Artificial Intelligence Perceptions and Technostress in Staff Radiologists: The Mediating Role of Artificial Intelligence Acceptance and the Moderating Role of Self-Efficacy
Abstract
1. Introduction
2. Theoretical Foundation
2.1. Technology Acceptance in Healthcare: From TAM to UTAUT
2.2. Technostress in the Digital Healthcare Environment
2.3. Self-Efficacy as a Boundary Condition
2.4. Integrative Model and Research Framework
3. Hypothesis Development
3.1. AI Perceptions and Technostress: A Job Demands-Resources Perspective
3.2. The Mediating Role of AI Acceptance
3.3. The Moderating Role of Self-Efficacy
4. Materials and Methods
4.1. Participants and Procedure
4.2. Measures
4.3. Statistical Methods
5. Results
6. Discussion
6.1. Theoretical Contributions
6.2. Practical Implications
7. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AIC | Akaike Information Criterion |
BIC | Bayesian Information Criterion |
CFA | Confirmatory Factor Analysis |
CFI | Comparative Fit Index |
EFA | Exploratory Factor Analysis |
JD-R | Job Demands-Resources |
KMO | Kaiser–Meyer–Olkin |
RMSEA | Root Mean Square Error of Approximation |
SRMR | Standardized Root Mean Square Residual |
TAM | Technology Acceptance Model |
TLI | Tucker–Lewis Index |
UTAUT | Unified Theory of Acceptance and Use of Technology |
References
- Ammenwerth, E. (2019). Technology acceptance models in health informatics: TAM and UTAUT. In P. Scott, N. de Keizer, & A. Georgiou (Eds.), Applied interdisciplinary theory in health informatics: A knowledge base for practitioners (Vol. 263, pp. 64–71). IOS Press. [Google Scholar]
- Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411–423. [Google Scholar] [CrossRef]
- Ayyagari, R., Grover, V., & Purvis, R. (2011). Technostress: Technological antecedents and implications. MIS Quarterly, 35(4), 831. [Google Scholar] [CrossRef]
- Bail, C., Harth, V., & Mache, S. (2023). Digitalization in urology—A multimethod study of the relationships between physicians’ technostress, burnout, work engagement and job satisfaction. Healthcare, 11(16), 2255. [Google Scholar] [CrossRef]
- Bakker, A. B., Demerouti, E., & Sanz-Vergel, A. (2023). Job demands–resources theory: Ten years later. Annual Review of Organizational Psychology and Organizational Behavior, 10(1), 25–53. [Google Scholar] [CrossRef]
- Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37(2), 122–147. [Google Scholar] [CrossRef]
- Benlian, A. (2020). A daily field investigation of technology-driven spillovers from work to home. MIS Quarterly, 44(3), 1259–1300. [Google Scholar] [CrossRef]
- Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246. [Google Scholar] [CrossRef]
- Califf, C. B., Sarker, S., & Sarker, S. (2020). The bright and dark sides of technostress: A mixed-methods study involving healthcare IT. MIS Quarterly, 44(2), 809–856. [Google Scholar] [CrossRef]
- Chang, P.-C., Zhang, W., Cai, Q., & Guo, H. (2024). Does AI-driven technostress promote or hinder employees’ artificial intelligence adoption intention? A moderated mediation model of affective reactions and technical self-efficacy. Psychology Research and Behavior Management, 17, 413–427. [Google Scholar] [CrossRef]
- Chen, N., Zhao, X., & Wang, L. (2024). The effect of job skill demands under artificial intelligence embeddedness on employees’ job performance: A moderated double-edged sword model. Behavioral Sciences, 14(10), 974. [Google Scholar] [CrossRef]
- Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. [Google Scholar] [CrossRef]
- Derevianko, A., Pizzoli, S. F. M., Pesapane, F., Rotili, A., Monzani, D., Grasso, R., Cassano, E., & Pravettoni, G. (2023). The use of artificial intelligence (AI) in the radiology field: What is the state of doctor–patient communication in cancer diagnosis? Cancers, 15(2), 470. [Google Scholar] [CrossRef]
