The Relationship between PM2.5, Greenness, and Road Noise Exposures and Children’s Cognitive Performance in England: The Millennium Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Cognitive Outcomes
2.3. Exposure Assessments
2.3.1. Fine Particles (PM2.5)
2.3.2. Greenness
2.3.3. Road Noise
2.4. Other Major Risk Factors
2.5. Statistical Analyses
2.5.1. Study Population and Environmental Exposures
2.5.2. Impacts on Cognitive Performance
2.5.3. Impacts on Cognitive Trajectory
3. Results
3.1. Study Population and Environmental Exposures
3.2. Impacts on Cognitive Performance
3.3. Impacts on Cognitive Trajectory
3.4. Sensitivity Analyses
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Cognitive Tests at Each Age Group in the Millennium Cohort Study
- Blue post notes indicate at which ages each cognitive test was taken. Arrows between post notes indicate when a test was taken at more than one age group.
Appendix B. Sample Statistical Analysis Code at Age 7 Years (MCS4) in Stata
- global covars “relage gender i.ethnicity i.income_quintiles i.language i.low_bweight i.breastf i.siblings mat_age i.mom_NVQ i.dad_NVQ i.region_res i.qpopden i.idacidec i.gender_code pct_lang pct_eth_white pct_eth_black pct_eth_asian pct_eth_chinese pct_eth_anyoth pct_pupils_fsm_eligible pupil_teacher_ratio ta_teachers_ratio i.instype ndvitm_mcs4periqr roadtm_mcs4periqr i.roadtm_mcs4periqr_dummy”
- svyset SPTN00 [pweight=OVWT1], strata(PTTYPE2) fpc(NH2)
- foreach cog_outcome in st_bas_pattern_mcs4 st_bas_read_mcs4 st_nfer_math_mcs4 {
- svy: reg ‘cog_outcome’ pm25tm_mcs4periqr $covars
- }
Appendix C
PM2.5 (µg/m3) | Greenness (NDVI) | Road Noise (dB) | |||||||
---|---|---|---|---|---|---|---|---|---|
1-Year Lag | Lifetime | Trajectory | 1-Year Lag | Lifetime | Trajectory | 1-Year Lag | Lifetime | Trajectory | |
PM2.5 | |||||||||
1-year lag Lifetime Trajectory | 1 0.94 0.99 | 1 0.97 | 1 | ||||||
Greenness | |||||||||
1-year lag Lifetime Trajectory | −0.52 −0.52 −0.47 | −0.61 −0.63 −0.56 | −0.59 −0.59 −0.55 | 1 0.97 0.99 | 1 0.97 | 1 | |||
Road noise | |||||||||
1-year lag Lifetime Trajectory | 0.11 0.11 0.11 | 0.18 0.18 0.18 | 0.15 0.14 0.15 | −0.1 −0.1 −0.1 | −0.11 −0.1 −0.11 | −0.1 −0.08 −0.1 | 1 0.93 0.98 | 1 0.92 | 1 |
Cognitive Test | PM2.5 (µg/m3) | Greenness (NDVI) | Road Noise (dB) | ||
---|---|---|---|---|---|
Single exposure, β (lower, upper 95% CI) | 3 years (MCS2) | School Readiness | 0.03 (−0.04, 0.11) | −0.06 (−0.12, 0.01) | 0.01 (−0.02, 0.04) |
Naming Vocabulary | 0.03 (−0.03, 0.09) | −0.03 (−0.08, 0.01) | 0.02 (−0.01, 0.05) | ||
5 years (MCS3) | Picture Similarity | 0.02 (−0.06, 0.09) | −0.01 (−0.08, 0.06) | −0.01 (−0.05, 0.02) | |
Naming Vocabulary | −0.04 (−0.11, 0.02) | 0.01 (−0.05, 0.06) | 0.01 (−0.03, 0.04) | ||
Pattern Construction | <0.01 (−0.08, 0.07) | 0.03 (−0.06, 0.11) | −0.01 (−0.05, 0.02) | ||
7 years (MCS4) | Pattern Construction | −0.05 (−0.13, 0.03) | 0.02 (−0.05, 0.08) | 0.01 (−0.03, 0.05) | |
Word Reading | 0.07 (−0.01, 0.14) | <0.01 (−0.06, 0.06) | 0.02 (−0.01, 0.06) | ||
Progress in Maths | 0.02 (−0.08, 0.12) | −0.01 (−0.09, 0.07) | −0.02 (−0.06, 0.03) | ||
11 years (MCS5) | Verbal Similarities | 0.06 (−0.07, 0.20) | −0.01 (−0.11, 0.09) | −0.02 (−0.08, 0.03) | |
14 years (MCS6) | Vocabulary Test | 0.03 (−0.05, 0.11) | −0.02 (−0.09, 0.04) | 0.02 (−0.03, 0.07) | |
17 years (MCS7) | Number Analogies | −0.03 (−0.13, 0.08) | 0.01 (−0.07, 0.10) | 0.03 (−0.03, 0.08) | |
Multi-exposure, β (lower, upper 95% CI) | 3 years (MCS2) | School Readiness | <0.01 (−0.09, 0.09) | −0.05 (−0.12, 0.02) | 0.01 (−0.03, 0.04) |
Naming Vocabulary | <0.01 (−0.07, 0.07) | −0.03 (−0.08, 0.02) | 0.02 (−0.01, 0.05) | ||
5 years (MCS3) | Picture Similarity | −0.02 (−0.13, 0.09) | −0.02 (−0.11, 0.08) | −0.01 (−0.05, 0.02) | |
Naming Vocabulary | −0.04 (−0.13, 0.05) | −0.03 (−0.09, 0.04) | 0.01 (−0.03, 0.04) | ||
Pattern Construction | −0.04 (−0.17, 0.08) | 0.01 (−0.11, 0.12) | −0.01 (−0.05, 0.03) | ||
7 years (MCS4) | Pattern Construction | −0.08 (−0.23, 0.08) | 0.01 (−0.09, 0.11) | 0.02 (−0.02, 0.06) | |
Word Reading | −0.01 (−0.13, 0.11) | −0.03 (−0.11, 0.04) | 0.02 (−0.01, 0.06) | ||
Progress in Maths | −0.06 (−0.22, 0.09) | −0.05 (−0.16, 0.05) | −0.01 (−0.05, 0.03) | ||
11 years (MCS5) | Verbal Similarities | 0.08 (−0.10, 0.26) | 0.02 (−0.10, 0.15) | −0.04 (−0.09, 0.01) | |
14 years (MCS6) | Vocabulary Test | −0.08 (−0.23, 0.08) | −0.09 (−0.21, 0.02) | 0.03 (−0.03, 0.09) | |
17 years (MCS7) | Number Analogies | −0.02 (−0.19, 0.15) | 0.04 (−0.09, 0.16) | 0.03 (−0.03, 0.08) | |
Trajectory, β (lower, upper 95% CI) | 5 years (MCS3) | Picture Similarity | 0.11 (0.01, 0.21) | 0.05 (−0.03, 0.13) | −0.02 (−0.06, 0.01) |
