Relationship Between Problematic Smartphone Use and Graduate Students’ Research Self-Efficacy: A Moderated Mediation Model
Abstract
:1. Introduction
1.1. Self-Efficiency and Research Self-Efficacy
1.2. Review of the Relationship Between Problematic Smartphone Use and Research Self-Efficacy
1.3. Review of Mental Stress and Its Mediating Effects
1.4. Review of Stress Mindset and Its Moderating Effects
2. Goal of the Study
3. Methods
3.1. Participants and Setting
3.2. Measures
3.2.1. Mental Stress Scale
3.2.2. Research Self-Efficacy Scale
3.2.3. Problematic Smartphone Use Scale
3.2.4. Stress Mindset Measure
3.2.5. Statistical Analysis
4. Results
4.1. Test of Common Method Biases
4.2. Mean, Standard Deviation, and Correlation Matrix for the Study Variables
4.3. Test of Hypothetical Model
4.3.1. Mediation Model Test
4.3.2. Moderated Mediation Model Test
5. Discussion
5.1. Problematic Smartphone Use Has Significant Negative Impacts on Research Self-Efficacy
5.2. Mental Stress Mediates the Relationship Between Problematic Smartphone Use and Research Self-Efficacy
5.3. Stress Mindsets Present Different Moderating Effects
5.3.1. Effects of Stress-Is-Enhancing Mindset
5.3.2. Effects of Stress-Is-Debilitating Mindset
5.3.3. Further Analysis of Stress Mindsets’ Moderating Effects
6. Limitation and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- China Internet Network Information Center. The 53rd Statistical Report on the Development of China’s Internet; China Internet Network Information Center: Beijing, China, 2024.
- Eduardo, P.P.; Teresa, M.; Monje, R.; María, J.; Sanchez, R.; León, D. Mobile phone abuse or addiction. A review of the literature. Adicciones 2012, 24, 139–152. [Google Scholar]
- Alageel, A.A.; Alyahya, R.A.; ABahatheq, Y.; Alzunaydi, N.A.; Alghamdi, R.A.; Alrahili, N.M.; McIntyre, R.S.; Iacobucci, M. Smartphone addiction and associated factors among postgraduate students in an Arabic sample: A cross-sectional study. BMC Psychiatry 2021, 21, 302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Guo, H.; Wang, T.; Zhang, J.; Yuan, G.; Ren, J.; Zhang, X.; Yang, H.; Lu, X.; Zhu, Z.; et al. A bidirectional association between smartphone addiction and depression among college students: A cross-lagged panel model. Front. Public Health 2023, 11, 1083856. [Google Scholar] [CrossRef] [PubMed]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Adv. Behav. Res. Ther. 1978, 1, 139–161. [Google Scholar] [CrossRef]
- Bieschke, K.J.; Bishop, R.M.; Garcia, V.L. The utility of the research self-efficacy scale. J. Career Assess. 1996, 4, 59–75. [Google Scholar] [CrossRef]
- Phillips, J.C.; Russell, R.K. Research self-efficacy, the research training environment, and research productivity among graduate students in counseling psychology. Couns. Psychol. 1994, 22, 628–641. [Google Scholar] [CrossRef]
- Bailey, J.G. Academics’ motivation and self-efficacy for teaching and research. High. Educ. Res. Dev. 1999, 18, 343–359. [Google Scholar] [CrossRef]
- Hemmings, B.; Kay, R. University lecturer publication output: Qualifications, time and confidence count. J. High. Educ. Policy Manag. 2010, 32, 185–197. [Google Scholar] [CrossRef]
- Yen, C.F.; Tang, T.C.; Yen, J.Y.; Lin, H.C.; Huang, C.F.; Liu, S.C.; Ko, C.H. Symptoms of problematic cellular phone use, functional impairment and its association with depression among adolescents in Southern Taiwan. J. Adolesc. 2009, 32, 863–873. [Google Scholar] [CrossRef]