- Fogel, A. L., & Kvedar, J. C. (2018). Artificial intelligence powers digital medicine. Npj Digital Medicine, 1(1), 5. [Google Scholar] [CrossRef]
- Goretzko, D., Siemund, K., & Sterner, P. (2024). Evaluating model fit of measurement models in confirmatory factor analysis. Educational and Psychological Measurement, 84(1), 123–144. [Google Scholar] [CrossRef]
- Hayes, A. F. (2022). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (3rd ed.). The Guilford Press. [Google Scholar]
- Hayes, A. F., & Rockwood, N. J. (2020). Conditional process analysis: Concepts, computation, and advances in the modeling of the contingencies of mechanisms. American Behavioral Scientist, 64(1), 19–54. [Google Scholar] [CrossRef]
- Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. [Google Scholar] [CrossRef]
- Huisman, M., Ranschaert, E., Parker, W., Mastrodicasa, D., Koci, M., Pinto de Santos, D., Coppola, F., Morozov, S., Zins, M., Bohyn, C., Koç, U., Wu, J., Veean, S., Fleischmann, D., Leiner, T., & Willemink, M. J. (2021). An international survey on AI in radiology in 1041 radiologists and radiology residents part 2: Expectations, hurdles to implementation, and education. European Radiology, 31(11), 8797–8806. [Google Scholar] [CrossRef] [PubMed]
- Issa, H., Jaber, J., & Lakkis, H. (2024). Navigating AI unpredictability: Exploring technostress in AI-powered healthcare systems. Technological Forecasting and Social Change, 202, 123311. [Google Scholar] [CrossRef]
- Jain, R., Garg, N., & Khera, S. N. (2022). Adoption of AI-enabled tools in social development organizations in India: An extension of UTAUT model. Frontiers in Psychology, 13, 893691. [Google Scholar] [CrossRef] [PubMed]
- Kaur, C., & Garg, U. (2023). Artificial intelligence techniques for cancer detection in medical image processing: A review. Materials Today: Proceedings, 81, 806–809. [Google Scholar] [CrossRef]
- Kelly, S., Kaye, S.-A., & Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics, 77, 101925. [Google Scholar] [CrossRef]
- Kim, D. G., & Lee, C. W. (2021). Exploring the roles of self-efficacy and technical support in the relationship between techno-stress and counter-productivity. Sustainability, 13(8), 4349. [Google Scholar] [CrossRef]
- Lambert, S. I., Madi, M., Sopka, S., Lenes, A., Stange, H., Buszello, C.-P., & Stephan, A. (2023). An integrative review on the acceptance of artificial intelligence among healthcare professionals in hospitals. Npj Digital Medicine, 6(1), 111. [Google Scholar] [CrossRef]
- Malik, N., Tripathi, S. N., Kar, A. K., & Gupta, S. (2022). Impact of artificial intelligence on employees working in industry 4.0 led organizations. International Journal of Manpower, 43(2), 334–354. [Google Scholar] [CrossRef]
- Pesapane, F., Codari, M., & Sardanelli, F. (2018). Artificial intelligence in medical imaging: Threat or opportunity? Radiologists again at the forefront of innovation in medicine. European Radiology Experimental, 2(1), 35. [Google Scholar] [CrossRef] [PubMed]
- Rouidi, M., Elouadi, A. E., Hamdoune, A., Choujtani, K., & Chati, A. (2022). TAM-UTAUT and the acceptance of remote healthcare technologies by healthcare professionals: A systematic review. Informatics in Medicine Unlocked, 32, 101008. [Google Scholar] [CrossRef]
- Schiavo, G., Businaro, S., & Zancanaro, M. (2024). Comprehension, apprehension, and acceptance: Understanding the influence of literacy and anxiety on acceptance of artificial Intelligence. Technology in Society, 77, 102537. [Google Scholar] [CrossRef]
