User Guide; PTV-AG: Karlsruhe, Germany, 2013. [Google Scholar]
- EMEP/EEA. Exhaust emissions from road transport. Passenger cars, light-duty trucks, heavy-duty vehicles including buses and motor cycles. In Air Pollutant Emission Inventory Guidebook 2019 (EEA Report No. 13/2019); European Monitoring and Evaluation Programme (EMEP): Dublin, Ireland; European Environment Agency (EEA): Copenhagen, Denmark, 2019. [Google Scholar]
- CERC. ADMS-Roads User Guide 2017. Version 4.1. Available online: https://www.cerc.co.uk/environmental-software/user-guides.html (accessed on 1 March 2023).
- Hertel, O.; Berkowicz, R. Operational Street Pollution Model (OSPM). Evaluation of the Model on Data from St. Olavs Street in Oslo; National Environmental Research Institute: Nagpur, India, 1989. [CrossRef]
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Union 2008, L 152, 1–44. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0050&from=en (accessed on 4 April 2024).
- Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. In WHO Global Air Quality Guidelines; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 4 April 2024).
- COM/2022/542 Final—Proposal for a Directive of the European Parliament and of the Council on Ambient Air Quality and Cleaner Air for Europe. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A542%3AFIN (accessed on 27 July 2024).
- European Green Deal: Commission Proposes Rules for Cleaner Air and Water. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_6278 (accessed on 27 July 2024).
Parameters | Description | Mean | STD | Min | Max | P95 |
---|---|---|---|---|---|---|
t [days] | National domain (H = 1%) | 320 | 63 | 184 | 533 | 427 |
H [%] | National domain (t = 365 days) | 1.2 | 0.3 | 0.7 | 2.4 | 1.8 |
Parameters | Description | Mean | STD | Min | Max | P95 |
---|---|---|---|---|---|---|
t [days] to reach H = 1% | Results from National scale modelling | 233 | - | 223 | 238 | - |
Results from Urban scale Modelling | 185 | 19 | 84 | 206 | 202 | |
H [%] reached after the exposure time of t = 365 days | Results from National scale modelling | 1.7 | - | 1.6 | 1.8 | - |
Results from Urban scale Modelling | 2.4 | 0.5 | 2.0 | 8.5 | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batista, N.; Pina, N.; Tchepel, O. Modelling of Glass Soiling Due to Air Pollution Exposure at Urban and National Scales: Coimbra (Portugal) Case Study. Environments 2024, 11, 215. https://doi.org/10.3390/environments11100215
Batista N, Pina N, Tchepel O. Modelling of Glass Soiling Due to Air Pollution Exposure at Urban and National Scales: Coimbra (Portugal) Case Study. Environments. 2024; 11(10):215. https://doi.org/10.3390/environments11100215
Chicago/Turabian StyleBatista, Nathale, Noela Pina, and Oxana Tchepel. 2024. "Modelling of Glass Soiling Due to Air Pollution Exposure at Urban and National Scales: Coimbra (Portugal) Case Study" Environments 11, no. 10: 215. https://doi.org/10.3390/environments11100215
APA StyleBatista, N., Pina, N., & Tchepel, O. (2024). Modelling of Glass Soiling Due to Air Pollution Exposure at Urban and National Scales: Coimbra (Portugal) Case Study. Environments, 11(10), 215. https://doi.org/10.3390/environments11100215