Naming Vocabulary | −0.05 (−0.12, 0.02) | <0.01 (−0.05, 0.06) | <0.01 (−0.03, 0.04) | ||
Pattern Construction | 0.09 (−0.02, 0.19) | 0.09 (−0.01, 0.19) | −0.01 (−0.05, 0.03) | ||
7 years (MCS4) | Pattern Construction | −0.03 (−0.12, 0.07) | −0.02 (−0.07, 0.04) | 0.02 (−0.02, 0.06) | |
Word Reading | 0.04 (−0.04, 0.13) | −0.01 (−0.06, 0.05) | 0.01 (−0.03, 0.05) | ||
Progress in Maths | −0.02 (−0.13, 0.10) | −0.02 (−0.08, 0.05) | −0.01 (−0.05, 0.04) | ||
11 years (MCS5) | Verbal Similarities | 0.02 (−0.10, 0.14) | 0.02 (−0.07, 0.11) | −0.03 (−0.07, 0.01) | |
14 years (MCS6) | Vocabulary Test | <0.01 (−0.10, 0.10) | <0.01 (−0.08, 0.07) | 0.06 (0.02, 0.11) | |
17 years (MCS7) | Number Analogies | −0.08 (−0.22, 0.07) | <0.01 (−0.06, 0.07) | 0.01 (−0.04, 0.05) |
Appendix D
References
- Thangavel, P.; Park, D.; Lee, Y.C. Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview. Int. J. Environ. Res. Public Health 2022, 19, 7511. [Google Scholar] [CrossRef] [PubMed]
- van Kempen, E.; Fischer, P.; Janssen, N.; Houthuijs, D.; van Kamp, I.; Stansfeld, S.; Cassee, F. Neurobehavioral effects of exposure to traffic-related air pollution and transportation noise in primary schoolchildren. Environ. Res. 2012, 115, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Asta, F.; Michelozzi, P.; Cesaroni, G.; De Sario, M.; Davoli, M.; Porta, D. Green spaces and cognitive development at age 7 years in a rome birth cohort: The mediating role of nitrogen dioxide. Environ. Res. 2021, 196, 110358. [Google Scholar] [CrossRef] [PubMed]
- Hankey, S.; Marshall, J.D. Urban Form, Air Pollution, and Health. Curr. Environ. Health Rep. 2017, 4, 491–503. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Hoehn, R. Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environ. Pollut. 2013, 178, 395–402. [Google Scholar] [CrossRef]
- Vilcins, D.; Sly, P.D.; Scarth, P.; Mavoa, S. Green space in health research: An overview of common indicators of greenness. Rev. Environ. Health 2022, 39, 221–231. [Google Scholar] [CrossRef]
- Lopuszanska, U.; Samardakiewicz, M. The Relationship Between Air Pollution and Cognitive Functions in Children and Adolescents: A Systematic Review. Cogn. Behav. Neurol. 2020, 33, 157–178. [Google Scholar] [CrossRef]
- Thompson, R.; Smith, R.B.; Bou Karim, Y.; Shen, C.; Drummond, K.; Teng, C.; Toledano, M.B. Noise pollution and human cognition: An updated systematic review and meta-analysis of recent evidence. Environ. Int. 2022, 158, 106905. [Google Scholar] [CrossRef] [PubMed]
- Vella-Brodrick, D.A.; Gilowska, K. Effects of Nature (Greenspace) on Cognitive Functioning in School Children and Adolescents: A Systematic Review. Educ. Psychol. Rev. 2022, 34, 1217–1254. [Google Scholar] [CrossRef]
- Oudin, A. Short review: Air pollution, noise and lack of greenness as risk factors for Alzheimer’s disease-epidemiologic and experimental evidence. Neurochem. Int. 2020, 134, 104646. [Google Scholar] [CrossRef]
- Hurtado-Diaz, M.; Riojas-Rodriguez, H.; Rothenberg, S.J.; Schnaas-Arrieta, L.; Kloog, I.; Just, A.; Hernandez-Bonilla, D.; Wright, R.O.; Tellez-Rojo, M.M. Prenatal PM2.5 exposure and neurodevelopment at 2 years of age in a birth cohort from Mexico city. Int. J. Hyg. Environ. Health 2021, 233, 113695. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Loftus, C.T.; Szpiro, A.A.; Young, M.T.; Hazlehurst, M.F.; Murphy, L.E.; Tylavsky, F.A.; Mason, W.A.; LeWinn, K.Z.; Sathyanarayana, S.; et al. Associations of Pre- and Postnatal Air Pollution Exposures with Child Behavioral Problems and Cognitive Performance: A U.S. Multi-Cohort Study. Environ. Health Perspect. 2022, 130, 67008. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, S.H.; Geron, M.; Mathilda Chiu, Y.H.; Gershon, R.; Ho, E.; Huddleston, K.; Just, A.C.; Kloog, I.; Coull, B.A.; et al. Prenatal exposure to PM2.5 and childhood cognition: Accounting for between-site heterogeneity in a pooled analysis of ECHO cohorts in the Northeastern United States. Environ. Res. 2022, 214, 114163. [Google Scholar] [CrossRef]
- Lertxundi, A.; Andiarena, A.; Martinez, M.D.; Ayerdi, M.; Murcia, M.; Estarlich, M.; Guxens, M.; Sunyer, J.; Julvez, J.; Ibarluzea, J. Prenatal exposure to PM2.5 and NO2 and sex-dependent infant cognitive and motor development. Environ. Res. 2019, 174, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Tuvblad, C.; Younan, D.; Franklin, M.; Lurmann, F.; Wu, J.; Baker, L.A.; Chen, J.C. Socioeconomic disparities and sexual dimorphism in neurotoxic effects of ambient fine particles on youth IQ: A longitudinal analysis. PLoS ONE 2017, 12, e0188731. [Google Scholar] [CrossRef]
