The Character Position Encoding of Parafoveal Semantic Previews Is Flexible in Chinese Reading
Abstract
1. Introduction
2. General Method
2.1. Participants
2.2. Material and Design
2.3. Material in Experiment 1
2.4. Material in Experiment 2
2.5. Apparatus and Procedure
2.6. Data Analysis
3. Results
3.1. Experiment 1: Results and Discussion
3.2. Experiment 2: Results and Discussion
4. General Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412. [Google Scholar] [CrossRef]
- Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. [Google Scholar] [CrossRef] [PubMed]
- Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. [Google Scholar] [CrossRef]
- Blythe, H. I., Johnson, R. L., Liversedge, S. P., & Rayner, K. (2014). Reading transposed text: Effects of transposed letter distance and consonant-vowel status on eye movements. Attention, Perception & Psychophysics, 76(8), 2424–2440. [Google Scholar] [CrossRef]
- Cai, Q., & Brysbaert, M. (2010). SUBTLEX-CH: Chinese word and character frequencies based on film subtitles. PLoS ONE, 5(6), e10729. [Google Scholar] [CrossRef]
- Chang, M., Hao, L., Zhao, S., Li, L., Paterson, K. B., & Wang, J. (2020). Flexible parafoveal encoding of character order supports word predictability effects in Chinese reading: Evidence from eye movements. Attention, Perception, & Psychophysics, 82, 2793–2801. [Google Scholar] [CrossRef]
- Chang, M., Zhang, K., Hao, L., Paterson, K. B., Warrington, K. L., & Wang, J. (2025). Flexible parafoveal processing of character order is preserved in older readers. Psychology and Aging, 40(4), 429–438. [Google Scholar] [CrossRef] [PubMed]
- Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108(1), 204–256. [Google Scholar] [CrossRef] [PubMed]
- Duñabeitia, J., Perea, M., & Carreiras, M. (2014). Revisiting letter transpositions within and across morphemic boundaries. Psychonomic Bulletin & Review, 21, 1557–1575. [Google Scholar] [CrossRef]
- Gomez, P., Ratcliff, R., & Perea, M. (2008). The overlap model: A model of letter position coding. Psychological Review, 115(3), 577–600. [Google Scholar] [CrossRef]
- Grainger, J. (2018). Orthographic processing: A ‘mid-level’ vision of reading: The 44th Sir Frederic Bartlett Lecture. Quarterly Journal of Experimental Psychology, 71(2), 335–359. [Google Scholar] [CrossRef]
- Grainger, J. (2024). Letters, words, sentences, and reading. Journal of Cognition, 7(1), 66. [Google Scholar] [CrossRef] [PubMed]
- Grainger, J., & Van Heuven, W. J. B. (2004). Modeling letter position coding in printed word perception. In P. Bonin (Ed.), Mental lexicon: “Some words to talk about words” (pp. 1–23). Nova Science Publishers. [Google Scholar]
- Grainger, J., & Ziegler, J. C. (2011). A dual-route approach to orthographic processing. Frontiers in Psychology, 2, 54. [Google Scholar] [CrossRef]
- Green, P., & MacLeod, C. J. (2016). SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution, 7, 493–498. [Google Scholar] [CrossRef]
- Gu, J., & Li, X. (2015). The effects of character transposition within and across words in Chinese reading. Attention, Perception, & Psychophysics, 77, 272–281. [Google Scholar] [CrossRef]
- Gu, J., Li, X., & Liversedge, S. P. (2015). Character order processing in Chinese reading. Journal of Experimental Psychology: Human Perception and Performance, 41, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Gu, J., Zhou, J., Bao, Y., Liu, J., Perea, M., & Li, X. (2023). The effect of transposed-character distance in Chinese reading. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(3), 464–476. [Google Scholar] [CrossRef]
