Impact of Nutritional Status on Pulmonary Function in Pediatric Cystic Fibrosis: A Retrospective Multicenter Study from Upper Egypt
Abstract
1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Methods
2.2.1. Data Collection
2.2.2. Statistical Analysis
3. Results
4. Discussion
4.1. Limitations of the Study
4.2. Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lyons, E.R.; Muther, E.; Sabharwal, S. Nutrition and behavioral health in cystic fibrosis: Eating and body image. Pediatr. Pulmonol. 2024, 59, S36–S43. [Google Scholar] [CrossRef]
- Leonard, A.; Bailey, J.; Bruce, A.; Jia, S.; Stein, A.; Fulton, J.; Helmick, M.; Litvin, M.; Patel, A.; Powers, K.E.; et al. Nutritional considerations for a new era: A CF foundation position paper. J. Cyst. Fibros. 2023, 22, 788–795. [Google Scholar] [CrossRef]
- El-Koofy, N.; El-Mahdy, M.; Fathy, M.; El Falaki, M.; El Dine Hamed, D.H. Nutritional rehabilitation for children with cystic fibrosis: Single-center study. Clin. Nutr. ESPEN 2020, 35, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, M.; Allen, J.; Arets, B.H.G.M.; Aurora, P.; Beydon, N.; Calogero, C.; Castile, R.G.; Davis, S.D.; Fuchs, S.; Gappa, M.; et al. An official American Thoracic Society workshop report: Optimal lung function tests for monitoring cystic fibrosis, bronchopulmonary dysplasia, and recurrent wheezing in children less than 6 years of age. Ann. Am. Thorac. Soc. 2013, 10, S1–S11. [Google Scholar] [CrossRef]
- Ong, S.H.; Chee, W.S.S.; Lapchmanan, L.M.; Ong, S.N.; Lua, Z.C.; Yeo, J.X.-N. Validation of the Subjective Global Nutrition Assessment (SGNA) and Screening Tool for the Assessment of Malnutrition in Paediatrics (STAMP) to Identify Malnutrition in Hospitalized Malaysian Children. J. Trop. Pediatr. 2019, 65, 39–45. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. BMI-for-Age (5–19 Years) [EB/OL]. 2024. Available online: https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators/bmi-for-age (accessed on 1 February 2025).
- Sayed, S.; El-Shabrawi, M.H.F.; Abdelmonaem, E.; El Koofy, N.; Tarek, S. Value of Nutritional Screening Tools Versus Anthropometric Measurements in Evaluating Nutritional Status of Children in a Low/Middle-Income Country. Pediatr. Gastroenterol. Hepatol. Nutr. 2023, 26, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Frantzen, T.; Barsky, S.; LaVecchia, G.; Marowitz, M.; Wang, J. Evolving Nutritional Needs in Cystic Fibrosis. Life 2023, 13, 1431. [Google Scholar] [CrossRef]
- Zysman-Colman, Z.; Munsar, Z.; Sheikh, S.; Rubenstein, R.C.; Kelly, A. Infant Body Mass Index or Weight-for-Length and Risk of Undernutrition in Childhood Among Children with Cystic Fibrosis. J. Pediatr. 2022, 243, 116–121.e3. [Google Scholar] [CrossRef]
- Thomas, L.; John, S.T.; Lionel, B.A.P.; Rebekah, G.; Kumar, M.; Punnen, A.; Varkki, S. Effect of malnutrition in infants with cystic fibrosis in India: An underestimated danger. J. Family Med. Prim. Care. 2021, 10, 1994–1997. [Google Scholar] [CrossRef]
- Dhochak, N.; Jat, K.R.; Sankar, J.; Lodha, R.; Kabra, S.K. Predictors of malnutrition in children with cystic fibrosis. Indian Pediatr. 2019, 56, 825–830. [Google Scholar] [CrossRef]
- Pedersen, M.G.; Højte, C.; Olesen, H.V.; Pressler, T.; Skov, M. Late diagnosis and poor nutrition in cystic fibrosis diagnosed before implementation of newborn screening. Acta Paediatr. 2019, 108, 2241–2245. [Google Scholar] [CrossRef]