- Seifi, M.; Yunesian, M.; Naddafi, K.; Nabizadeh, R.; Dobaradaran, S.; Ziyarati, M.T.; Nazmara, S.; Yekaninejad, M.S.; Mahvi, A.H. Exposure to ambient air pollution and socio-economic status on intelligence quotient among schoolchildren in a developing country. Environ. Sci. Pollut. Res. Int. 2022, 29, 2024–2034. [Google Scholar] [CrossRef] [PubMed]
- Basagana, X.; Esnaola, M.; Rivas, I.; Amato, F.; Alvarez-Pedrerol, M.; Forns, J.; Lopez-Vicente, M.; Pujol, J.; Nieuwenhuijsen, M.; Querol, X.; et al. Neurodevelopmental Deceleration by Urban Fine Particles from Different Emission Sources: A Longitudinal Observational Study. Environ. Health Perspect. 2016, 124, 1630–1636. [Google Scholar] [CrossRef] [PubMed]
- Gui, Z.; Cai, L.; Zhang, J.; Zeng, X.; Lai, L.; Lv, Y.; Huang, C.; Chen, Y. Exposure to ambient air pollution and executive function among Chinese primary schoolchildren. Int. J. Hyg. Environ. Health 2020, 229, 113583. [Google Scholar] [CrossRef]
- Alvarez-Pedrerol, M.; Rivas, I.; Lopez-Vicente, M.; Suades-Gonzalez, E.; Donaire-Gonzalez, D.; Cirach, M.; de Castro, M.; Esnaola, M.; Basagana, X.; Dadvand, P.; et al. Impact of commuting exposure to traffic-related air pollution on cognitive development in children walking to school. Environ. Pollut. 2017, 231, 837–844. [Google Scholar] [CrossRef]
- Costa, L.G.; Cole, T.B.; Dao, K.; Chang, Y.C.; Coburn, J.; Garrick, J.M. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol. Ther. 2020, 210, 107523. [Google Scholar] [CrossRef]
- Cserbik, D.; Chen, J.C.; McConnell, R.; Berhane, K.; Sowell, E.R.; Schwartz, J.; Hackman, D.A.; Kan, E.; Fan, C.C.; Herting, M.M. Fine particulate matter exposure during childhood relates to hemispheric-specific differences in brain structure. Environ. Int. 2020, 143, 105933. [Google Scholar] [CrossRef] [PubMed]
- Guxens, M.; Lubczynska, M.J.; Muetzel, R.L.; Dalmau-Bueno, A.; Jaddoe, V.W.V.; Hoek, G.; van der Lugt, A.; Verhulst, F.C.; White, T.; Brunekreef, B.; et al. Air Pollution Exposure during Fetal Life, Brain Morphology, and Cognitive Function in School-Age Children. Biol. Psychiatry 2018, 84, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Bolanis, D.; Orri, M.; Vergunst, F.; Bouchard, S.; Robitaille, E.; Philippe, F.; Ouellet-Morin, I.; Girard, A.; Paquin, V.; Gauvin, L.; et al. Increased urban greenspace in childhood associated with lower inattention deficit among adolescents. Soc. Psychiatry Psychiatr. Epidemiol. 2023, 14, 947–956. [Google Scholar] [CrossRef] [PubMed]
- Dockx, Y.; Bijnens, E.M.; Luyten, L.; Peusens, M.; Provost, E.; Rasking, L.; Sleurs, H.; Hogervorst, J.; Plusquin, M.; Casas, L.; et al. Early life exposure to residential green space impacts cognitive functioning in children aged 4 to 6 years. Environ. Int. 2022, 161, 107094. [Google Scholar] [CrossRef]
- Flouri, E.; Papachristou, E.; Midouhas, E. The role of neighbourhood greenspace in children’s spatial working memory. Br. J. Educ. Psychol. 2019, 89, 359–373. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, M.P.; Shoaff, J.; Kioumourtzoglou, M.A.; Korrick, S.; Rifas-Shiman, S.L.; Hivert, M.F.; Oken, E.; James, P. Early-Life Exposure to Green Space and Mid-Childhood Cognition in the Project Viva Cohort, Massachusetts. Am. J. Epidemiol. 2022, 191, 115–125. [Google Scholar] [CrossRef]
- Dadvand, P.; Tischer, C.; Estarlich, M.; Llop, S.; Dalmau-Bueno, A.; Lopez-Vicente, M.; Valentin, A.; de Keijzer, C.; Fernandez-Somoano, A.; Lertxundi, N.; et al. Lifelong Residential Exposure to Green Space and Attention: A Population-based Prospective Study. Environ. Health Perspect. 2017, 125, 097016. [Google Scholar] [CrossRef] [PubMed]
- Reuben, A.; Arseneault, L.; Belsky, D.W.; Caspi, A.; Fisher, H.L.; Houts, R.M.; Moffitt, T.E.; Odgers, C. Residential neighborhood greenery and children’s cognitive development. Soc. Sci. Med. 2019, 230, 271–279. [Google Scholar] [CrossRef]
- Maes, M.J.A.; Pirani, M.; Booth, E.R.; Shen, C.; Milligan, B.; Jones, K.E.; Toledano, M.B. Benefit of woodland and other natural environments for adolescents’ cognition and mental health. Nat. Sustain. 2021, 4, 851–858. [Google Scholar] [CrossRef]
- Bijnens, E.M.; Vos, S.; Verheyen, V.V.; Bruckers, L.; Covaci, A.; De Henauw, S.; Den Hond, E.; Loots, I.; Nelen, V.; Plusquin, M.; et al. Higher surrounding green space is associated with better attention in Flemish adolescents. Environ. Int. 2022, 159, 107016. [Google Scholar] [CrossRef]
- de Keijzer, C.; Gascon, M.; Nieuwenhuijsen, M.J.; Dadvand, P. Long-Term Green Space Exposure and Cognition Across the Life Course: A Systematic Review. Curr. Environ. Health Rep. 2016, 3, 468–477. [Google Scholar] [CrossRef]