- Di Matteo, D.; Fotinos, K.; Lokuge, S.; Mason, G.; Sternat, T.; Katzman, M.A.; Rose, J. Automated screening for social anxiety, generalized anxiety, and depression from objective smartphone-collected data: Cross-sectional study. J. Med. Internet Res. 2021, 23, e28918. [Google Scholar] [CrossRef]
- Söderqvist, F.; Carlberg, M.; Hardell, L. Use of wireless telephones and self-reported health symptoms: A population-based study among Swedish adolescents aged 15–19 years. Environ. Health 2008, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- Bandura, A. Social Foundations of Thought and Action; Prentice Hall: Englewood Cliffs, NJ, USA, 1986. [Google Scholar]
- Van der Bijl, J.J.; Shortridge-Baggett, L.M. The theory and measurement of the self-efficacy construct. Self-Effic. Nurs. Res. Meas. Perspect. 2002, 15, 189–207. [Google Scholar] [CrossRef]
- Tiyuri, A.; Saberi, B.; Miri, M.; Shahrestanaki, E.; Bayat, B.B.; Salehiniya, H. Research self-efficacy and its relationship with academic performance in postgraduate students of Tehran University of Medical Sciences in 2016. J. Educ. Health Promot. 2018, 7, 11. [Google Scholar] [PubMed]
- Just, M.A.; Carpenter, P.A.; Keller, T.A.; Emery, L.; Zajac, H.; Thulborn, K.R. Interdependence of nonoverlapping cortical systems in dual cognitive tasks. Neuroimage 2001, 14, 417–426. [Google Scholar] [CrossRef]
- Vahedi, Z.; Saiphoo, A. The association between smartphone use, stress, and anxiety: A meta-analytic review. Stress and Health 2018, 34, 347–358. [Google Scholar] [CrossRef]
- Višnjić, A.; Veličković, V.; Sokolović, D.; Stanković, M.; Mijatović, K.; Stojanović, M.; Milošević, Z.; Radulović, O. Relationship between the manner of mobile phone use and depression, anxiety, and stress in university students. Int. J. Environ. Res. Public Health 2018, 15, 697. [Google Scholar] [CrossRef]
- Thomée, S.; Härenstam, A.; Hagberg, M. Mobile phone use and stress, sleep disturbances, and symptoms of depression among young adults-a prospective cohort study. BMC Public Health 2011, 11, 66. [Google Scholar] [CrossRef]
- Thomée, S. Mobile phone use and mental health. A review of the research that takes a psychological perspective on exposure. Int. J. Environ. Res. Public Health 2018, 15, 2692. [Google Scholar] [CrossRef]
- Rawson, H.E.; Bloomer, K.; Kendall, A. Stress, anxiety, depression, and physical illness in college students. J. Genet. Psychol. 1994, 155, 321–330. [Google Scholar] [CrossRef]
- Young, K.S. Cognitive behavior therapy with Internet addicts: Treatment outcomes and implications. Cyberpsychology Behav. 2007, 10, 671–679. [Google Scholar] [CrossRef]
- Rosen, L.D.; Carrier, L.M.; Cheever, N.A. Facebook and texting made me do it: Media-induced task-switching while studying. Comput. Hum. Behav. 2013, 29, 948–958. [Google Scholar] [CrossRef]
- Lepp, A.; Barkley, J.E.; Karpinski, A.C. The relationship between cell phone use, academic performance, anxiety, and satisfaction with life in college students. Comput. Hum. Behav. 2014, 31, 343–350. [Google Scholar] [CrossRef]
- Litt, A.; Reich, T.; Maymin, S.; Shiv, B. Pressure and perverse flights to familiarity. Psychol. Sci. 2011, 22, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Crum, A.J.; Salovey, P.; Achor, S. Rethinking stress: The role of mindsets in determining the stress response. J. Personal. Soc. Psychol. 2013, 104, 716. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Yu, A.; Metz, S.E.; Tsukayama, E.; Crum, A.J.; Duckworth, A.L. Beliefs about stress attenuate the relation among adverse life events, perceived distress, and self-control. Child Dev. 2018, 89, 2059–2069. [Google Scholar] [CrossRef]