- Kilinc, A.A.; Beser, O.F.; Ugur, E.P.; Cokugras, F.C.; Cokugras, H. The effects of nutritional status and intervention on pulmonary functions in pediatric cystic fibrosis patients. Pediatr. Int. 2021, 63, 316–322. [Google Scholar] [CrossRef]
- Panagopoulou, P.; Fotoulaki, M.; Nikolaou, A.; Nousia-Arvanitakis, S. Prevalence of malnutrition and obesity among cystic fibrosis patients. Pediatr. Int. 2014, 56, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann, B.; Paul, K.D.; Stern, M.; Wagner, T.O.; Hirche, T.O. Evaluation of body mass index percentiles for assessment of malnutrition in children with cystic fibrosis. Eur. J. Clin. Nutr. 2007, 61, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Lucidi, V.; Bizzarri, C.; Alghisi, F.; Bella, S.; Russo, B.; Ubertini, G.; Cappa, M. Bone and body composition analyzed by Dual-energy X-ray Absorptiometry (DXA) in clinical and nutritional evaluation of young patients with Cystic Fibrosis: A cross-sectional study. BMC Pediatr. 2009, 9, 61. [Google Scholar] [CrossRef]
- Zhang, Z.; Lai, H.J. Comparison of the use of body mass index percentiles and percentage of ideal body weight to screen for malnutrition in children with cystic fibrosis. Am. J. Clin. Nutr. 2004, 80, 982–991. [Google Scholar] [CrossRef]
- Poulimeneas, D.; Grammatikopoulou, M.G.; Petrocheilou, A.; Kaditis, A.G.; Vassilakou, T. Triage for malnutrition risk among pediatric and adolescent outpatients with cystic fibrosis, using a disease-specific Tool. Children 2020, 7, 269. [Google Scholar] [CrossRef]
- Barni, G.C.; Forte, G.C.; Forgiarini, L.F.; de Oliveira Abrahão, C.L.; de Tarso Roth Dalcin, P. Factors associated with malnutrition in adolescent and adult patients with cystic fibrosis. J. Bras. Pneumol. 2017, 43, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Steinkamp, G.; Wiedemann, B. Relationship between nutritional status and lung function in cystic fibrosis: Cross-sectional and longitudinal analyses from German CF quality assurance (CFQA) Project. Thorax 2002, 57, 596–601. [Google Scholar] [CrossRef]
- Sanders, D.B.; Fink, A.; Mayer-Hamblett, N.; Schechter, M.S.; Sawicki, G.S.; Rosenfeld, M.; Flume, P.A.; Morgan, W.J. Early life growth trajectories in cystic fibrosis are associated with pulmonary function at age 6 years. J. Pediatr. 2015, 167, 1081–1088. [Google Scholar] [CrossRef]
- Stephenson, A.L.; Mannik, L.A.; Walsh, S.; Brotherwood, M.; Robert, R.; Darling, P.B.; Nisenbaum, R.; Moerman, J.; Stanojevic, S. Longitudinal trends in nutritional status and relation between lung function and BMI in cystic fibrosis: A population-based cohort. Am. J. Clin. Nutr. 2013, 97, 872–877. [Google Scholar] [CrossRef]
- Libeert, D.; Declercq, D.; Wanyama, S.; Thomas, M.; Van Daele, S.; De Baets, F.; Van Biervliet, S. The effect of enteral tube feeding in cystic fibrosis: A registry-based study. J. Cyst. Fibros. 2018, 17, 264–270. [Google Scholar] [CrossRef]
- Mariotti Zani, E.; Grandinetti, R.; Cunico, D.; Torelli, L.; Fainardi, V.; Pisi, G.; Esposito, S. Nutritional Care in Children with Cystic Fibrosis. Nutrients 2023, 15, 479. [Google Scholar] [CrossRef]
- Kerem, E.; Viviani, L.; Zolin, A.; MacNeill, S.; Hatziagorou, E.; Ellemunter, H.; Drevinek, P.; Gulmans, V.; Krivec, U.; Olesen, H. Factors associated with FEV1 decline in cystic fibrosis: Analysis of the ECFS patient registry. Eur. Respir. J. 2014, 43, 125–133. [Google Scholar] [CrossRef]
- Strandvik, B. Nutrition in Cystic Fibrosis-Some Notes on the Fat Recommendations. Nutrients 2022, 14, 853. [Google Scholar] [CrossRef] [PubMed]
