Metal Bioaccumulation and Biochemical Responses in Loggerhead Turtles (Caretta caretta) from the Gulf of Gabès (Tunisia)
Abstract
:1. Introduction
- to fill the knowledge gap on metal pollution (Ag, Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in loggerhead turtles found in Tunisia;
- to estimate the preferential accumulation of metals in distinct organs (heart, kidney, liver, lung, muscle); and
- to determine the negative effects of environmental pollution in turtles through the lens of antioxidant enzymatic activities (CAT, GPx, SOD) and lipid peroxidation (MDA).
2. Materials and Methods
2.1. Sample Collection
2.2. Preparation of Samples for Metal Analyses
2.3. Analyses of Metals
2.4. Protein Extraction
2.5. Antioxidant Enzymatic Activities and Lipid Peroxidation
2.6. Statistical Analyses
3. Results
3.1. Metal Contents in C. caretta Tissues
3.2. Antioxidant Responses and Lipid Peroxidation in C. caretta
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haynes, D.; Johnson, J.E. Organochlorine, Heavy Metal and Polyaromatic Hydrocarbon Pollutant Concentrations in the Great Barrier Reef (Australia) Environment: A Review. Mar. Pollut. Bull. 2000, 41, 267–278. [Google Scholar] [CrossRef]
- Simantiris, N.; Andreanidou, K.; Sampson, G. Over 30 years of monitoring and implementing the Bern Convention’s recommendations for the protection of Mediterranean Sea turtles. Mar. Policy 2024, 168, 106319. [Google Scholar] [CrossRef]
- Maret, W. The Metals in the Biological Periodic System of the Elements: Concepts and Conjectures. Int. J. Mol. Sci. 2016, 17, 66. [Google Scholar] [CrossRef] [PubMed]
- Mertz, W. The Essential Trace Elements. Science 1981, 213, 1332–1338. [Google Scholar] [CrossRef]
- Novillo, O.; Pertusa, J.F.; Tomás, J. Exploring the Presence of Pollutants at Sea: Monitoring Heavy Metals and Pesticides in Loggerhead Turtles (Caretta caretta) from the Western Mediterranean. Sci. Total Environ. 2017, 598, 1130–1139. [Google Scholar] [CrossRef]
- Duncan, E.M.; Akbora, H.D.; Baldi, P.; Beton, D.; Broderick, A.C.; Cicek, B.A.; Crowe-Harland, C.; Davey, S.; DeSerisy, T.; Fuller, W.J.; et al. Marine turtles as bio-indicators of plastic pollution in the eastern Mediterranean. Mar. Pollut. Bull. 2024, 201, 116141. [Google Scholar] [CrossRef] [PubMed]
- Caracappa, S.; Persichetti, M.F.; Piazza, A.; Caracappa, G.; Gentile, A.; Marineo, S.; Crucitti, D.; Arculeo, M. Incidental Catch of Loggerhead Sea Turtles (Caretta caretta) along the Sicilian Coasts by Longline Fishery. PeerJ 2018, 6, e5392. [Google Scholar] [CrossRef] [PubMed]
- Kuzukiran, O.; Simsek, I.; Kara, E.; Yurdakok-Dikmen, B.; Boztepe, U.G.; Toprak, M.; Filazi, A. Investigation of some persistent organic pollutants in loggerhead Sea turtles (Caretta caretta). Mar. Pollut. Bull. 2024, 205, 116670. [Google Scholar] [CrossRef] [PubMed]
- Garcè, A.; Pires, I. Fibropapillomatosis on Sea turtles, a sentinel of ecosystem health? Environ. Sci. Proc. 2022, 24, 1. [Google Scholar] [CrossRef]
- Dujon, A.M.; Schofield, G.; Venegas, R.M.; Thomas, F.; Ujvari, B. Sea turtles in the cancer risk landscape: A global meta-analysis of fibropapillomatosis prevalence and associated risk factors. Pathogens 2021, 10, 1295. [Google Scholar] [CrossRef] [PubMed]