- Matheson, M.; Clark, C.; Martin, R.; van Kempen, E.; Haines, M.; Barrio, I.L.; Hygge, S.; Stansfeld, S. The effects of road traffic and aircraft noise exposure on children’s episodic memory: The RANCH project. Noise Health 2010, 12, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Klatte, M.; Spilski, J.; Mayerl, J.; Mohler, U.; Lachmann, T.; Bergstrom, K. Effects of aircraft noise on reading and quality of life in primary school children in Germany: Results from the NORAH study. Environ. Behav. 2017, 49, 390–424. [Google Scholar] [CrossRef]
- Padungtod, C.; Ekpanyaskul, C.; Nuchpongsai, P.; Laemun, N.; Matsui, T.; Hiramatsu, K. Aircraft noise exposure and its effects on quality of life and cognitive function among THAI residents. Epidemiology 2011, 22, S259. [Google Scholar] [CrossRef]
- Raess, M.; Valeria Maria Brentani, A.; Fluckiger, B.; Ledebur de Antas de Campos, B.; Fink, G.; Roosli, M. Association between community noise and children’s cognitive and behavioral development: A prospective cohort study. Environ. Int. 2022, 158, 106961. [Google Scholar] [CrossRef]
- Belojevic, G.; Evans, G.W.; Paunovic, K.; Jakovljevic, B. Traffic noise and executive functioning in urban primary school children: The moderating role of gender. J. Environ. Psychol. 2012, 32, 337–341. [Google Scholar] [CrossRef]
- Stansfeld, S.; Hygge, S.; Clark, C.; Alfred, T. Night time aircraft noise exposure and children’s cognitive performance. Noise Health 2010, 12, 255–262. [Google Scholar] [CrossRef]
- Liao, J.; Zhang, B.; Xia, W.; Cao, Z.; Zhang, Y.; Liang, S.; Hu, K.; Xu, S.; Li, Y. Residential exposure to green space and early childhood neurodevelopment. Environ. Int. 2019, 128, 70–76. [Google Scholar] [CrossRef]
- Dadvand, P.; Nieuwenhuijsen, M.J.; Esnaola, M.; Forns, J.; Basagana, X.; Alvarez-Pedrerol, M.; Rivas, I.; Lopez-Vicente, M.; De Castro Pascual, M.; Su, J.; et al. Green spaces and cognitive development in primary schoolchildren. Proc. Natl. Acad. Sci. USA 2015, 112, 7937–7942. [Google Scholar] [CrossRef]
- Jarvis, I.; Davis, Z.; Sbihi, H.; Brauer, M.; Czekajlo, A.; Davies, H.W.; Gergel, S.E.; Guhn, M.; Jerrett, M.; Koehoorn, M.; et al. Assessing the association between lifetime exposure to greenspace and early childhood development and the mediation effects of air pollution and noise in Canada: A population-based birth cohort study. Lancet Planet. Health 2021, 5, e709–e717. [Google Scholar] [CrossRef]
- Foraster, M.; Esnaola, M.; Lopez-Vicente, M.; Rivas, I.; Alvarez-Pedrerol, M.; Persavento, C.; Sebastian-Galles, N.; Pujol, J.; Dadvand, P.; Sunyer, J. Exposure to road traffic noise and cognitive development in schoolchildren in Barcelona, Spain: A population-based cohort study. PLoS Med. 2022, 19, e1004001. [Google Scholar] [CrossRef]
- Anabitarte, A.; Ibarluzea, J.; Garcia-Baquero, G.; Santa Marina, L.; Fernandez-Somoano, A.; Tardon, A.; Nieuwenhuijsen, M.; de Castro, M.; Dadvand, P.; Lertxundi, A. Effects of residential greenness on attention in a longitudinal study at 8 and 11–13 years. Environ. Res. 2022, 210, 112994. [Google Scholar] [CrossRef]
- Clark, C.; Crombie, R.; Head, J.; van Kamp, I.; van Kempen, E.; Stansfeld, S.A. Does traffic-related air pollution explain associations of aircraft and road traffic noise exposure on children’s health and cognition? A secondary analysis of the United Kingdom sample from the RANCH project. Am. J. Epidemiol. 2012, 176, 327–337. [Google Scholar] [CrossRef]
- Midouhas, E.; Kokosi, T.; Flouri, E. Outdoor and indoor air quality and cognitive ability in young children. Environ. Res. 2018, 161, 321–328. [Google Scholar] [CrossRef]
- Francesconi, M.; Flouri, E.; Kirkbride, J.B. The role of the built environment in the trajectories of cognitive ability and mental health across early and middle childhood: Results from a street audit tool in a general-population birth cohort. J. Environ. Psychol. 2022, 82, 101847. [Google Scholar] [CrossRef]
- Milojevic, A.; Dutey-Magni, P.; Dearden, L.; Wilkinson, P. Lifelong exposure to air pollution and cognitive development in young children: The UK Millennium Cohort Study. Environ. Res. Lett. 2021, 16, 055023. [Google Scholar] [CrossRef]
- Marmot, M.; Allen, J.; Boyce, T.; Goldblatt, P.; Morrison, J. Health Equity in England: The Marmot Review 10 Years on; Institute of Health Equity: London, UK, 2020; Available online: https://www.instituteofhealthequity.org/resources-reports/marmot-review-10-years-on/the-marmot-review-10-years-on-full-report.pdf (accessed on 28 November 2023).