- Elhai, J.D.; Dvorak, R.D.; Levine, J.C.; Hall, B.J. Problematic smartphone use: A conceptual overview and systematic review of relations with anxiety and depression psychopathology. J. Affect. Disord. 2017, 207, 251–259. [Google Scholar] [CrossRef]
- Kwon, M.; Lee, J.-Y.; Won, W.-Y.; Park, J.-W.; Min, J.-A.; Hahn, C.; Gu, X.; Choi, J.-H.; Kim, D.-J. Development and validation of a smartphone addiction scale (SAS). PLoS ONE 2013, 8, e56936. [Google Scholar] [CrossRef]
- Lakkavaara, A.; Upadyaya, K.; Tang, X.; Salmela-Aro, K. The role of stress mindset and academic buoyancy in school burnout in middle adolescence. Eur. J. Dev. Psychol. 2024, 21, 847–864. [Google Scholar] [CrossRef]
- Dweck, C.S. Mindset: The New Psychology of Success; Random House: New York, NY, USA, 2006. [Google Scholar]
- Clark, L.A.; Watson, D. Tripartite model of anxiety and depression: Psychometric evidence and taxonomic implications. J. Abnorm. Psychol. 1991, 100, 316. [Google Scholar] [CrossRef]
- Black, M.L.; Curran, M.C.; Golshan, S.; Daly, R.; Depp, C.; Kelly, C.; Jeste, D.V. Summer research training for medical students: Impact on research self-efficacy. Clin. Transl. Sci. 2013, 6, 487–489. [Google Scholar] [CrossRef]
- Leung, L. Linking psychological attributes to addiction and improper use of the mobile phone among adolescents in Hong Kong. J. Child. Media 2008, 2, 93–113. [Google Scholar] [CrossRef]
- Wen, Z.; Ye, B. Analyses of mediating effects: The development of methods and models. Adv. Psychol. Sci. 2014, 22, 731. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guilford Publications: New York, NY, USA, 2017. [Google Scholar]
- Zhao, X.; Lynch Jr, J.G.; Chen, Q. Reconsidering Baron and Kenny: Myths and truths about mediation analysis. J. Consum. Res. 2010, 37, 197–206. [Google Scholar] [CrossRef]
- Andrews, S.; Ellis, D.A.; Shaw, H.; Piwek, L. Beyond self-report: Tools to compare estimated and real-world smartphone use. PLoS ONE 2015, 10, e0139004. [Google Scholar] [CrossRef]
- Kuss, D.J.; Griffiths, M.D. Online social networking and addiction—A review of the psychological literature. Int. J. Environ. Res. Public Health 2011, 8, 3528–3552. [Google Scholar] [CrossRef]
- Throuvala, M.A.; Pontes, H.M.; Tsaousis, I.; Griffiths, M.D.; Rennoldson, M.; Kuss, D.J. Exploring the dimensions of smartphone distraction: Development, validation, measurement invariance, and latent mean differ-ences of the smartphone distraction scale (SDS). Front. Psychiatry 2021, 12, 642634. [Google Scholar] [CrossRef]
- Wajcman, J.; Rose, E. Constant connectivity: Rethinking interruptions at work. Organ. Stud. 2011, 32, 941–961. [Google Scholar] [CrossRef]
- Fırat, M. Multitasking or continuous partial attention: A critical bottleneck for digital natives. Turk. Online J. Distance Educ. 2013, 14, 266–272. [Google Scholar]
- Hawi, N.S.; Samaha, M. To excel or not to excel: Strong evidence on the adverse effect of smartphone addiction on academic performance. Comput. Educ. 2016, 98, 81–89. [Google Scholar] [CrossRef]