- Arienzo, A. Progress on the impact of persistent pollutants on marine turtles: A review. J. Mar. Sci. Eng. 2023, 11, 266. [Google Scholar] [CrossRef]
- Barraza, A.D.; Finlayson, K.A.; Leusch, F.D.L.; van de Merwe, J.P. Systematic review of reptile reproductive toxicology to inform future research directions on endangered or threatened species, such as Sea turtles. Environ. Pollut. 2021, 286, 117470. [Google Scholar] [CrossRef] [PubMed]
- Duncan, E.M.; Broderick, A.C.; Critchell, K.; Galloway, T.S.; Hamann, M.; Limpus, C.J.; Lindeque, P.K.; Santillo, D.; Tucker, A.D.; Whiting, S.; et al. Plastic pollution and small juvenile marine turtles: A potential evolutionary trap. Front. Mar. Sci. 2021, 8, 699521. [Google Scholar] [CrossRef]
- Tanabe, L.K.; Scott, K.; Dasari, V.; Berumen, M. An assessment of heavy metals in green Sea turtle (Chelonia mydas) hatchlings from Saudi Arabia’s largest rookery, Ras Baridi. PeerJ 2022, 10, e13928. [Google Scholar] [CrossRef]
- Morao, I.F.C.; Simoes, T.; Casado, R.B.; Vieira, S.; Ferreira-Airaud, B.; Caliani, I.; Di Noi, A.; Casini, S.; Fossi, M.C.; Lemos, M.F.L.; et al. Metal accumulation in female green sea turtles (Chelonia mydas) from Eastern Atlantic affects their egg quality with potential implications for embryonic development. Sci. Total Environ. 2024, 931, 172710. [Google Scholar] [CrossRef] [PubMed]
- Casale, P.; Broderick, A.C.; Caminas, J.A.; Cardona, L.; Carreras, C.; Demetropoulos, A.; Fuller, W.J.; Godley, B.J.; Hochscheid, S.; Kaska, Y.; et al. Mediterranean Sea turtles: Current knowledge and priorities for conservation and research. Endang. Species Res. 2018, 36, 229–267. [Google Scholar] [CrossRef]
- Mancino, C.; Canestrelli, D.; Maiorano, L. Going west: Range expansion for loggerhead Sea turtles in the Mediterranean Sea under climate change. Glob. Ecol. Conserv. 2022, 38, e02264. [Google Scholar] [CrossRef]
- Mancino, C.; Hochscheid, S.; Maiorano, L. Increase of nesting habitat suitability for green turtles in the warming Mediterranean Sea. Sci. Rep. 2023, 13, 19906. [Google Scholar] [CrossRef]
- Casale, P.; Mariani, P. The first Lost year’ of Mediterranean Sea turtles: Dispersal patterns indicate sub-regional management units for conservation. Mar. Ecol. Prog. Ser. 2014, 498, 263–274. [Google Scholar] [CrossRef]
- Andreani, G.; Santoro, M.; Cottignoli, S.; Fabbri, M.; Carpenè, E.; Isani, G. Metal distribution and metallothionein in loggerhead (Caretta caretta) and green (Chelonia mydas) Sea turtles. Sci. Total Environ. 2008, 390, 287–294. [Google Scholar] [CrossRef]
- Godley, B.J.; Thompson, D.R.; Furness, R.W. Do heavy metal concentrations pose a threat to marine turtles from the Mediterranean Sea? Mar. Pollut. Bull. 1999, 38, 497–502. [Google Scholar] [CrossRef]
- Abdallah, M.A.M. Bioaccumulation and biomagnifications of toxic metals in tissues of loggerhead turtles (Carettta caretta) from the Mediterranean Sea coast, Egypt. Sci. Rep. 2023, 13, 7995. [Google Scholar] [CrossRef]
- Celik, S.; Beton, D.; Cicek, B.A.; Snape, R.T.E.; Baskale, E. Heavy metal accumulation of pre-adult loggerhead turtle and green turtle in Northern Cyprus. SSRN Electron. J. 2022, 316, 120482. [Google Scholar] [CrossRef]
- Antoniou, Z.; Dassenakis, M.; Panagopoulos, D.; Sofouli, E. Copper and manganese in loggerhead turtles (Caretta caretta) tissues in the Mediterranean. Mediterr. Mar. Sci. 2004, 5, 109–116. [Google Scholar]