- Joshi, H.; Fitzsimons, E. The UK Millennium Cohort Study: The making of a multi-purpose resource for social science and policyin the UK. Longitud. Life Course Stud. 2016, 7, 409–430. [Google Scholar] [CrossRef]
- Connelly, R.; Platt, L. Cohort profile: UK Millennium Cohort Study (MCS). Int. J. Epidemiol. 2014, 43, 1719–1725. [Google Scholar] [CrossRef]
- Department for Environment Food & Rural Affairs. Modelled Background Pollution Data. Available online: https://uk-air.defra.gov.uk/data/pcm-data (accessed on 15 November 2023).
- Ricardo Energy & Environment. Technical Report on UK Supplementary Assessment under the Air Quality Directive (2008/50/EC), the Air Quality Framework Directive (96/62/EC) and Fourth Daughter Directive (2004/107/EC) for 2019; Report for The Department for Environment, Food and Rural Affairs, The Welsh Government, The Scottish Government and The Department of the Environment for Northern Ireland: Didcot, UK, 2021; Issue 1. Available online: https://uk-air.defra.gov.uk/assets/documents/reports/cat09/2102111100_2019_PCM_technical_report.pdf (accessed on 16 November 2023).
- Copernicus Global Land Service. Normalized Difference Vegetation Index. Available online: https://land.copernicus.eu/global/products/ndvi (accessed on 1 August 2022).
- Toté, C.; Wolfs, D.; Jacobs, T. Copernicus Global Land Operations: Product User Manual Normalised Difference Vegetation Index (NDVI); Copernicus Global Land Operations: Copenhagen, Denmark, 2020; Issue I1.30; Available online: https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_PUM_LTS-STS_NDVI1km-V3_I1.30.pdf (accessed on 21 November 2023).
- Department for Environment Food & Rural Affairs. Strategic Noise Mapping. Explaining Which Noise Sources Were Included in 2012 Noise Maps; Department for Environment Food & Rural Affairs: London, UK, 2015. Available online: https://assets.publishing.service.gov.uk/media/5a7ffbb2e5274a2e8ab4d7b3/noise-mapping-source-guidance.pdf (accessed on 21 November 2023).
- Department for Environment Food & Rural Affairs. Strategic Noise Mapping. Explaining Which Noise Sources Were Included in 2017 Noise Maps; Department for Environment Food & Rural Affairs: London, UK, 2019. Available online: https://assets.publishing.service.gov.uk/media/5f17f338d3bf7f59638d4def/strategic-noise-mapping-round3.pdf (accessed on 21 November 2023).
- Hepworth Acoustics for the Department of Environment Food and Rural Affairs. END Noise Calculations Final Report. Calculations of Noise Levels from Road and Rail Sources; Hepworth Acoustics for the Department of Environment Food and Rural Affairs: Manchester, UK, 2013. Available online: https://randd.defra.gov.uk/ProjectDetails?ProjectID=19781&FromSearch=Y&Publisher=1&SearchText=round%202&SortString=ProjectCode&SortOrder=Asc&Paging=10 (accessed on 21 November 2023).
- Mizen, A.; Lyons, J.; Milojevic, A.; Doherty, R.; Wilkinson, P.; Carruthers, D.; Akbari, A.; Lake, I.; Davies, G.A.; Al Sallakh, M.; et al. Impact of air pollution on educational attainment for respiratory health treated students: A cross sectional data linkage study. Health Place 2020, 63, 102355. [Google Scholar] [CrossRef]
- Ministry of Housing Communities & Local Government. The English Indices of Deprivation 2019; Ministry of Housing Communities & Local Government: Wolverhampton, UK, 2019. Available online: https://assets.publishing.service.gov.uk/media/5dfb3d7ce5274a3432700cf3/IoD2019_FAQ_v4.pdf (accessed on 29 April 2024).
- Stata Corp. Stata Survey Data Reference Manual, Release 15; Stata Corp.: College Station, TX, USA, 2017; Available online: www.stata.com/manuals15/svy.pdf (accessed on 5 June 2024).