- Shinners, L., Aggar, C., Grace, S., & Smith, S. (2020). Exploring healthcare professionals’ understanding and experiences of artificial intelligence technology use in the delivery of healthcare: An integrative review. Health Informatics Journal, 26(2), 1225–1236. [Google Scholar] [CrossRef]
- Shinners, L., Grace, S., Smith, S., Stephens, A., & Aggar, C. (2022). Exploring healthcare professionals’ perceptions of artificial intelligence: Piloting the shinners artificial intelligence perception tool. Digital Health, 8, 205520762210781. [Google Scholar] [CrossRef]
- Stoitsis, J., Valavanis, I., Mougiakakou, S. G., Golemati, S., Nikita, A., & Nikita, K. S. (2006). Computer aided diagnosis based on medical image processing and artificial intelligence methods. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 569(2), 591–595. [Google Scholar] [CrossRef]
- Tarafdar, M., Tu, Q., Ragu-Nathan, B. S., & Ragu-Nathan, T. S. (2007). The impact of technostress on role stress and productivity. Journal of Management Information Systems, 24(1), 301–328. [Google Scholar] [CrossRef]
- Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. [Google Scholar] [CrossRef]
- Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157. [Google Scholar] [CrossRef]
- Waymel, Q., Badr, S., Demondion, X., Cotten, A., & Jacques, T. (2019). Impact of the rise of artificial intelligence in radiology: What do radiologists think? Diagnostic and Interventional Imaging, 100(6), 327–336. [Google Scholar] [CrossRef]
- Williams, L. J., Ford, L. R., & Nguyen, N. (2004). Basic and advanced measurement models for confirmatory factor analysis. In S. G. Rogelberg (Ed.), Handbook of research methods in industrial and organizational psychology (1st ed., pp. 366–389). Wiley. [Google Scholar] [CrossRef]
- Wood, R., & Bandura, A. (1989). Social cognitive theory of organizational management. The Academy of Management Review, 14(3), 361. [Google Scholar] [CrossRef]
- Wu, T.-J., Zhang, R.-X., & Li, J.-M. (2025a). When employees meet digital-intelligence transformation: Unveiling the role of employee intentions. International Journal of Information Management, 84, 102912. [Google Scholar] [CrossRef]
- Wu, T.-J., Zhang, R.-X., & Zhang, Z. (2025b). Navigating the human-artificial intelligence collaboration landscape: Impact on quality of work life and work engagement. Journal of Hospitality and Tourism Management, 62, 276–283. [Google Scholar] [CrossRef]
- Yamamoto, I. (2019, March 25). This is how AI is putting stress on workers. World Economic Forum. Available online: https://www.weforum.org/agenda/2019/03/the-impact-of-ai-and-information-technologies-on-worker-stress-c2614f16da/ (accessed on 1 March 2025).
- Zhang, X., & Dahu, W. (2019). Application of artificial intelligence algorithms in image processing. Journal of Visual Communication and Image Representation, 61, 42–49. [Google Scholar] [CrossRef]
Measurement Models | Chi2 (df) | RMSEA | (90% CI) | AIC | BIC | CFI | TLI | SRMR |
---|---|---|---|---|---|---|---|---|
One-factor a | 3994 * (1081) | 0.19 | 0.19–0.20 | 9476 | 9797 | 0.254 | 0.221 | 0.219 |
Two-factor b | 3289 * (1080) | 0.17 | 0.16–0.18 | 8778 | 9101 | 0.433 | 0.408 | 0.146 |
Three-factor c | 3196 * (1078) | 0.17 | 0.16–0.17 | 8685 | 9013 | 0.457 | 0.432 | 0.142 |
Four factor d | 3037 * (1074) | 0.16 | 0.15–0.17 | 8537 | 8879 | 0.497 | 0.472 | 0.120 |
Four-factor 2nd order e | 2116 * (973) | 0.13 | 0.12–0.14 | 7040 | 7388 | 0.691 | 0.671 | 0.099 |
Variables | Mean | SD | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|---|---|
1 | Perceptions of AI | 3.64 | 0.73 | ||||||
2 | AI Acceptance | 3.68 | 0.72 | 0.666 * | |||||
3 | Self-Efficacy | 3.32 | 0.97 | 0.426 * | 0.414 * | ||||