- Cammilleri, G.; Galluzzo, F.G.; Pulvirenti, A.; Pantano, L.; Calabrese, V.; Gentile, A.; Cumbo, V.; Macaluso, A.; Vella, A.; Ferrantelli, V. Toxic metals in loggerhead Sea turtle (Caretta caretta) stranded freshly dead along Sicilian coasts. Vet. Q. 2023, 43, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Canzanella, S.; Danese, A.; Mandato, M.; Lucifora, G.; Riverso, C.; Federico, G.; Gallo, P.; Esposito, M. Concentrations of trace elements in tissues of loggerhead turtles (Caretta caretta) from the Tyrrhenian and the Ionian coastlines (Calabria, Italy). Environ. Sci. Pollut. Res. 2021, 28, 26545–26557. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; De Roma, A.; Sansone, D.; Capozzo, D.; Iaccarino, D.; di Nocera, F.; Gallo, P. Non-essential toxic element (Cd, As, Hg and Pb) levels in muscle, liver and kidney of loggerhead Sea turtles (Caretta caretta) stranded along the southwestern coasts of the Tyrrhenian Sea. Comp. Biochem. Physiol. C. 2020, 231, 108725. [Google Scholar] [CrossRef] [PubMed]
- Jerez, S.; Motas, M.; Canovas, R.A.; Talavera, J.; Almela, R.M.; Bayon del Rio, A. Distribution of heavy metals and essentials elements in loggerhead turtles (Caretta caretta) from Spanish Mediterranean coastline. Chemosphere 2010, 78, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Maffucci, F.; Caurant, F.; Bustamante, P.; Bentivegna, F. Trace elements (Cd, Cu, Hg, Se, Zn) accumulation and tissue distribution in loggerhead turtles (Caretta caretta) from Western Mediterranean Sea (Southern Italy). Chemosphere 2005, 58, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Savoca, D.; Arculeo, M.; Arizza, V.; Pace, A.; Melfi, R.; Caracappa, S.; Caracappa, G.; Vullo, C.; Cambera, I.; Visconti, G.; et al. Impact of heavy metals in eggs and tissues of C. caretta along the Sicilian coast (Mediterranean Sea). Environments 2022, 9, 88. [Google Scholar] [CrossRef]
- Storelli, M.M.; Ceci, E.; Marcotrigiano, G.O. Distribution of heavy metal residues in some tissues of Caretta caretta (Linnaeus) specimens beached along the Adriatic Sea (Italy). Bull. Environ. Contam. Toxicol. 1998, 60, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Storelli, M.M.; Marcotrigiano, G.O. Total organic and inorganic arsenic from marine turtles (Caretta caretta) beached along the Italian coast (South Adriatic Sea). Bull. Environ. Contam. Toxicol. 2000, 65, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Febrer-Serra, M.; Renga, E.; Fernandez, G.; Lassnig, N.; Tejada, S.; Capo, X.; Pinya, S.; Sureda, A. First report of heavy metal presence in the muscular tissue of loggerhead turtles Caretta caretta (Linnaeus, 1758) from the Balearic Sea (Balearic Islands, Spain). Environ. Sci. Pollut. Res. 2020, 27, 39651–39656. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Fernandez, A.J.; Gomez-Ramirez, P.; Martinez-Lopez, E.; Hernandez-Garcia, A. Heavy metals in tissues from loggerhead turtles (Caretta caretta) from the Southwestern Mediterranean (Spain). Ecotoxicol. Environ. Saf. 2008, 72, 557–563. [Google Scholar] [CrossRef]