- Price, C.E.; Hampton, T.H.; Valls, R.A.; Barrack, K.E.; O’Toole, G.A.; Madan, J.C.; Coker, M.O. Development of the intestinal microbiome in cystic fibrosis in early life. mSphere 2023, 8, e0004623. [Google Scholar] [CrossRef] [PubMed]
- Coffey, M.J.; Garg, M.; Homaira, N.; Jaffe, A.; Ooi, C.Y. Probiotics for people with cystic fibrosis. Cochrane Database Syst. Rev. 2020, 1, CD012949. [Google Scholar] [CrossRef] [PubMed]
- Suppakitjanusant, P.; Wang, Y.; Sivapiromrat, A.K.; Hu, C.; Binongo, J.; Hunt, W.R.; Weinstein, S.; Jathal, I.; Alvarez, J.A.; Chassaing, B.; et al. Impact of high-dose cholecalciferol (vitamin D3) and inulin prebiotic on intestinal and airway microbiota in adults with cystic fibrosis: A 2 × 2 randomized, placebo-controlled, double-blind pilot study. J. Clin. Transl. Endocrinol. 2024, 37, 100362. [Google Scholar] [CrossRef]
- Karb, D.B.; Cummings, L.C. The Intestinal Microbiome and Cystic Fibrosis Transmembrane Conductance Regulator Modulators: Emerging Themes in the Management of Gastrointestinal Manifestations of Cystic Fibrosis. Curr. Gastroenterol. Rep. 2021, 23, 17. [Google Scholar] [CrossRef]
- Enaud, R.; Languepin, J.; Lagarrigue, M.; Arrouyd, A.; Macey, J.; Buib, S.; Dupuisg, M.; Roditisd, L.; Flumianh, C.; Mas, E.; et al. Dietary intake remains unchanged while nutritional status improves in children and adults with cystic fibrosis on Elexacaftor/Tezacaftor/Ivacaftor. Clin. Nutr. 2025, 50, 76–82. [Google Scholar] [CrossRef]
- Khemka, S.; Hunter, S.; Jones, J.; Valentín-Martínez, K.; Chadwick, C.B.; Bass, R. The State of Weight in Cystic Fibrosis: Understanding Nutritional Status and Individualizing Nutritional Care in the Modulator Era. Nutrients 2025, 17, 2533. [Google Scholar] [CrossRef] [PubMed]
- Wilschanski, M.; Munck, A.; Carrion, E.; Cipolli, M.; Collins, S.; Colombo, C.; Declercq, D.; Hatziagorou, E.; Hulst, J.; Kalnins, D.; et al. ESPEN-ESPGHAN-ECFS guideline on nutrition care for cystic fibrosis. Clin. Nutr. 2024, 43, 413–445. [Google Scholar] [CrossRef] [PubMed]
Variable Patients with CF | ||
---|---|---|
Current age (years) | Range | 3–18 |
Mean (SD) | 7.5 (3.3) | |
Age at diagnosis (months) | Range | 0.5–96 |
Mean (SD) | 18.42 (7.6) | |
Sex (N: %) | Male | 54 (52%) |
Female | 50 (48%) | |
Sweat chloride test (mmol/L) | Minimum–Maximum | 61–179 |
Mean (SD) | 99 (36) | |
Consanguinity | 42 (40.4%) | |
Family history of CF | 8 (7.6%) | |
Pulmonary manifestations | 104 (100%) | |
| 100 (96%) | |
| 23 (22%) | |
| 19 (18.3%) | |
| 11 (10.5%) | |
| 4 (3.8%) | |
Gastrointestinal manifestations | 22 (21%) | |
| 22 (21%) | |
| 4 (3.8%) | |
| 5 (4.8%) | |
| 4 (3.8%) | |
Cystic fibrosis-related diabetes | 5 (4.8%) | |
Pancreatic insufficiency | 88 (84.6%) | |
Gene analysis: | Class I | 6 (5.8%) |
Class II | 19 (18.3%) | |
Class III | 1 (0.96%) | |
Class IV | 2 (1.93%) | |
No data | 76 (73.1%) | |
STAMP nutritional risk screening: | ||
| 76 (73.1%) | |
| 28 (26.9%) | |
Nutritional status (BMI Z-scores): [N: %] | ||
| 25 (24%) | |
| 14 (13.5%) | |
| 36 (34.6%) | |
| 29 (27.9%) |
Variable | Nutritional Status | p-Values | |||||
---|---|---|---|---|---|---|---|
Mild Malnutrition (n = 25) | Moderate Malnutrition (n = 14) | Severe Malnutrition (n = 36) | Normal Nutrition Group (n = 29) | P1 Value | P2 Value | P3 Value | |
Male [number (%)] | 12 (48%) | 7 (50%) | 19 (52.7%) | 16 (55%) | NS | NS | NS |
Age [mean (SD); year] | 6.8 (2.3) | 7.8 (1.9) | 6.9 (2.2) | 7.4 (2.5) | NS | NS | NS |
Body weight (kg); median | 19.9 | 14.8 | 12.2 | 27 | <0.05 * | <0.001 * | <0.001 * |