- He, L., Ma, W., Shen, F., Wang, Y., Wu, J., Warrington, K. L., Liversedge, S. P., & Paterson, K. B. (2021). Adult age differences in parafoveal preview effects during reading: Evidence from Chinese. Psychology and Aging, 36(7), 822–833. [Google Scholar] [CrossRef]
- Johnson, R., Koch, C., & Wootten, M. (2023). Keep clam and carry on: Misperceptions of transposed-letter neighbours. Quarterly Journal of Experimental Psychology, 77, 1363–1374. [Google Scholar] [CrossRef]
- Johnson, R., Perea, M., & Rayner, K. (2007). Transposed-letter effects in reading: Evidence from eye movements and parafoveal preview. Journal of Experimental Psychology. Human Perception and Performance, 33(1), 209–229. [Google Scholar] [CrossRef]
- Kirkby, J. A., Barrington, R. S., Drieghe, D., & Liversedge, S. P. (2022). Parafoveal processing and transposed-letter effects in dyslexic reading. Dyslexia, 28(3), 359–374. [Google Scholar] [CrossRef] [PubMed]
- Kirkby, J. A., Barrington, R. S., Drieghe, D., & Liversedge, S. P. (2025). Parafoveal processing and transposed-letter effects in developmental dyslexic reading. Dyslexia: An International Journal of Research and Practice, 31(1), e1791. [Google Scholar] [CrossRef]
- Li, X., & Pollatsek, A. (2020). An integrated model of word processing and eye-movement control during Chinese reading. Psychological Review, 127(6), 1139–1162. [Google Scholar] [CrossRef]
- Li, X., Rayner, K., & Cave, K. R. (2009). On the segmentation of Chinese words during reading. Cognitive Psychology, 58(4), 525–552. [Google Scholar] [CrossRef]
- Luke, S. G., & Christianson, K. (2012). Semantic predictability eliminates the transposed-letter effect. Memory & Cognition, 40(4), 628–641. [Google Scholar] [CrossRef]
- Marcet, A., Perea, M., Baciero, A., & Gomez, P. (2019). Can letter position encoding be modified by visual perceptual elements? Quarterly Journal of Experimental Psychology, 72(6), 1344–1353. [Google Scholar] [CrossRef] [PubMed]
- Massol, S., & Grainger, J. (2024). On the distinction between position and order information when processing strings of characters. Attention, Perception, & Psychophysics, 86, 883–896. [Google Scholar] [CrossRef]
- Mirault, J., & Grainger, J. (2021). Single word reading in the real world: Effects of transposed-letters. Journal of Cognition, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Norris, D., Kinoshita, S., & van Casteren, M. (2010). A stimulus sampling theory of letter identity and order. Journal of Memory and Language, 62(3), 254–271. [Google Scholar] [CrossRef]
- Peng, D., Ding, G., Wang, C., Taft, M., & Zhu, X. (1999). The processing of Chinese reversible words─The role of morphemes in lexical access. Acta Psychologica Sinica, 31(01), 36–46. Available online: https://journal.psych.ac.cn/acps/EN/Y1999/V31/I01/36 (accessed on 27 May 2025).
- Perea, M., & Carreiras, M. (2006). Do transposed-letter similarity effects occur at a prelexical phonological level? Quarterly Journal of Experimental Psychology, 59(9), 1600–1613. [Google Scholar] [CrossRef] [PubMed]
- Perea, M., Palti, D., & Gomez, P. (2012). Associative priming effects with visible, transposed-letter nonwords: JUGDE facilitates COURT. Attention, Perception & Psychophysics, 74(3), 481–488. [Google Scholar] [CrossRef]
- Perea, M., Perea, M., Duñabeitia, J., & Carreiras, M. (2008). Transposed-letter priming effects for close versus distant transpositions. Experimental Psychology, 55(6), 384–393. [Google Scholar] [CrossRef]
- Rayner, K. (1975). The perceptual span and peripheral cues in reading. Cognitive Psychology, 7, 65–81. [Google Scholar] [CrossRef]
- Rayner, K., White, S. J., Johnson, R. L., & Liversedge, S. P. (2006). Raeding wrods with jubmled lettres: There is a cost. Psychological Science, 17(3), 192–193. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 1 January 2024).