- Gomez-Ramirez, P.; Espin, S.; Navas, I.; Martinez-Lopez, E.; Jimenez, P.; Maria-Mojica, P.; Penalver, J.; Garcia-Fernandez, A.J. Mercury and organochlorine pesticides in tissues of loggerhead Sea turtles (Caretta caretta) stranded along the Southwestern Mediterranean coastline (Andalusia, Spain). Bull. Environ. Contam. Toxicol. 2020, 104, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Lopez, E.; Herrero, D.; Lopez-Berenguer, G.; Penalver, J. Total arsenic concentrations in Sea turtle tissues from the Mediterranean coast of Spain. Bull. Environ. Contam. Toxicol. 2021, 107, 820–826. [Google Scholar] [CrossRef]
- Kaska, Y.; Celik, A.; Bag, H.; Aureggi, M.; Ozel, K.; Elci, A.; Kaska, A. Heavy metal monitoring in stranded Sea turtles along the Mediterranean coast of Turkey. Fresenius Environ. Bull. 2004, 13, 769–776. [Google Scholar]
- Aymak, C.; Ucar, A.H.; Ergene, S. Distribution of heavy metals in tissues of stranded loggerhead turtles (Caretta caretta) on Kazanh Beach, turkey, North-Western. J. Zool. 2021, 17, 82–91. [Google Scholar]
- El Hili, H.A.E.; Mzoughi, N.; Karaa, S.; Chouba, L. Distribution of trace metals (Cd, Hg, Pb, Cu) and polycyclic aromatic hydrocarbons (PAH) in loggerhead turtles (Reptilia: Testudines: Cheloniidae: Caretta caretta (Linnaeus, 1758)) tissues stranded along the North Tunisian coasts. Int. J. Mar. Biol. Res. 2019, 3, 1–6. [Google Scholar]
- Pinya, S.; Renga, E.; Fernandez, G.; Mateu-Vicens, G.; Tejada, S.; Capo, X.; Sureda, A. Physiological biomarkers in loggerhead turtles (Caretta caretta) as a tool for monitoring sanitary evolution in marine recovery centres. Sci. Total Environ. 2024, 755, 143930. [Google Scholar] [CrossRef]
- Morao, I.F.C.; Lemos, M.F.L.; Felix, R.; Vieira, S.; Barata, C.; Novais, S.C. Stress response markers in the blood of São Tomé green Sea turtles (Chelonia mydas) and their relation with accumulated metal levels. Environ. Pollut. 2022, 293, 118490. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H. Catalase in vitro. Method. Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Flohe, L.; Gunzler, W.A. Assays of glutathione peroxidase. Methods Enzymol. 1984, 105, 114–120. [Google Scholar] [CrossRef]
- Niehaus, W.G.; Samuelsson, B. Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur. J. Biochem. 1968, 6, 126–130. [Google Scholar] [CrossRef]
- Turkozan, O.; Ozdilek, S.Y.; Ergene, S.; Ucar, A.H.; Sonmez, B.; Yilmaz, C.; Kacar, Y.; Aymak, C. Strandings of Loggerhead (Caretta caretta) and Green (Chelonia mydas) Sea Turtles along the Eastern Mediterranean Coast of Turkey. Herpetol. J. 2013, 23, 11–15. [Google Scholar]
- Breitwieser, M.; Viricel, A.; Churlaud, C.; Guillot, B.; Martin, E.; Stenger, P.-L.; Huet, V.; Fontanaud, A.; Thomas-Guyon, H. First Data on Three Bivalve Species Exposed to an Intra-Harbour Polymetallic Contamination (La Rochelle, France). Comp. Biochem. Physiol. C 2017, 199, 28–37. [Google Scholar] [CrossRef]
- Core Team R. A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online: http://www.R-project.org (accessed on 1 March 2022).
- Kassambara, A.; Mundt, F. Facto Extra: Extract and Visualize the Results of Multivariate Data Analyses (Version 1.0. 5). 2017, 5. Available online: https://www.rdocumentation.org/packages/factoextra/versions/1.0 (accessed on 15 June 2024).
- Ellipse, D.M. Functions for Drawing Ellipses and Ellipse-like Confidence Regions. Statistical Package. 2007. Available online: https://cran.r-project.org/web/packages/ellipse/ellipse.pdf (accessed on 15 June 2024).