- Uncapher, M.R.; Wagner, A.D. Minds and brains of media multitaskers: Current findings and future directions. Proc. Natl. Acad. Sci. USA 2018, 115, 9889–9896. [Google Scholar] [CrossRef] [PubMed]
- Samaha, M.; Hawi, N.S. Relationships among smartphone addiction, stress, academic performance, and satisfaction with life. Comput. Hum. Behav. 2016, 57, 321–325. [Google Scholar] [CrossRef]
- Liu, H.; Novotný, J.S.; Váchová, L. The effect of mobile phone addiction on perceived stress and mediating role of ruminations: Evidence from Chinese and Czech university students. Front. Psychol. 2022, 13, 1057544. [Google Scholar] [CrossRef] [PubMed]
- Roser, K.; Schoeni, A.; Foerster, M.; Röösli, M. Problematic mobile phone use of Swiss adolescents: Is it linked with mental health or behaviour? Int. J. Public Health 2016, 61, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.J. Emotion regulation: Affective, cognitive, and social consequences. Psychophysiology 2002, 39, 281–291. [Google Scholar] [CrossRef]
- Lyubomirsky, S.; King, L.; Diener, E. The benefits of frequent positive affect: Does happiness lead to success? Psychol. Bull. 2005, 131, 803. [Google Scholar] [CrossRef]
- Bratslavsky, E.; Muraven, M.; Tice, D.M. Ego depletion: Is the active self a limited resource? J. Personal. Soc. Psychol. 1998, 74, 1252–1265. [Google Scholar]
- Hartanto, A.; Chua, Y.J.; Quek, F.Y.; Wong, J.; Ooi, W.M.; Majeed, N.M. Problematic smartphone, objective smartphone engagement, and executive functions: A latent variable analysis. Atten. Percept. Psychophys. 2023, 85, 2610–2625. [Google Scholar] [CrossRef]
- Bandura, A.; Freeman, W.H.; Lightsey, R. Self-Efficacy: The Exercise of Control. J. Cogn. Psychother. 1999, 13, 158–166. [Google Scholar] [CrossRef]
- Billieux, J.; Gay, P.; Rochat, L.; Van der Linden, M. The role of urgency and its underlying psychological mechanisms in problematic behaviours. Behav. Res. Ther. 2010, 48, 1085–1096. [Google Scholar] [CrossRef]
- Lemola, S.; Perkinson-Gloor, N.; Brand, S.; Dewald-Kaufmann, J.F.; Grob, A. Adolescents’ electronic media use at night, sleep disturbance, and depressive symptoms in the smartphone age. J. Youth Adolesc. 2015, 44, 405–418. [Google Scholar] [CrossRef] [PubMed]
- King AL, S.; Valença, A.M.; Nardi, A.E. Nomophobia: The mobile phone in panic disorder with agoraphobia: Reducing phobias or worsening of dependence? Cogn. Behav. Neurol. 2010, 23, 52–54. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Seo, M.; David, P. Alleviating depression only to become problematic mobile phone users: Can face-to-face communication be the antidote? Comput. Hum. Behav. 2015, 51, 440–447. [Google Scholar] [CrossRef]
- Brod, C. Technostress: The Human Cost of the Computer Revolution; Addison-Wesley: Reading, MA, USA, 1984. [Google Scholar]
- Lee, Y.K.; Chang, C.T.; Lin, Y.; Cheng, Z.H. The dark side of smartphone usage: Psychological traits, compulsive behavior and technostress. Comput. Hum. Behav. 2014, 31, 373–383. [Google Scholar] [CrossRef]
Mean | Standard Deviation | Problematic Smartphone Use | Mental Stress | Research Self-Efficacy | Stress-Is-Enhancing Mindset | Stress-Is-Debilitating Mindset | |
---|---|---|---|---|---|---|---|
Problematic smartphone use | 2.413 | 0.963 | 1 | 0.549 ** | −0.564 ** | −0.497 ** | −0.409 ** |
Mental stress | 2.190 | 0.857 | 0.549 ** | 1 | −0.430 ** | −0.376 ** | −0.320 ** |
Research self-efficacy | 3.883 | 0.889 | −0.564 ** | −0.430 ** | 1 | 0.419 ** | −0.350 ** |