- Kusters, M.S.W.; Essers, E.; Muetzel, R.; Ambros, A.; Tiemeier, H.; Guxens, M. Air pollution exposure during pregnancy and childhood, cognitive function, and emotional and behavioral problems in adolescents. Environ. Res. 2022, 214, 113891. [Google Scholar] [CrossRef]
- Beere, P.; Kingham, S. Assessing the relationship between greenspace and academic achievement in urban New Zealand primary schools. N. Z. Geogr. 2017, 73, 155–165. [Google Scholar] [CrossRef]
- Markevych, I.; Feng, X.; Astell-Burt, T.; Standl, M.; Sugiri, D.; Schikowski, T.; Koletzko, S.; Herberth, G.; Bauer, C.P.; von Berg, A.; et al. Residential and school greenspace and academic performance: Evidence from the GINIplus and LISA longitudinal studies of German adolescents. Environ. Pollut. 2019, 245, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Tallis, H.; Bratman, G.N.; Samhouri, J.F.; Fargione, J. Are California Elementary School Test Scores More Strongly Associated with Urban Trees Than Poverty? Front. Psychol. 2018, 9, 2074. [Google Scholar] [CrossRef]
- Pujol, S.; Levain, J.P.; Houot, H.; Petit, R.; Berthillier, M.; Defrance, J.; Lardies, J.; Masselot, C.; Mauny, F. Association between ambient noise exposure and school performance of children living in an urban area: A cross-sectional population-based study. J. Urban Health 2014, 91, 256–271. [Google Scholar] [CrossRef]
- Xie, H.; Kang, J.; Tompsett, R. The impacts of environmental noise on the academic achievements of secondary school students in Greater London. Appl. Acoust. 2011, 72, 551–555. [Google Scholar] [CrossRef]
- Tzivian, L. Traffic Noise Exposure and Mild Cognitive Impairment. Alzheimer’s Dement. 2018, 14, P1381. [Google Scholar] [CrossRef]
- Iglesias-Vazquez, L.; Binter, A.C.; Canals, J.; Hernandez-Martinez, C.; Voltas, N.; Ambros, A.; Fernandez-Barres, S.; Perez-Crespo, L.; Guxens, M.; Arija, V. Maternal exposure to air pollution during pregnancy and child’s cognitive, language, and motor function: ECLIPSES study. Environ. Res. 2022, 212, 113501. [Google Scholar] [CrossRef]
- van Wel, L.; van Dommelen, P.; Zuurbier, M.; Heinen, D.; Odink, J.; Bezem, J.; Verkerk, P.H.; Pronk, A.; Hoek, G.; Kuijpers, E. Exploring the Effects of Environmental Factors on the Development of 0–4-Year Old Children in The Netherlands. Int. J. Environ. Res. Public Health 2021, 18, 7782. [Google Scholar] [CrossRef]
- Ruiz, J.D.C.; Quackenboss, J.J.; Tulve, N.S. Contributions of a child’s built, natural, and social environments to their general cognitive ability: A systematic scoping review. PLoS ONE 2016, 11, e0147741. [Google Scholar] [CrossRef]
MCS2 Age 3 (n = 8312) | MCS3 Age 5 (n = 5172) | MCS4 Age 7 (n = 5171) | MCS5 Age 11 (n = 3881) | MCS6 Age 14 (n = 2661) | MCS7 Age 17 (n = 2261) | ||
---|---|---|---|---|---|---|---|
Child-level | |||||||
Relative age, months | Median (IQR) | 6 (6) | 6 (6) | 6 (6) | 5 (6) | 5 (6) | 5 (5) |
Gender, n (%) | Male Female | 4114 (49.5) 4198 (50.5) | 2615 (50.6) 2557 (49.4) | 2596 (50.2) 2575 (49.8) | 1934 (49.8) 1947 (50.2) | 1307 (49.1) 1354 (50.9) | 1068 (47.2) 1193 (52.8) |
Ethnicity, n (%) | White Mixed Indian Pakistani and Bangladeshi Black Other | 6571 (79.1) 319 (3.8) 322 (3.9) 647 (7.8) 336 (4) 117 (1.4) | 3816 (73.8) 198 (3.8) 243 (4.7) 509 (9.8) 283 (5.5) 123 (2.4) | 3742 (72.4) 207 (4) 252 (4.9) 549 (10.6) 295 (5.7) 126 (2.4) | 2695 (69.4) 171 (4.4) 213 (5.5) 473 (12.2) 230 (5.9) 99 (2.6) | 1791 (67.3) 184 (6.9) 155 (5.8) 267 (10) 163 (6.1) 101 (3.8) | 1477 (65.3) 161 (7.1) 145 (6.4) 233 (10.3) 150 (6.6) 95 (4.2) |
Birthweight, n (%) | Normal Low Unknown | 7307 (87.9) 601 (7.2) 404 (4.9) | 4534 (87.7) 399 (7.7) 239 (4.6) | 4533 (87.7) 396 (7.7) 242 (4.7) | 3393 (87.4) 309 (8) 179 (4.6) | 2342 (88) 201 (7.6) 118 (4.4) | 2000 (88.5) 161 (7.1) 100 (4.4) |
Family-level | |||||||
Language, n (%) | English only Mostly English Other/unknown | 6905 (83.1) 1165 (14) 242 (2.9) | 4142 (80.1) 665 (12.9) 365 (7.1) | 4108 (79.4) 719 (13.9) 344 (6.7) | 3076 (79.3) 545 (14) 260 (6.7) | 2153 (80.9) 347 (13) 161 (6.1) | 1789 (79.1) 332 (14.7) 140 (6.2) |