- El-Geziry, T.M.; Bryden, I.G. The circulation pattern in the Mediterranean Sea: Issues for modeller consideration. J. Oper. Oceanogr. 2010, 3, 39–46. [Google Scholar] [CrossRef]
- Harrabi, M.; Varela Della Giustina, S.; Aloulou, F.; Rodriguez-Mozaz, S.; Barcelo, D.; Elleuch, B. Analysis of multiclass antibiotic residues in urban wastewater in Tunisia. Environ. Nanotechnol. Monit. Manag. 2018, 10, 163–170. [Google Scholar] [CrossRef]
- WWF. Le Littoral Tunisien. 2020. Available online: https://wwf.panda.org/frwwf_action_zones/tunisie/littoral_tunisien/ (accessed on 14 July 2021).
- Nriagu, J.O. A history of global metal pollution. Science 1996, 272, 223. [Google Scholar] [CrossRef]
- Kaste, O.; Skarbovik, E.; Greipsland, I.; Gundersen, C.B.; Austnes, K.; Skancke, L.B.; Guerrero, J.-L.; Sample, J.E. The Norwegian River Monitoring Programme—Water Quality Status and Trends; Norsk Institutt for Vannforskning: Oslo, Norway, 2017. [Google Scholar]
- La Colla, N.S.; Botte, S.E.; Simonetti, P.; Negrin, V.L.; Serra, A.V.; Marcovecchio, J.E. Water, sediments and fishes: First multicompartment assessment of metal pollution in a coastal environment from the SW Atlantic. Chemosphere 2021, 282, 131131. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, M.; Athmouni, K.; Metais, I.; Ayadi, H.; Leignel, V. The Mediterranean limpet Patella caerulea (Gastropoda, Mollusca) to assess marine ecotoxicological risk: A case study of Tunisian coasts contaminated by metals. Environ. Sci. Pollut. Res. 2022, 29, 28339–28358. [Google Scholar] [CrossRef]
- Annabi, A.; Bardelli, R.; Vizzini, S.; Mancinelli, G. Baseline assessment of heavy metals content and trophic position of the invasive blue swimming crab Portunus segnis (Forskal, 1775) in the Gulf of Gabès (Tunisia). Mar. Pollut. Bull. 2018, 136, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Suarez, I.; Lozano-Bilbao, E.; Hardisson, A.; Paz, S.; Gutièrrez, A.J. Metal and trace element concentrations in cetaceans worldwide: A review. Mar. Pollut. Bull. 2023, 192, 115010. [Google Scholar] [CrossRef] [PubMed]
- Copat, C.; Conti, G.O.; Fallico, R.; Sciacca, S.; Ferrante, M. Heavy metals in fish from the Mediterranean Sea: Potential impact on diet. Med. Diet 2015, 547–562. [Google Scholar] [CrossRef]
- D’ilio, S.; Mattei, D.; Blasi, M.F.; Alimonti, A.; Bogialli, S. The occurrence of chemical elements and POPs in loggerhead turtles (Caretta caretta): An overview. Mar. Poll. Bull. 2011, 62, 1606–1615. [Google Scholar] [CrossRef] [PubMed]
- Gardner, S.C.; Fitzgerald, S.L.; Vargas, B.A.; Rodríguez, L.M. Heavy metal accumulation in four species of Sea turtles from the Baja California peninsula, Mexico. Biometals 2006, 19, 91–99. [Google Scholar] [CrossRef]
- Bustamante, P.; Caurant, F.; Fowler, S.W.; Miramand, P. Cephalopods as a vector for the transfer of cadmium to top marine predators in the north-east Atlantic Ocean. Sci. Total Environ. 1998, 220, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, M.; Napoli, S.; Grasso, A.; Zuccarello, P.; Cristali, A.; Copat, C. Systematic review of arsenic in fresh seafood from the Mediterranean Sea and European Atlantic coasts: A health risk assessment. Food Chem. Toxicol. 2019, 126, 322–331. [Google Scholar] [CrossRef]