Number of hospitalizations [median; times] | 4.77 (2.00, 6.00) | 5.04 (2.00, 6.00) | 5.08 (2.00, 6.00) | 4.76 (1.00, 6.00) | NS | NS | NS |
Total protein [mean (SD); g/dL] | 7.3 (1.1) | 7.2 (1.2) | 6.8 (2.2) | 7.8 (1.9) | NS | NS | NS |
Albumin [median; g/dL] | 3.68 (3.03, 4.98) | 3.72 (3.00, 4.17) | 3.30 (3.06, 3.88) | 4.63 (3.9, 4.68) | <0.001 * | <0.001 * | <0.001 * |
Hemoglobin [mean (SD); year] | 12.6 (1.9) | 12.1 (1.7) | 11.7 (1.12) | 12.9 (1.5) | NS | NS | NS |
Sweat chloride concentration [mean (SD) mmol/L] | 99 (29) | 98 (36) | 101 (28) | 103 (24) | NS | NS | NS |
Variable | Nutritional Status | p-Values | |||||
---|---|---|---|---|---|---|---|
Mild Malnutrition (n = 18) | Moderate Malnutrition (n = 12) | Severe Malnutrition (n = 25) | Normal Nutrition Group (n = 24) | P1 Value | P2 Value | P3 Value | |
VC | 1.97 (0.69) | 1.87 (0.76) | 1.79 (0.74) | 2.35 (0.84) | <0.03 * | <0.001 * | <0.0001 * |
FVC (% pred) | 84 (10) | 82 (14) | 79 (12) | 91 (11) | 0.01 * | 0.01 * | <0.0001 * |
FEV1 | 1.72 (0.52) | 1.66 (0.73) | 1.58 (0.68) | 2.21 (0.49) | <0.0001 * | <0.0001 * | <0.0001 * |
FEV1 (% pred) | 78 (18) | 72 (20) | 72 (15) | 92 (19) | <0.001 * | <0.001 * | <0.001 * |
FEV1/FVC ratio (%) | 86.9 (10) | 88.1 (8) | 88.2 (9) | 94 (6) | 0.001 * | 0.001 * | 0.001 * |
PEF (% pred) | 69 (11) | 62 (14) | 60 (12) | 82 (18) | 0.01 * | 0.001 * | 0.001 * |
FEF 25 (% pred) | 68 (11) | 63 (16) | 61 (10) | 80 (17) | 0.001 * | 0.001 * | 0.001 * |
FEF 50 (% pred) | 52 (17) | 50 (20) | 51 (16) | 77 (21) | 0.001 * | 0.001 * | 0.001 * |
FEF 75 (% pred) | 33 (10) | 29 (13) | 30 (14) | 53 (16) | 0.001 * | 0.001 * | 0.001 * |
Pulmonary Function Parameter | Correlation Coefficient (r) | p-Value |
---|---|---|
FVC (% pred) | 0.47 | 0.001 * |
FEV1 (% pred) | 0.54 | 0.002 * |
FEV1/FVC ratio (%) | 0.76 | <0.001 * |
PEF (% pred) | 0.67 | <0.001 * |
FEF 25 (% pred) | 0.5 | 0.001 * |
FEF 50 (% pred) | 0.54 | 0.002 * |
FEF 75 (% pred) | 0.56 | 0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saad, K.; Gad, E.F.; Taha, S.F.; Taha, S.A.; Fayed, H.K.; Elsaeed, M.; Alruwaili, T.A.M.; Ibrahim, M.F.M.; Elhoufey, A.; Mansour, A.M.E.; et al. Impact of Nutritional Status on Pulmonary Function in Pediatric Cystic Fibrosis: A Retrospective Multicenter Study from Upper Egypt. Med. Sci. 2025, 13, 165. https://doi.org/10.3390/medsci13030165
Saad K, Gad EF, Taha SF, Taha SA, Fayed HK, Elsaeed M, Alruwaili TAM, Ibrahim MFM, Elhoufey A, Mansour AME, et al. Impact of Nutritional Status on Pulmonary Function in Pediatric Cystic Fibrosis: A Retrospective Multicenter Study from Upper Egypt. Medical Sciences. 2025; 13(3):165. https://doi.org/10.3390/medsci13030165
Chicago/Turabian StyleSaad, Khaled, Eman F. Gad, Samaher F. Taha, Sherin A. Taha, Hamada K. Fayed, Mahmoud Elsaeed, Thamer A. M. Alruwaili, Mohamed Fahmy M. Ibrahim, Amira Elhoufey, Ahmed M. Esmat Mansour, and et al. 2025. "Impact of Nutritional Status on Pulmonary Function in Pediatric Cystic Fibrosis: A Retrospective Multicenter Study from Upper Egypt" Medical Sciences 13, no. 3: 165. https://doi.org/10.3390/medsci13030165
APA StyleSaad, K., Gad, E. F., Taha, S. F., Taha, S. A., Fayed, H. K., Elsaeed, M., Alruwaili, T. A. M., Ibrahim, M. F. M., Elhoufey, A., Mansour, A. M. E., & Aboelgheet, A. M. (2025). Impact of Nutritional Status on Pulmonary Function in Pediatric Cystic Fibrosis: A Retrospective Multicenter Study from Upper Egypt. Medical Sciences, 13(3), 165. https://doi.org/10.3390/medsci13030165