Number of siblings, n (%) | 0 1 2 3+/unknown | 2081 (25) 3842 (46.2) 1549 (18.6) 840 (10.1) | 821 (15.9) 2397 (46.4) 1258 (24.3) 696 (13.5) | 604 (11.7) 2288 (44.3) 1435 (27.8) 844 (16.3) | 441 (11.4) 1635 (42.1) 1065 (27.4) 740 (19.1) | 357 (13.4) 1172 (44) 689 (25.9) 443 (16.7) | 438 (19.4) 1003 (44.4) 521 (23) 299 (13.2) |
Maternal age | Median (IQR) | 31 (8) | 31 (8) | 31 (8) | 32 (9) | 32 (8) | 32 (8) |
Breastfeeding, n (%) | Yes No Unknown | 5854 (70.4) 2059 (24.8) 399 (4.8) | 3658 (70.7) 1279 (24.7) 235 (4.5) | 3651 (70.6) 1283 (24.8) 237 (4.6) | 2796 (72) 911 (23.5) 174 (4.5) | 1986 (74.6) 561 (21.1) 114 (4.3) | 1740 (77) 426 (18.8) 95 (4.2) |
Household income, n (%) | 1 (lowest) 2 3 4 5 (highest) | 1735 (20.9) 1634 (19.7) 1626 (19.6) 1600 (19.3) 1717 (20.7) | 1196 (23.1) 1067 (20.6) 1019 (19.7) 973 (18.8) 917 (17.7) | 1154 (22.3) 1001 (19.4) 1045 (20.2) 1002 (19.4) 969 (18.7) | 811 (20.9) 782 (20.2) 735 (18.9) 784 (20.2) 769 (19.8) | 463 (17.4) 421 (15.8) 480 (18) 621 (23.3) 676 (25.4) | 350 (15.5) 346 (15.3) 410 (18.1) 541 (23.9) 614 (27.2) |
Main parent’s education, n (%) | NVQ level 1 NVQ level 2 NVQ level 3 NVQ level 4 NVQ level 5 Other None/unknown | 718 (8.6) 2390 (28.8) 1166 (14) 2399 (28.9) 328 (4) 258 (3.1) 1053 (12.7) | 422 (8.2) 1521 (29.4) 731 (14.1) 1372 (26.5) 173 (3.3) 189 (3.7) 764 (14.8) | 402 (7.8) 1474 (28.5) 761 (14.7) 1377 (26.6) 256 (5) 189 (3.7) 712 (13.8) | 267 (6.9) 984 (25.4) 587 (15.1) 1115 (28.7) 290 (7.5) 157 (4.1) 481 (12.4) | 141 (5.3) 588 (22.1) 362 (13.6) 887 (33.3) 288 (10.8) 99 (3.7) 296 (11.1) | 113 (5) 469 (20.7) 323 (14.3) 788 (34.9) 262 (11.6) 83 (3.7) 223 (9.9) |
Partner parent’s education, n (%) | NVQ level 1 NVQ level 2 NVQ level 3 NVQ level 4 NVQ level 5 Other None Unknown | 535 (6.4) 1897 (22.8) 1019 (12.3) 2132 (25.7) 460 (5.5) 321 (3.9) 897 (10.8) 1051 (12.6) | 339 (6.6) 1206 (23.3) 631 (12.2) 1231 (23.8) 269 (5.2) 239 (4.6) 664 (12.8) 593 (11.5) | 327 (6.3) 1179 (22.8) 632 (12.2) 1212 (23.4) 326 (6.3) 247 (4.8) 636 (12.3) 612 (11.8) | 236 (6.1) 880 (22.7) 471 (12.1) 902 (23.2) 324 (8.4) 202 (5.2) 439 (11.3) 427 (11) | 133 (5) 538 (20.2) 347 (13) 694 (26.1) 274 (10.3) 124 (4.7) 260 (9.8) 291 (10.9) | 104 (4.6) 436 (19.3) 296 (13.1) 638 (28.2) 258 (11.4) 99 (4.4) 220 (9.7) 210 (9.3) |
School-level | |||||||
Gender, n (%) | Male Female Mixed | 3 (0.1) 5168 (99.9) | 3 (0.1) 3878 (99.9) | 482 (1.4) 711 (2.1) 32,809 (96.5) | 101 (4.5) 202 (8.9) 1958 (86.6) | ||
Ethnicity %, median (IQR) | White Black South Asian Chinese Other | 63.6 (42.4) 0.6 (3.6) 1.7 (9.3) <0.1 (0.4) 2.9 (3.9) | 64.3 (48.2) 0.6 (4.9) 2.4 (14.1) <0.1 (<0.1) 3.6 (5.2) | 80.4 (49.9) 1.4 (7.8) 3.4 (18.7) 0.2 (0.4) 5 (3) | 78 (53.3) 2.2 (8.6) 4.1 (17.6) 0.3 (0.4) 6.1 (6.8) | ||
Non-English language % | Median (IQR) | 6.2 (32.3) | 10.1 (39.9) | 10.6 (31.3) | 10.9 (33.1) | ||
FSM eligible pupils % | Median (IQR) | 12.7 (20.5) | 16.9 (19.1) | 12 (15.2) | 9.8 (11) | ||
Teacher–pupil ratio | Median (IQR) | 22.2 (3.7) | 21.1 (3.8) | 15 (2.5) | 16.2 (2.6) | ||
TA–teacher ratio | Median (IQR) | 0.7 (0.5) | 0.7 (0.4) | 0.2 (0.1) | 0.2 (0.2) | ||
Institution type, n (%) | Academy Community Voluntary Foundation Special school PRU/alternative Tech College Free and Studio | 3 (0.1) 3652 (70.6) 1418 (27.4) 92 (1.8) 6 (0.1) | 9 (0.2) 2597 (66.9) 1059 (27.3) 198 (5.1) 18 (0.5) | 1508 (56.7) 615 (23.1) 335 (12.6) 164 (6.2) 17 (0.6) 3 (0.1) 19 (0.7) | 1317 (58.3) 488 (21.6) 287 (12.7) 133 (5.9) 13 (0.6) 23 (1) | ||
Area-level | |||||||
Region, n (%) | North East North West Yorkshire and the Humber East Midlands West Midlands East of England London South East South West | 403 (4.9) 1111 (13.4) 983 (11.8) 722 (8.7) 916 (11) 826 (9.9) 1246 (15) 1381 (16.6) 724 (8.7) | 211 (4.1) 732 (14.2) 646 (12.5) 420 (8.1) 711 (13.8) 257 (5) 1023 (19.8) 881 (17) 291 (5.6) | 210 (4.1) 736 (14.2) 664 (12.8) 417 (8.1) 735 (14.2) 254 (4.9) 1001 (19.4) 886 (17.1) 268 (5.2) | 129 (3.3) 525 (13.5) 509 (13.1) 300 (7.7) 518 (13.4) 200 (5.2) 807 (20.8) 717 (18.5) 176 (4.5) | 66 (2.5) 443 (16.7) 256 (9.6) 164 (6.2) 364 (13.7) 107 (4) 595 (22.4) 521 (19.6) 145 (5.5) | 50 (2.2) 363 (16.1) 199 (8.8) 130 (5.8) 285 (12.6) 104 (4.6) 555 (24.6) 451 (20) 124 (5.5) |