- Kalia, H.-M.; Khambholja, D.B. Arsenic contents and its biotransformation in the marine environment. In Handbook of Arsenic Toxicology; Academic Press: Cambridge, MA, USA, 2015; pp. 675–700. [Google Scholar]
- Rie, M.T.; Lendas, K.A.; Callard, I.P. Cadmium: Tissue distribution and binding protein induction in the painted turtle Chrysemys picta. Comp. Biochem. Physiol. C 2001, 130, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, C.C.; Varela, A.S.; Barcarolli, I.F.; Bianchini, A. Concentrations and distributions of metals in tissues of stranded green Sea turtles (Chelonia mydas) from the southern Atlantic coast of Brazil. Sci. Total Environ. 2014, 466–467, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Guirlet, E.; Das, K. Cadmium toxicokinetics and bioaccumulation in turtles: Trophic exposure of Trachemys scripta elegans. Ecotoxicology 2012, 21, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Jakimska, A.; Konieczka, P.; Skóra, K.; Namieśnik, J. Bioaccumulation of metals in tissues of marine animals, part II: Metal concentrations in animal tissues. Pol. J. Environ. Stud. 2011, 20, 1127–1146. [Google Scholar]
- Caurant, F.; Bustamante, P.; Bordes, M.; Miramand, P. Bioaccumulation of metals in tissues of marine animals, part II: Metal concentrations in animal tissues. Pol. J. Environ. Stud. 1999, 38, 1085–1091. [Google Scholar]
- Wise, S.S.; Xie, H.; Fukuda, T.; Thompson, W.D.; Wise, J.P. Hexavalent chromium is cytotoxic and genotoxic to hawksbill Sea turtle cells. Toxicol. Appl. Pharmacol. 2014, 279, 113–118. [Google Scholar] [CrossRef]
- Lam, J.C.; Tanabe, S.; Chan, S.K.; Lam, M.H.; Martin, M.; Lam, P.K. Levels of trace elements in green turtle eggs collected from Hong Kong: Evidence of risks due to selenium and nickel. Environ. Pollut. 2006, 144, 790–801. [Google Scholar] [CrossRef]
- Chakraborty, R.; Renu, K.; Eladl, M.A.; El-Sherbiny, M.; Elsherbini, D.M.A.; Mirza, A.K.; Vellingiri, B.; Iyer, M.; Dey, A.; Gopalakrishnan, A.V. Mechanism of chromium-induced toxicity in lungs, liver, and kidney and their ameliorative agents. Biomed. Pharmacother. 2022, 151, 113119. [Google Scholar] [CrossRef] [PubMed]
- DesMarais, T.L.; Costa, M. Mechanisms of Chromium-Induced Toxicity. Curr. Opin. Toxicol. 2019, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Gissi, F.; Stauber, J.L.; Binet, M.T.; Golding, L.A.; Adams, M.S.; Schlekat, C.E.; Garman, E.R.; Jolley, D.F. A review of nickel toxicity to marine and estuarine tropical biota with particular reference to the Southeast Asian and Melanesian regions. Environ. Pollut. 2016, 218, 1308–1323. [Google Scholar] [CrossRef] [PubMed]
- Byeon, E.; Kang, H.-M.; Yoon, C.; Lee, J.-S. Toxicity mechanisms of arsenic compounds in aquatic organisms. Aquat. Toxicol. 2021, 237, 105901. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Singh, N.; Verma, M.; Kamal, R.; Tiwari, R.; Sanjay Chivate, M.; Rai, S.N.; Kumar, A.; Singh, A.; Singh, M.P.; et al. Hexavalent-Chromium-Induced Oxidative Stress and the Protective Role of Antioxidants against Cellular Toxicity. Antioxidants 2022, 11, 2375. [Google Scholar] [CrossRef] [PubMed]