4 | Technostress Overall | 2.47 | 0.84 | 0.200 | −0.112 | 0.133 | |||
5 | Techno-Overload | 2.16 | 0.96 | 0.180 | −0.100 | 0.051 | 0.868 * | ||
6 | Techno-Complexity/Insecurity | 2.35 | 1.00 | 0.224 | −0.174 | 0.149 | 0.943 * | 0.757 * | |
7 | Techno-Uncertainty | 3.11 | 0.98 | 0.037 | 0.092 | 0.107 | 0.628 * | 0.385 * | 0.415 * |
Outcome | Predictor | b | SE | t | p | LLCI | ULCI |
---|---|---|---|---|---|---|---|
Technostress Overall | |||||||
Perceptions of AI | 0.57 | 0.18 | 3.13 | 0.003 | 0.21 | 0.93 | |
AI Acceptance | −0.55 | 0.18 | −2.98 | 0.004 | −0.91 | −0.18 | |
Techno-Overload | |||||||
Perceptions of AI | 0.58 | 0.21 | 2.73 | 0.008 | 0.16 | 1.00 | |
AI Acceptance | −0.56 | 0.21 | −2.62 | 0.011 | −0.98 | −0.13 | |
Techno-Complexity/Insecurity | |||||||
Perceptions of AI | 0.83 | 0.20 | 4.07 | 0.001 | 0.42 | 1.23 | |
AI Acceptance | −0.83 | 0.21 | −4.04 | 0.001 | −1.24 | −0.42 | |
Techno-Uncertainty | |||||||
Perceptions of AI | −0.02 | 0.22 | −0.09 | 0.930 | −0.46 | 0.42 | |
AI Acceptance | 0.11 | 0.22 | 0.47 | 0.639 | −0.34 | 0.55 |
Outcome | Self-Efficacy | Indirect Effect | BootSE | BootLLCI | BootULCI |
---|---|---|---|---|---|
Technostress Overall | Low (−1 SD, 2.34) | −0.36 | 0.14 | −0.65 | −0.11 |
Mean (3.32) | −0.28 | 0.12 | −0.53 | −0.09 | |
High (+1 SD, 4.29) | −0.19 | 0.13 | −0.49 | −0.00 | |
Techno-Overload | Low (−1 SD, 2.34) | −0.37 | 0.15 | −0.68 | −0.08 |
Mean (3.32) | −0.28 | 0.12 | −0.55 | −0.07 | |
High (+1 SD, 4.29) | −0.19 | 0.13 | −0.50 | 0.01 | |
Techno-Complexity/Insecurity | Low (−1 SD, 2.34) | −0.55 | 0.18 | −0.90 | −0.20 |
Mean (3.32) | −0.42 | 0.15 | −0.75 | −0.18 | |
High (+1 SD, 4.29) | −0.29 | 0.17 | −0.68 | −0.01 | |
Techno-Uncertainty | Low (−1 SD, 2.34) | 0.07 | 0.16 | −0.27 | 0.37 |
Mean (3.32) | 0.05 | 0.12 | −0.22 | 0.28 | |
High (+1 SD, 4.29) | 0.04 | 0.10 | −0.19 | 0.21 |
Outcome | Index | BootSE | BootLLCI | BootULCI |
---|---|---|---|---|
Technostress Overall | 0.09 | 0.07 | −0.07 | 0.21 |
Techno-Overload | 0.09 | 0.07 | −0.07 | 0.22 |
Techno-Complexity/Insecurity | 0.14 | 0.10 | −0.10 | 0.30 |
Techno-Uncertainty | −0.02 | 0.05 | −0.12 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Stefano, G.; Salerno, S.; Matranga, D.; Lodico, M.; Monzani, D.; Seidita, V.; Cannella, R.; Maniscalco, L.; Miceli, S. Artificial Intelligence Perceptions and Technostress in Staff Radiologists: The Mediating Role of Artificial Intelligence Acceptance and the Moderating Role of Self-Efficacy. Behav. Sci. 2025, 15, 1276. https://doi.org/10.3390/bs15091276
Di Stefano G, Salerno S, Matranga D, Lodico M, Monzani D, Seidita V, Cannella R, Maniscalco L, Miceli S. Artificial Intelligence Perceptions and Technostress in Staff Radiologists: The Mediating Role of Artificial Intelligence Acceptance and the Moderating Role of Self-Efficacy. Behavioral Sciences. 2025; 15(9):1276. https://doi.org/10.3390/bs15091276
Chicago/Turabian StyleDi Stefano, Giovanni, Sergio Salerno, Domenica Matranga, Manuela Lodico, Dario Monzani, Valeria Seidita, Roberto Cannella, Laura Maniscalco, and Silvana Miceli. 2025. "Artificial Intelligence Perceptions and Technostress in Staff Radiologists: The Mediating Role of Artificial Intelligence Acceptance and the Moderating Role of Self-Efficacy" Behavioral Sciences 15, no. 9: 1276. https://doi.org/10.3390/bs15091276
APA StyleDi Stefano, G., Salerno, S., Matranga, D., Lodico, M., Monzani, D., Seidita, V., Cannella, R., Maniscalco, L., & Miceli, S. (2025). Artificial Intelligence Perceptions and Technostress in Staff Radiologists: The Mediating Role of Artificial Intelligence Acceptance and the Moderating Role of Self-Efficacy. Behavioral Sciences, 15(9), 1276. https://doi.org/10.3390/bs15091276