Stress-is-enhancing mindset | 3.864 | 0.887 | −0.497 ** | −0.376 ** | 0.419 ** | 1 | −0.675 ** |
Stress-is-debilitating mindset | 2.494 | 0.886 | −0.409 ** | −0.320 ** | −0.350 ** | −0.675 ** | 1 |
X | M | R2 | F | ||
---|---|---|---|---|---|
Model 1 | β | 0.483 | 0.311 | 171 | |
t | 31.052 | ||||
LLCI | 0.453 | ||||
ULCI | 0.514 | ||||
Model 2 | β | −0.435 | −0.164 | 0.352 | 175 |
t | −23.235 | −7.742 | |||
LLCI | −0.471 | −0.205 | |||
ULCI | −0.398 | −0.122 | |||
Model 3 | β | −0.514 | 0.335 | 190 | |
t | −32.359 | ||||
LLCI | −0.545 | ||||
ULCI | −0.482 |
Effect Value | Standard Deviation | LLCI | ULCI | Ratio in Total Effect | |
---|---|---|---|---|---|
Total effect | −0.514 | 0.016 | −0.545 | −0.482 | |
Direct effect | −0.435 | 0.019 | −0.471 | −0.398 | |
Mediating effect | −0.079 | 0.014 | −0.107 | −0.052 | 0.154 |
Outcome | Predictor | β | LLCI | ULCI | t |
---|---|---|---|---|---|
Mental stress | Problematic smartphone use | 0.408 | 0.373 | 0.443 | 22.664 |
Stress-is-enhancing mindset | −0.048 | 0.052 | −0.097 | −1.944 | |
Problematic smartphone use × stress-is-enhancing mindset | −0.016 | 0.478 | −0.06 | −0.709 | |
Stress-is-debilitating mindset | 0.04 | 0.09 | −0.006 | 1.694 | |
Problematic smartphone use × stress-is-debilitating mindset | 0.088 | 0.042 | 0.133 | 3.776 | |
R2 | 0.335 | ||||
F | 114.354 | ||||
Research self-efficacy | Problematic smartphone use | −0.359 | −0.398 | −0.320 | −17.971 |
mental stress | −0.127 | −0.168 | −0.086 | −6.032 | |
Stress-is-enhancing mindset | −0.078 | 0.029 | 0.127 | 3.120 | |
Problematic smartphone use × stress-is-enhancing mindset | 0.09 | 0.046 | 0.135 | 3.973 | |
Stress-is-debilitating mindset | −0.037 | −0.083 | 0.009 | −1.598 | |
Problematic smartphone use × stress-is-debilitating mindset | −0.010 | −0.056 | 0.036 | −0.427 | |
R2 | 0.380 | ||||
F | 125.992 |
Stress Mindset | Effect Value | Standard Deviation | LLCI | ULCI | |
---|---|---|---|---|---|
Direct effect (modulation by stress-is-enhancing mindset) | −0.887 (M − 1SD) | −0.439 | 0.027 | −0.492 | −0.386 |
0 (M) | −0.359 | 0.020 | 0.398 | −0.320 | |
0.887 (M + 1SD) | −0.279 | 0.030 | −0.337 | −0.221 | |
Mediating effect of mental stress (modulation by stress-is-debilitating mindset) | −0.887 (M − 1SD) | −0.042 | 0.010 | −0.064 | −0.023 |
0 (M) | −0.052 | 0.012 | −0.076 | −0.029 | |
0.887 (M + 1SD) | −0.061 | 0.015 | −0.091 | −0.034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Chen, J.; Duan, Z.; Xu, W.; Feng, Y. Relationship Between Problematic Smartphone Use and Graduate Students’ Research Self-Efficacy: A Moderated Mediation Model. Behav. Sci. 2024, 14, 1191. https://doi.org/10.3390/bs14121191
Li P, Chen J, Duan Z, Xu W, Feng Y. Relationship Between Problematic Smartphone Use and Graduate Students’ Research Self-Efficacy: A Moderated Mediation Model. Behavioral Sciences. 2024; 14(12):1191. https://doi.org/10.3390/bs14121191
Chicago/Turabian StyleLi, Peng, Jiangyuan Chen, Zhitong Duan, Wei Xu, and Yangcun Feng. 2024. "Relationship Between Problematic Smartphone Use and Graduate Students’ Research Self-Efficacy: A Moderated Mediation Model" Behavioral Sciences 14, no. 12: 1191. https://doi.org/10.3390/bs14121191
APA StyleLi, P., Chen, J., Duan, Z., Xu, W., & Feng, Y. (2024). Relationship Between Problematic Smartphone Use and Graduate Students’ Research Self-Efficacy: A Moderated Mediation Model. Behavioral Sciences, 14(12), 1191. https://doi.org/10.3390/bs14121191