- Venables, B., & Ripley, B. (2002). Modern applied statistics with S-PLUS (4th ed.). Springer. [Google Scholar] [CrossRef]
- White, S. J., Johnson, R. L., Liversedge, S. P., & Rayner, K. (2008). Eye movements when reading transposed text: The importance of word-beginning letters. Journal of Experimental Psychology: Human Perception and Performance, 34(5), 1261–1276. [Google Scholar] [CrossRef]
- Whitney, C. (2001). How the brain encodes the order of letters in a printed word: The SERIOL model and selective literature review. Psychonomic Bulletin & Review, 8(2), 221–243. [Google Scholar] [CrossRef]
- Yan, M., Li, H., Su, Y., Cao, Y., & Pan, J. (2020). The perceptual span and individual differences among Chinese children. Scientific Studies of Reading, 24(6), 520–530. [Google Scholar] [CrossRef]
- Yang, H., Chen, J., Spinelli, G., & Lupker, S. J. (2019). The impact of text orientation on form priming effects in four-character Chinese words. Journal of Experimental Psychology. Learning, Memory, and Cognition, 45(8), 1511–1526. [Google Scholar] [CrossRef]
- Yang, H., Taikh, A., & Lupker, S. J. (2022). A reexamination of the impact of morphology on transposed character priming effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(6), 785–797. [Google Scholar] [CrossRef]
- Yang, J. (2013). Preview effects of plausibility and character order in reading Chinese transposed words: Evidence from eye movements. Journal of Research in Reading, 36, S18–S34. [Google Scholar] [CrossRef]
- Zhang, Y., Chang, M., & Wang, J. (2022). Increasing intercharacter spacing reduces the transposed-character effect in Chinese reading: Evidence from eye movements. Visual Cognition, 30(5), 371–377. [Google Scholar] [CrossRef]
- Zhu, M., Zhuang, X., & Ma, G. (2021). Readers extract semantic information from parafoveal two-character synonyms in Chinese reading. Reading and Writing, 34, 773–790. [Google Scholar] [CrossRef]
Properties | IP | SP | TP | CP | |||||
---|---|---|---|---|---|---|---|---|---|
L_char | R_char | L_char | R_char | L_char | R_char | L_char | R_char | ||
Exp1 | Example | 西 | 装 | 领 | 带 | 带 | 领 | 阅 | 读 |
Plausibility | 3.99 (0.66) | 3.93 (0.62) | 2.16 (0.65) | 2.06 (0.73) | |||||
Complexity | 15.99 (3.82) | 13.83 (3.92) | 13.83 (3.92) | 13.96 (4.02) | |||||
Frequency | 42 (131) | 36 (97) | 8 (17) | 8 (17) | |||||
Char_freq | 698 (1269) | 1335 (4400) | 1221 (2309) | 1792 (2556) | 1792 (2556) | 1221 (2309) | 1217 (2730) | 691 (1246) | |
Char_comp | 7.85 (2.7) | 8.14 (3.28) | 6.88 (2.73) | 6.95 (2.81) | 6.95 (2.81) | 6.88 (2.73) | 6.93 (2.57) | 7.04 (2.79) | |
Exp2 | Example | 充 | 实 | 饱 | 满 | 满 | 饱 | 静 | 虾 |
Plausibility | 3.66 (0.5) | 3.55 (0.58) | 2.76 (0.5) | 2.1 (0.34) | |||||
Complexity | 17.74 (4.11) | 18.16 (5.41) | 18.16 (5.41) | 17.85 (5.2) | |||||
Frequency | 100 (660) | 38 (95) | |||||||
Char_freq | 412 (672) | 530 (1032) | 1087 (3397) | 564 (891) | 564 (891) | 1087 (3397) | 601 (1104) | 837 (2248) | |
Char_comp | 8.71 (2.7) | 9.03 (3.02) | 9.13 (3.61) | 9.04 (3.69) | 9.04 (3.69) | 9.13 (3.61) | 9.03 (3.42) | 8.83 (3.18) |
Measures | IP | SP | TP | CP | |
---|---|---|---|---|---|
Experiment 1 | SKIP (%) | 32 (11) | 34 (10) | 36 (11) | 32 (11) |