- Hrycay, E.G.; Bandiera, S.M. Involvement of cytochrome P450 in reactive oxygen species formation and cancer. Adv. Pharmacol. 2015, 74, 35–84. [Google Scholar] [CrossRef] [PubMed]
- Schiedber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Gomez, A.; Morcillo, P.; Guardiola, F.A.; Espinosa, C.; Esteban, M.A.; Cuesta, A.; Girondot, M.; Romero, D. Molecular oxidative stress markers in olive ridley turtles (Lepidochelys olivacea) and their relation to metal concentrations in wild populations. Environ. Pollut. 2018, 233, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Zelko, I.N.; Mariani, T.J.; Folz, R.J. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD(SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic. Biol. Med. 2002, 33, 337–349. [Google Scholar] [CrossRef]
- Dong, A.; Huo, J.; Yan, J.; Dong, A.; Liu, B. Lipid peroxidation of kidney of the turtle Mauremys reevesii caused by cadmium. Environ. Sci. Pollut. Res. 2021, 28, 6811–6817. [Google Scholar] [CrossRef] [PubMed]
- Labrada-Martagon, V.; Rodriguez, P.A.T.; Mendez-Rodriguez, L.C.; Zenteno-Savin, T. Oxidative stress indicators and chemical contaminants in East Pacific green turtles (Chelonia mydas) inhabiting two foraging coastal lagoons in the Baja California peninsula. Comp. Biochem. Physiol. C 2011, 154, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Salvarani, P.I.; Vieira, L.R.; Ku-Peralta, W.; Morgado, F.; Rendon-von Osten, J. Oxidative stress biomarkers and organochlorine pesticides in nesting female hawksbill turtles Eretmochelys imbricata from Mexican coast (Punta Xen, Mexico). Environ. Sci. Pollut. Res. 2018, 25, 23809–23816. [Google Scholar] [CrossRef]
Date of Sampling | Localisation | Longitude | Latitude | Curved Carapace Length (CCL) (cm) | Curved Carapace Width (CCW) (cm) | Life Stage |
---|---|---|---|---|---|---|
21 February 2022 | Sfax | E10°45′40.092 | N34°42′40.501 | 58 | 53 | Sub-adult |
21 February 2022 | Sfax | E10°45′44.143 | N34°42′40.368 | 56 | 56 | Sub-adult |
21 February 2022 | Sfax | E10°45′40.649 | N34°42′40.374 | 65 | 58.5 | Sub-adult |
21 February 2022 | Sfax | E10°45′53.272 | N34°42′40.937 | 54 | 51 | Sub-adult |
21 February 2022 | Sfax | E10°45′45.294 | N34°42′40.404 | 61 | 60.5 | Sub-adult |
21 February 2022 | Sfax | E10°45′40.092 | N34°42′40.501 | 55.5 | 53 | Sub-adult |
2021 | Chebba (near Sfax) | E10°45′40.092 | N34°42′40.501 | 21.5 | 19 | Juvenile |
30 August 2021 | Gabès | E10°7′36.199 | N33°54′49.9 | 56 | 50 | Sub-adult |
10 June 2022 | Gabès | E10°4′43.952 | N33°56′31.928 | 69 | 64 | Sub-adult |
22 June 2022 | Gabès | E10°4′3.945 | N33°57′41.249 | 66 | 64 | Sub-adult |
26 April 2022 | Gabès | E10°3′19.41 | N33°59′6.036 | 41 | 37 | Sub-adult |
10 May 2022 | Gabès | E10°7′30.389 | N33°52′50.502 | 63 | 59 | Sub-adult |
12 May 2022 | Gabès | E10°8′29.337 | N33°51′44.21 | 56 | 51 | Sub-adult |
29 August 2022 | Gabès | E10°42′29.098 | N33°29′20.198 | 71 | 61 | Adult |
Ag | Al | As | Cd | Co | Cr | Cu | Fe | Mn | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LOQ (µg/g) | 0.1 | 5.2 | 0.1 | 0.01 | 0.01 | 0.1 | 0.02 | 1 | 0.01 | 0.04 | 0.01 | 2.4 |