Population density quintiles, n (%) | 1 (lowest) 2 3 4 5 (highest) | 1655 (19.9) 1763 (21.2) 1753 (21.1) 1699 (20.4) 1442 (17.4) | 722 (14) 1048 (20.3) 1137 (22) 1189 (23) 1076 (20.8) | 734 (14.2) 1068 (20.7) 1132 (21.9) 1174 (22.7) 1063 (20.6) | 520 (13.4) 776 (20) 878 (22.6) 896 (23.1) 811 (20.9) | 405 (15.2) 546 (20.5) 582 (21.9) 588 (22.1) 540 (20.3) | 348 (15.4) 434 (19.2) 504 (22.3) 486 (21.5) 489 (21.6) |
IDACI deciles, n (%) | 1 (lowest) 2 3 4 5 6 7 8 9 10 (highest) | 852 (10.3) 782 (9.4) 784 (9.4) 800 (9.6) 922 (11.1) 782 (9.4) 859 (10.3) 862 (10.4) 842 (10.1) 827 (10) | 654 (12.7) 496 (9.6) 539 (10.4) 530 (10.3) 557 (10.8) 470 (9.1) 528 (10.2) 517 (10) 401 (7.8) 480 (9.3) | 573 (11.1) 591 (11.4) 549 (10.6) 545 (10.5) 500 (9.7) 522 (10.1) 517 (10) 462 (8.9) 470 (9.1) 442 (8.6) | 286 (7.4) 407 (10.5) 384 (9.9) 448 (11.5) 425 (11) 444 (11.4) 435 (11.2) 327 (8.4) 334 (8.6) 391 (10.1) | 174 (6.5) 236 (8.9) 251 (9.4) 260 (9.8) 279 (10.5) 297 (11.2) 293 (11) 266 (10) 300 (11.3) 305 (11.5) | 141 (6.2) 186 (8.2) 212 (9.4) 192 (8.5) 233 (10.3) 271 (12) 257 (11.4) 238 (10.5) 268 (11.9) 263 (11.6) |
MCS2 Age 3 (n = 8312) | MCS3 Age 5 (n = 5172) | MCS4 Age 7 (n = 5171) | MCS5 Age 11 (n = 3881) | MCS6 Age 14 (n = 2661) | MCS7 Age 17 (n = 2261) | ||
---|---|---|---|---|---|---|---|
N of children | Lifetime | 8312 | 5172 | 5171 | 3881 | 2661 | 2261 |
1-year lag | 8455 | 9673 | 7792 | 5859 | 5702 | 4797 | |
Trajectory | 7598 | 7792 | 5710 | 5413 | 4580 | ||
PM2.5, µg/m3, Median (IQR) | Lifetime | 13.18 (2.34) | 13.07 (2.46) | 12.51 (2.47) | 12.36 (2.29) | 11.99 (2.22) | 11.75 (2.38) |
1-year lag | 15.2 (2.66) | 12.54 (2.8) | 10.49 (2.65) | 12.25 (2.31) | 11.16 (1.91) | 9.56 (2.83) | |
Trajectory | 12.24 (2.6) | 10.76 (2.64) | 11.64 (2.11) | 10.7 (1.79) | 9.87 (1.45) | ||
Greenness, NDVI, Median (IQR) | Lifetime | 0.47 (0.11) | 0.47 (0.12) | 0.47 (0.11) | 0.47 (0.11) | 0.48 (0.12) | 0.48 (0.11) |
1-year lag | 0.46 (0.11) | 0.49 (0.13) | 0.5 (0.11) | 0.49 (0.11) | 0.52 (0.11) | 0.54 (0.1) | |
Trajectory | 0.5 (0.12) | 0.5 (0.11) | 0.49 (0.11) | 0.51 (0.11) | 0.53 (0.1) | ||
Road noise, dB, Median (IQR) | Lifetime | 43.28 (6.74) | 43.5 (6.35) | 43.79 (6.02) | 44.08 (5.53) | 44.24 (5.67) | 44.36 (5.53) |
1-year lag | 43.2 (6.92) | 43.34 (6.76) | 44.12 (6.13) | 44.12 (5.96) | 44.37 (6.18) | 44.42 (6.29) | |
Trajectory | 43.61 (6.43) | 44.19 (6.05) | 44.15 (5.85) | 44.4 (6.15) | 44.41 (6.24) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garkov, S.; Dearden, L.; Armstrong, B.; Milojevic, A. The Relationship between PM2.5, Greenness, and Road Noise Exposures and Children’s Cognitive Performance in England: The Millennium Cohort Study. Environments 2024, 11, 213. https://doi.org/10.3390/environments11100213
Garkov S, Dearden L, Armstrong B, Milojevic A. The Relationship between PM2.5, Greenness, and Road Noise Exposures and Children’s Cognitive Performance in England: The Millennium Cohort Study. Environments. 2024; 11(10):213. https://doi.org/10.3390/environments11100213
Chicago/Turabian StyleGarkov, Sophia, Lorraine Dearden, Ben Armstrong, and Ai Milojevic. 2024. "The Relationship between PM2.5, Greenness, and Road Noise Exposures and Children’s Cognitive Performance in England: The Millennium Cohort Study" Environments 11, no. 10: 213. https://doi.org/10.3390/environments11100213
APA StyleGarkov, S., Dearden, L., Armstrong, B., & Milojevic, A. (2024). The Relationship between PM2.5, Greenness, and Road Noise Exposures and Children’s Cognitive Performance in England: The Millennium Cohort Study. Environments, 11(10), 213. https://doi.org/10.3390/environments11100213