FFD (ms) | 230 (22) | 318 (38) | 316 (39) | 329 (38) | |
SFD (ms) | 230 (23) | 316 (51) | 308 (51) | 337 (49) | |
GD (ms) | 248 (28) | 406 (60) | 417 (63) | 415 (57) | |
Experiment 2 | SKIP (%) | 39 (12) | 38 (12) | 39 (12) | 35 (12) |
FFD (ms) | 218 (18) | 244 (27) | 236 (28) | 251 (28) | |
SFD (ms) | 218 (18) | 240 (29) | 233 (28) | 247 (30) | |
GD (ms) | 232 (23) | 272 (39) | 257 (35) | 280 (39) |
Measures | Estimate | CI | SE | z/t | |
---|---|---|---|---|---|
Experiment 1 | |||||
SKIP | Intercept | −0.88 | [−1.17, −0.6] | 0.14 | −6.26 |
SP vs. IP | 0.15 | [−0.07, 0.36] | 0.11 | 1.35 | |
TP vs. SP | 0.10 | [−0.11, 0.31] | 0.11 | 0.98 | |
CP vs. TP | −0.24 | [−0.45, −0.03] | 0.11 | −2.22 * | |
FFD (ms) | Intercept | 299 | [285, 313] | 7.25 | 41.26 |
SP vs. IP | 90 | [76, 104] | 7.00 | 12.85 *** | |
TP vs. SP | −4 | [−18, 10] | 7.11 | −0.59 | |
CP vs. TP | 16 | [2, 30] | 7.06 | 2.29 * | |
SFD (ms) | Intercept | 299 | [284, 314] | 7.63 | 39.18 |
SP vs. IP | 88 | [72, 103] | 7.99 | 10.99 *** | |
TP vs. SP | −9 | [−26, 8] | 8.70 | −1.06 | |
CP vs. TP | 30 | [13, 47] | 8.69 | 3.44 *** | |
GD (ms) | Intercept | 372 | [347, 397] | 12.54 | 29.68 |
SP vs. IP | 164 | [142, 186] | 11.26 | 14.53 *** | |
TP vs. SP | 11 | [−11, 34] | 11.43 | 1.00 | |
CP vs. TP | −1 | [−24, 21] | 11.36 | −0.13 | |
Experiment 2 | |||||
SKIP | (Intercept) | −0.58 | [−0.79, −0.37] | 0.11 | −5.45 |
SP vs. IP | −0.09 | [−0.29, 0.12] | 0.10 | −0.84 | |
TP vs. SP | 0.07 | [−0.13, 0.27] | 0.10 | 0.68 | |
CP vs. TP | −0.14 | [−0.35, 0.06] | 0.10 | −1.39 | |
FFD (ms) | (Intercept) | 236 | [225, 247] | 5.61 | 42.03 |
SP vs. IP | 26 | [17, 36] | 4.76 | 5.52 *** | |
TP vs. SP | −10 | [−19, 0] | 4.77 | −2.03 * | |
CP vs. TP | 13 | [4, 22] | 4.71 | 2.73 ** | |
SFD (ms) | (Intercept) | 234 | [223, 245] | 5.63 | 41.58 |
SP vs. IP | 25 | [16, 35] | 4.94 | 5.11 *** | |
TP vs. SP | −9 | [−19, 1] | 4.98 | −1.78 | |
CP vs. TP | 11 | [2, 21] | 4.93 | 2.29 * | |
GD (ms) | (Intercept) | 258 | [241, 275] | 8.45 | 30.54 |
SP vs. IP | 41 | [27, 54] | 7.00 | 5.8 *** | |
TP vs. SP | −16 | [−30, −2] | 7.02 | −2.28 * | |
CP vs. TP | 17 | [4, 31] | 6.93 | 2.51 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, M.; Ma, Y.; Pu, Z.; Zhu, Y.; Li, J.; Miao, L.; Zhu, X. The Character Position Encoding of Parafoveal Semantic Previews Is Flexible in Chinese Reading. Behav. Sci. 2025, 15, 907. https://doi.org/10.3390/bs15070907
Chang M, Ma Y, Pu Z, Zhu Y, Li J, Miao L, Zhu X. The Character Position Encoding of Parafoveal Semantic Previews Is Flexible in Chinese Reading. Behavioral Sciences. 2025; 15(7):907. https://doi.org/10.3390/bs15070907
Chicago/Turabian StyleChang, Min, Yun Ma, Zhenying Pu, Yanqun Zhu, Jingxuan Li, Lvqing Miao, and Xingguo Zhu. 2025. "The Character Position Encoding of Parafoveal Semantic Previews Is Flexible in Chinese Reading" Behavioral Sciences 15, no. 7: 907. https://doi.org/10.3390/bs15070907
APA StyleChang, M., Ma, Y., Pu, Z., Zhu, Y., Li, J., Miao, L., & Zhu, X. (2025). The Character Position Encoding of Parafoveal Semantic Previews Is Flexible in Chinese Reading. Behavioral Sciences, 15(7), 907. https://doi.org/10.3390/bs15070907