LOD (µg/g) | 0.002 | 1.04 | 0.02 | 0.002 | 0.002 | 0.02 | 0.004 | 0.2 | 0.002 | 0.008 | 0.002 | 0.48 |
Essential Metals | No Essential Metals | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(µg/g d. w.) | Aluminium (Al) | Copper (Cu) | Iron (Fe) | Manganese (Mn) | Zinc (Zn) | Arsenic (As) | Silver (Ag) | Cadmium (Cd) | Cobalt (Co) | Chromium (Cr) | Nickel (Ni) | Lead (Pb) |
Heart (13) | 20.71 ± 4.72 | 11.93 ± 2.19 | 782.65 ± 357.43 | 1.63 ± 0.84 | 169.20 ± 42.11 | 58.10 ± 31.27 | 0.03 ± 0.03 | 1.23 ± 0.59 | 0.09 ± 0.11 | 1.37 ± 1.43 | 0.77 ± 0.69 | 0.29 ± 0.34 |
Kidney (9) | 14.89 ± 2.09 | 7.58 ± 1.71 | 657.62 ± 319.99 | 4.23 ± 1.55 | 96.53 ± 16.34 | 55.75 ± 41.08 | 0.02 ± 0.01 | 33.17 ± 9.78 | 2.17 ± 3.17 | 1.72 ± 0.94 | 1.35 ± 0.99 | 0.35 ± 0.28 |
Liver (12) | 26.73 ± 9.11 | 39 ± 20.76 | 1426.65 ± 1906.59 | 4.91 ± 2.47 | 114.23 ± 51.36 | 44.37 ± 31.61 | 0.57 ± 0.47 | 6.27 ± 2.62 | 0.18 ± 0.17 | 1.16 ± 1.20 | 0.92 ± 0.89 | 0.32 ± 0.21 |
Lung (13) | 31.10 ± 33.92 | 6.80 ± 2.50 | 388.44 ± 111.56 | 1.26 ± 0.75 | 89.90 ± 47.47 | 37.27 ± 24.04 | 0.03 ± 0.03 | 1.43 ± 0.51 | 0.13 ± 0.18 | 1.28 ± 0.67 | 0.55 ± 0.26 | 0.19 ± 0.12 |
Muscle (14) | 15.58 ± 3.79 | 5.05 ± 1.32 | 121.02 ± 51.98 | 0.99 ± 0.34 | 110.14 ± 23.55 | 134.24 ± 97.11 | 0.01 ± 0 | 0.45 ± 0.48 | 0.07 ± 0.05 | 1.85 ± 0.95 | 1.95 ± 4.64 | 0.12 ± 0.10 |
Kidney | Liver | Muscle | ANOVA | Homogeneity of Variances Test (Levene’s) | Normality Test (Shapiro–Wilk) | |
---|---|---|---|---|---|---|
SOD (U/mg protein) | 915 ± 451 (8 individuals) | 808 ± 196 (10 individuals) | 595 ± 215 (12 individuals) | p = 0.057 | p = 0.002 | p = 0.041 |
CATalase (µmoles/min/mg protein) | 44.2 ± 34.8 (7 individuals) | 43.3 ± 37.1 (11 individuals) | 61.5 ± 9.91 (9 individuals) | p = 0.365 | p = 0.007 | p = 0.245 |
GPx (µmoles/mg protein) | 0.370 ± 0.294 (10 individuals) | 0.269 ± 0.077 (10 individuals) | 0.183 ± 0.080 (13 individuals) | p = 0.082 | p < 0.001 | p = 0.010 |
MDA (nmoles/mg protein) | 398 ± 258 (10 individuals) | 108 ± 72.2 (9 individuals) | 31.8 ± 16.2 (8 individuals) | p < 0.001 | p < 0.001 | p = 0.113 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrizi, M.; Jribi, I.; Baracchini, C.; Leignel, V. Metal Bioaccumulation and Biochemical Responses in Loggerhead Turtles (Caretta caretta) from the Gulf of Gabès (Tunisia). Environments 2024, 11, 214. https://doi.org/10.3390/environments11100214
Hrizi M, Jribi I, Baracchini C, Leignel V. Metal Bioaccumulation and Biochemical Responses in Loggerhead Turtles (Caretta caretta) from the Gulf of Gabès (Tunisia). Environments. 2024; 11(10):214. https://doi.org/10.3390/environments11100214
Chicago/Turabian StyleHrizi, Marwa, Imed Jribi, Clément Baracchini, and Vincent Leignel. 2024. "Metal Bioaccumulation and Biochemical Responses in Loggerhead Turtles (Caretta caretta) from the Gulf of Gabès (Tunisia)" Environments 11, no. 10: 214. https://doi.org/10.3390/environments11100214
APA StyleHrizi, M., Jribi, I., Baracchini, C., & Leignel, V. (2024). Metal Bioaccumulation and Biochemical Responses in Loggerhead Turtles (Caretta caretta) from the Gulf of Gabès (Tunisia). Environments, 11(10), 214. https://doi.org/10.3390/environments11100214